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We analyze the spectral properties of a phenomenological model for a weakly doped two-dimensional antifer-
romagnet, in which the carriers move within one of the two sublattices where they were introduced. Such a
constraint results in the free carrier spectra with the maxima at k = (+x/2, &7 /2) observed in some cuprates.
We consider the spectral properties of the model by taking into account fluctuations of the spins in the anti-
ferromagnetic background. We show that such fluctuations lead to a non-pole-like structure of the single-hole
Green'’s function and these fluctuations can be responsible for some anomalous “strange metal” properties of
underdoped cuprates in the nonsuperconducting regime.
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1. Introduction

After more than twenty years from its discovery, the problem of high-temperature supercon-
ductivity (HTSC) remains unresolved. Nevertheless, there are some facts about HTSCs, which are
generally accepted by the scientific community. In particular, it is well known that these materials
transform from antiferromagnetic insulators into superconductors with the carrier doping. The
superconductivity in most of the cuprates takes place mainly in the CuOs layers, and the other
inter-layer atoms supply the carriers for these layers and play a role of the carrier scatterers. It is
believed that the presence of antiferromagnetic background strongly affects the physical behavior
of weakly doped materials. In particular, this behavior can be defined by strong hole or electron
correlations [1,2]. Moreover, the correlations can be responsible for the d-wave superconductivity
in many cuprates [3,4]. In fact, since the isotope effect in optimally doped HTSCs is rather weak,
it suggests that the electron-phonon coupling is not the main source of superconductivity in these
materials, though the role of phonons and, in particular, the interplay of strong correlations and
phonon coupling in HTSCs is currently an active area of research (see, for example, [5] and refer-
ences therein). Thus, it is believed by a great part of the researchers that the phenomenon of HTSC
can be explained by using a strongly correlated model, in which the superconducting pairing with
the anisotropic order parameter is caused by an antiferromagnetic spin-wave coupling. Probably,
the most popular models for this scenario are the two-dimensional Hubbard model and its approx-
imation in the case of strong correlations, the tJ-model [6,7] (see, e.g., [8-11] and [12-14], where
the quasi-particle spectrum of cuprates was studied within the framework of this model).

Unfortunately, these models cannot be solved exactly in the two-dimensional case, so it is dif-
ficult to make a firm conclusion whether they can be considered as realistic models of HTSCs. As
an alternative approach, one can consider a simplified phenomenological model of cuprates with
strong correlations, which takes into account their main properties and can be solved exactly. Typ-
ical unusual and important properties of cuprates include a universal dome shape of the critical
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temperature — doping curve, a different from the BCS theory ratio 2A(T = 0)/T2** ~ 5.5 at
optimal doping, different critical densities for the superconducting gap in the nodal and antin-
odal directions. Probably, the most unusual phenomenon in HTSC is the pseudogap phase in
the underdoped regime. In this phase, the materials demonstrate very unusual properties of a
“strange metal”, like an anomalous temperature dependence of resistivity, etc., which are differ-
ent from a Fermi-liquid behavior. There is no general agreement in the HTSC’s community on
the origin of this phenomena. However, a recent improvement of the angle-resolved photoemission
spectroscopy(ARPES) technique gives a hope that the mystery of the “strange metal” phase in
underdoped cuprates will be resolved soon. Another unusual feature of some cuprates is their free
carrier spectrum. For example, the free spectrum of SroCuO2Cly and of some other materials in
the insulating phase has the maxima at the momenta k = (£7/2, £7/2) [15]. This fact suggests
that the main hopping processes in these systems take place between the next nearest neighbor
(NNN) and next NNN sites. In other words, they correspond to an inter-sublattice carrier motion.
Since the NNN and next NNN hopping parameters are too small for the oxygen sublattice of the
CuOg, planes, it is difficult to believe that the holes move within the oxygen sites, as it is assumed
by many researchers [16]. It is also difficult to assume that the free carrier spectrum corresponds
to the copper site NNN and next NNN hopping of the Zhang-Rice singlet, formed by an oxygen
hole and by one of the copper ions. In fact, the Zhang-Rice singlet states, which move within their
magnetic sublattice, are unstable due to the hole frustration with respect to the choice of the axis of
the spin quantization and for some other reasons [17,18]. In order to describe some of the physical
properties of the cuprates with the maximum of the free carrier spectrum at k = (£7/2, £7/2),
there was proposed a model, in which the holes occupy the sites and move within the copper ion
antiferromagnetic sublattice where they were born [17]. It was assumed that the hopping takes
place between the NNN and next NNN sites, and the superconducting hole-hole attraction is due
to the minimization of the energy of the system, when two holes occupy the nearest sites. In this
case, the minimal number of antiferromagnetic bonds is broken [19-23] and similarly to the Hub-
bard and the tJ-model cases, the pairing takes places predominantly in the d-wave channel [23].
It is important to stress that in order to explain the maximum of the quasi-particle spectrum at
k = (£7/2,+m/2), one has to neglect the NN hopping, ¢t = 0, despite the fact that this hopping
matrix element is larger than the other hopping parameters. This is due to the fact that the second
sublattice hopping does not contribute to the quasi-particle peak. This situation is similar to the
exciton motion in an antiferromagnetic system. In the last case, the second sublattice hopping
does not contribute to the excitonic quasi-particle peak. It only results in a tail in the absorption
spectrum.

We have already studied some of the properties of cuprates in the superconducting and pseudo-
gap phases within the framework of this model. Namely, in [18], we have analyzed the temperature-
hole phase diagram of the model in the case of low doping. In this paper, we have obtained the
doping dependence of the superconducting critical temperature T, by solving a system of coupled
equations for the Green’s function for the Hubbard operators within a generalized mean-field ap-
proximation [24]. It was shown that superconductivity in the model arises at finite doping and T
grows with doping in the underdoped regime. We have also obtained the increase of T, with doping
in the overdoped regime. This result is connected with a simplified approximation of the hole-hole
attraction, which was assumed to be doping-independent (see the following section). In order to ob-
tain the decrease of the superconducting critical temperature with doping in the overdoped regime,
similar to the spin-polaron model [13], one needs to take into account the doping-dependence of
the attraction. Namely, the effective attraction should decay due to the destruction of the anti-
ferromagnetic background with doping increasing. We have also shown that there is an additional
pseudogap phase at temperatures above T, and below another critical temperature T, which also
grows with doping increasing in the case of low carrier densities (for a schematic picture, see fig-
ure 1). Namely, according to the Emery-Kivelson scenario [25], the Cooper pairs start to form below
the temperature Ty, which is associated with the superconducting mean-field critical temperature
TCM F_ In the two-dimensional case, the pairs are disordered (the order parameter phases are ex-
ponentially ordered) above the condensation temperature T,. This temperature can be associated
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Figure 1. A typical temperature-carrier density phase diagram of the hole-doped cuprates. It
consists of the “normal”, superconducting (SC), antiferromagnetic (AF), and two pseudogap
phase regions: the lower pseudogap (LPQG) phase, in which the behavior is affected by both SC
and AF spin phase fluctuations, and the upper pseudogap (UPG) phase, in which only the AF
spin phase fluctuations are present.

with the Berezinskii-Kosterlitz-Thouless (BKT) critical temperature, below which the phases of
the superconducting order parameter are algebraically ordered. This is the only possible critical
temperature in the two-dimensional case. The existence of superconducting pseudogap phase with
unusual properties at T, < T' < T, was confirmed in some cuprates, where a strong Nernst effect
was observed (see, for example [1,26], and a theoretical paper [27]). However, it is well-known that
the anomalous properties of cuprates in the underdoped regime take place up to the temperatures
much higher than Tj. In particular, an anomalous pseudogap in the one-hole density of states is
observed below a temperature T* > Tj, which is called the pseudogap critical temperature. We
present a schematic phase diagram of cuprates in figure 1, where we distinguish two regions in the
pseudogap phase: the superconducting lower pseudogap (LPG) phase and the other one, which we
call the upper pseudogap (UPG) phase. The UPG critical temperature T™* is a decreasing function
of doping. There are some experimental evidences that T* goes below T, in the overdoped regime
and approaches zero at doping § ~ 0.19. It is believed by many researchers that the physical
properties in the region Ty < T' < T* are defined by nonsuperconducting processes (for overview,
see [1]). One of the popular explanations is based on the idea of the spin singlet formation in a
doped two-dimensional antiferromagnet, which corresponds to the resonant valence bond model.
Unfortunately, there are no crucial experimental results which confirm the existence of such a state
so far. Also, it is known that a non-Fermi liquid temperature dependence of the conductivity in
underdoped cuprates takes place up to temperatures of the order of 3000 K. Therefore, as it was
suggested by Phil Anderson [28], it shows that probably nonsuperconducting effects are responsi-
ble for this phase. Namely, he suggested that the unusual behavior of the spectral function can be
explained by a renormalization of the quasiparticle Green’s function due to a Gutzwiller projec-
tion in a strongly correlated model, which leads to an additional time-dependence of the Green’s
function and a non-pole-like (cut-like) form of this function in the frequency representation, which
corresponds to a non-Fermi-liquid case.

In paper [29], we have studied some of the spectral properties of the model proposed in [17]
by taking into account fluctuations of the phases of the superconducting order parameter and the
phases of the spins in the antiferromagnetic background. In particular, we have shown that the
growth of the Fermi arcs with temperature in underdoped cuprates can be qualitatively explained
within the model by taking into account fluctuations of the superconducting d-wave order pa-
rameter. In this paper, we analyze the effect of the superconducting and spin fluctuations on the
structure of one-hole Green’s function and the consequent anomalous behavior of the cuprates in the
pseudogap phase. In particular, we show that a cut-like structure of the Green’s function, qualita-
tively similar to the one obtained in [28], can be obtained by taking into account these fluctuations.
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The paper is organized as follows. The model and the main equations in the mean-field case
are presented in section 2. In section 3, we extend the problem by taking into account fluctuations
of the spins on the antiferromagnetic sublattices and estimate the doping dependence of the UPG
critical temperature T*. The results for the spectral function and the density of states at different
values of temperature are presented in sections 4 and 5, correspondingly. In addition, in section 5
we show how the anomalous frequency dependence of the conductivity can be obtained from the
cut-like Green’s function. A summary, a discussion of the results and conclusions are given in
section 6.

2. Model

As it was shown in [17], the effective model for the holes in some of the weakly doped cuprates
can be written as:

1 —
H= (e )Y X3~ 3 tmcos AP y2royupae o So xzaxzz ()

n n,p=a,b

In the latter equation, X322, Xé/ 22 Xﬁ’l/ % are the Hubbard operators for the hole number, the
hole annihilation and the hole creation on the site n. The first three terms in the Hamiltonian (1)
describe the local hole energy and the NN, and NNN hopping processes, where €4 and p are the
hole on-site energy and the chemical potential. The magnetic structure vectors Qaras are equal
to (£, £7), which corresponds to the antiferromagnetic case. We use the local spin coordinates
for the Hubbard operators. The noninteracting part of the hole Hamiltonian describes holes, which
move within their sublattices. The free hole dispersion relation is as follows:

e(k) = eq — 4ty cos ky cos ky — 2t3(cos 2k, + cos 2ky) — p. (2)

The effective hole-hole attraction in the system is described by the last term in equation (1). In
fact, the doped holes introduced on the antiferromagnetic lattice, which move within the sublattice
they were introduced, lead to a minimal increase of the energy of the system when they sit on the
nearest sites [19], since in this case the minimal number of the antiferromagnetic couplings J
between the nearest site spins is broken. In this case, two doped holes will always try to occupy
NN sites, which results in the effective attraction described by the last term of the Hamiltonian (1).
In our calculations, we use the length units such that the lattice constant is equal to one, a = 1,
and choose the energy parameter £4 to be equal to 4ty + 4¢3. In this case, the free hole energy
is equal to zero at k = 0 in the limit of low doping (¢ — 0). In order to find the dependence
of physical properties of the system on hole concentration §, we shall use the following equation,
which defines 0 in terms of the Hubbard particle number operator:

5= (Xx2%). (3)

n

Recently, we have studied the spectral properties of the model by taking into account su-
perconducting fluctuations [29]. In this paper, we use a similar formalism to study the effect of
antiferromagnetic background spin fluctuations on the anomalous spectral and some other prop-
erties of the system in the pseudogap phase at T > T.. Although we are interested mainly in
the spin fluctuation effects, we shall consider the general case assuming that the superconducting
pairing can also take place, which corresponds to the temperature interval T, < T < Tj. At higher
temperatures, i.e. at Ty <1 < T, we shall use the same equations by putting the superconducting
gap to be equal to zero in our calculations.

Then, in order to study the properties of the system described by the Hamiltonian (1), it is
convenient to introduce generalized Nambu-Hubbard hole operators

2,1/2
Wat) = ( g ) LWl = (X0, X2 n
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where n is the lattice site and ¢ is time, and to calculate the time-ordered Green’s function
Cam(t, 1) = —{T(Un ()L, (#))). ()

This function satisfies the following equation:

0 A .
i Gnm(t, t') = 0(t — t")0nml + (T[Tn(t), H|TL (1)), (6)
where I is a diagonal 2 X 2-matrix with the nonzero elements equal to <X$/2’1/2(t) + X22(t)). In
the case of low doping, I ~ 1. In order to solve equation (6), it is convenient to approximate its
last term by a generalized mean-field theory expression:

(T[Wy, HW,) Z EnGim(w (7)

where
El‘lm = <{[\IIH7H]7WL1}> (8)

is the energy matrix (for details see, e.g., [24]). In this approximation, one neglects the dynamical
corrections to the self-energy, which can be systematically taken into account. For example, in
[12] the authors considered these corrections in the case of the ¢J-model by using a similar for-
malism. In order to find the Green’s function, one needs to calculate the elements of the energy
matrix Enl, which depend on different correlation functions, in particular, on the superconducting
gap function, which can be found by using the fluctuation-dissipation theorem. Assuming that
the superconducting pairing takes place in the d-wave channel and introducing the relevant gap
function:

K) = ~4J 3 qa(ha(a) (X2 2X212) = Aga(k), (9)

where v4(k) = cos(ks) — cos(ky) is a d-wave structure factor and the X-operators belong to
different sublattices, one can get the following approximate expression for the Green’s function in
the frequency-momentum representation:

1
w+ek)T, +iAKk)T,

G(w, k) = (10)
where 7, and 7, are the Pauli matrices (for details, see [18]).

In order to find the doping and temperature dependencies of the superconducting gap parameter
Ay, one needs to derive and solve the system of equations for A; and the chemical potential u.
These equations follow from the definitions (3), (9) and the self-consistency conditions, which follow
from the fluctuation-dissipation theorem:

1 = 4qu:7§(<ﬂ tanh (W(q) ;_TACﬂd(q)> AT 1 ) (11)

d'}/d( )
_ an \/ *(q) + Azﬂd( ) e(a)
5 = zq: 1+t h( 7 >\/€2(q)+A§’y§(q)], (12)

(see [18] for details). The solution of these equations at Ay = 0 gives the doping dependence of the
mean-field critical temperature T, CM F_or the LPG critical temperature Ty. According to the Emery-
Kivelson scenario, the real superconducting critical temperature T, < T, in the two-dimensional
case corresponds to the BKT temperature, below which the phases of the order parameter become
algebraically ordered (for over-review see, for example, [30]). We studied the doping dependence of
this temperature in [18]. In this paper, we shall mainly concentrate on the spectral properties of
the model in the pseudogap phase at T' > T, by taking into account superconducting fluctuations
and spin fluctuations of the antiferromagnetic background.
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3. Spin fluctuations

In order to describe the UPG region, we assume that, in analogy with the superconducting
order parameter fluctuations, the physics in the temperature range Ty < T < T* is governed by
fluctuations of spin phases. Supposing that the antiferromagnetic copper oxide spin Hamiltonian
is described by the XY-model, it is easy to obtain an analogous critical temperature for the spin
subsystem. Therefore, we associate T* with the temperature of the BKT transition for spins. This
temperature can be also estimated from the following equation:

* Tr *
T = 5*7Spin(:u/7T )a (13)

where the spin stiffness Jipin is the coeflicient in front of the quadratic term of the spin phase
gradients in the effective action for the spin phase ¢, = Qaprpn differences:

0= —szin /d2r<p8t2g0 4+ =22 jSpm /dQT(Vgo)Q. (14)

It is equal to

1k VR AT e (k)
\78le - 2 / (271')2 tanh < 2T ) E;:(k)Q + Ag(k) ’ (15)

where £(k) = e(k) —4J5 +4t16(cos kg + cosky) (see [29]). As it was mentioned above, doping leads
to a gradual destruction of the antiferromagnetic order and to a hole hopping between NN sites,
which belong to different sublattices. We take this process into account by adding the doping-
dependent term 4¢19(cosky + cosky) to the free spectrum (2). The doping dependence of T* can
be found from equation (13) at Ay = 0. In this case, equation (13) has the following form:

T = % / ((21727];2 tanh <‘;(Tl,‘)) (k). (16)

The exact solution of equation (16) shows that T* is a decreasing function of doping. One can
estimate the analytical dependence T*(4) from equation (16) by taking into account that at low
doping T™* > |&(k)|. Therefore, in this case:

0 d2k
s | =2(1c) ~
1o [T [ Sh 09 = T - 69), (17)
where T z T[4 (277)25 k)|s—0 and 3 = 4/7/2t; [ 4 on )25 )(cos kg + cosky).

4. Spectral function

In order to study the spectral function in the case when the spin phase fluctuations are taken
into account, it is convenient to write down the spin functions explicitly in the laboratory system
of coordinates:

|on) = |0) cos(n/2) + 20]0) sin(n/2), (18)

where ¢y, is the angle between the directions of the laboratory and local systems of coordinates.
For simplicity, we assume that the spins lie in the plane of the system and their phase fluctuations
are small. In this case, one can get the following result for the Green’s function:

Gap(t) = Gap(z) D" (2),
where G, g(x) is the Green’s function of the Nambu spinors and

Dspin(m) — e—(W(l‘)W(O»/‘l
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is the correlator of the spin phases (for details, see [29,30,32]). The phase correlators in the last
two expressions can be easily obtained from the effective action for the spin phases. Namely,

DP(1 1) = exp

(19)

Z / qdgdep 1 — cos(gr cos ) cos(2,7)
e oo 2 \7sp1nq + ICspann ’
where Jspin and Kgpin are the coefficients in front of the gradient and time derivative terms in the
effective action (14). One can use these exact expressions to calculate the spin correlation functions.
However, in order to study the qualitative behavior of the spectral function of the system, it is
enough to approximate the correlation function by

Dypin() = [0(T" = T) + 0(T = T*) exp(=1/Epin(T))] €T (1 /rapin )~ 7, (20)

where T™ is the spin BKT temperature and pin, &spin, Tspin and I' are doping- and temperature-
dependent parameters. In principle, one also needs to include superconducting fluctuations in order
to describe the properties of the system at 7. < T' < Tp. In this case, D" should be multiplied
by the corresponding superconducting function DSC with the space-time dependence similar to
equation (20). We assume that D" describes the total effect of the spin and superconducting
fluctuations and use the corresponding parameter notations «, &, r and I' instead of the ones used
in equation (20). The values of the parameters can be estimated from experiments (see below).
In the frequency-momentum representation, the Green’s function has the following form:

. iwp, + m36(q) s
nv =-T D (k — sWn — Wm ), 21
G 2;/ Ui P ) (21)

where the Fourier transform of the correlator of the phase fluctuations D% (k — q,w,, — wy,) can
be found from equation (20). In particular, at T' < T*:
. 1 r
D (0, q) = A , 22

where A is a parameter. We shall use this expression to analyze the spectral properties of the
system. For simplicity, we assume that the inverse time correlation length I' is proportional to
temperature and put I' = 0.17/T, where T ~ T*.

The spectral properties of the holes can be studied by making the analytical continuation
iw, — w+1in (n — +0) and extracting the imaginary part of the Green’s function

A(w, k) = —=(i/m)ImG(w, k). (23)

In this case, by using equations (21)—(23) and performing one frequency integration, one can
get the following expression for the spectral function:

Ao = 4 faaf |1+ 25 o
1

k=@ e

where A can be most easily found by using the Green’s function zeroth spectral moment sum rule.
Let us get an approximate expression for the spectral function in the case of Ay = 0 and positive
frequencies. In this case, the last term in the figure brackets can be neglected, and one gets

1

)P+W+FE@}W+Mq2

(24)

Aw, k) ~ A(w) /d(pq @ (25)
[(k2 — 2k+/2m*(pu + w) cos(pq) + 2m*(u + w) + 5*2(T)}
where
A(w) = Am* /OOO d¢[1 + sign(€ — ,u)](g)% ~2m*A [2 + arctan(w/F)} .
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As it follows from equation (25), the Green’s function has a cut-like form, contrary to the Fermi-
liquid pole-like case. Such a dependence is caused by the presence of the spin correlation function
DPin(k — q,w, — wm) in equation (21), which smoothes out the J-function peaks of the spectral
function that come from the denominator of the fermion Green’s function. Therefore, the quasi-
particle residue Z, which can be defined as the coefficient in front of the Fermi quasi-particle spectral
function é-peak, is equal to zero. This means that the system is in a non-Fermi-liquid regime. This
result is qualitatively similar to the result recently obtained by P.W. Anderson in the case of a
strongly correlated model [28] and used to describe the spectral function in BizSraCaCusOg.ys
in [33]:

_,(w sin[(1 —p)(7/2 — tan™ ' [(w — vpk)/T])]
Aw k) = f (T) [(w— vpk)? +T2]0-1)/2 ’ (26)
where f(w/T) is the Fermi function and p and I' are parameters in the effective Green’s function:
t—pe—rt
G(t = — 27
(13 = (21)

In particular, the prefactor t™ comes from the contribution of the Gutzwiller projection on the
single occupied states of the strongly correlated system. It was estimated that p ~ 0.12 and
I' = AT + B(k — kg)? in the momentum space, where A and B are constants.

In fact, in our case we can get an approximate cut-like expression for the spectral function
by putting ¢, = 0 in the expression under the integral in equation (25) and integrating over the
angle ¢4. This can be done since the momentum angle region around ¢, = 0 gives the largest
contribution into the integral. In this case,

1

Alw, k) ~ 4rm* A [g + arctan(w/F)} = (28)
[0 = V2m ()2 + €2(T)|
As it follows from this equation, the spectral function has the maximum at w = &(k) =

k%/(2m*), similar to the free hole case (we put p = 0 for simplicity), but this function is a
smooth function, different from the delta-function. Our numerical evaluation of the integral in
equation (25) show that the approximation (28) is correct only at large values of a (figure 2). In
the case of small «, the w[¢(k)]-dependence for the spectral function maximum is linear at large
£(k). In this case, the curve begins at finite value of |k|, which decreases with « increasing.

From equation (28), one can find an approximate expression for the spectral function at w = 0:

1
[(k = kp)? +&72(T)]"
As it follows from this equation, the spectral weight at the Fermi level is defined by £ and «.

Alw = 0,k) ~ 2r%m* A

(29)

5. Density of states

The density of states can be obtained from equation (24) by using the standard expression

N(w) :/%A(u},k). (30)

Similar to the previous section, one can show that the system demonstrates a finite DOS at zero
frequency and it is defined by the parameters £ and a.
One can estimate the DOS weight at w = 0 from equation (29):

- 42k 1
2 A/ @m2 k2 + € 2T

[(@m* WeH(T) + 1) > —1]. (31)

2
&
H

=
2

mm*A
3(1— a)e2—=)
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Figure 2. The spectral function peak frequency w-dispersion £(k) curve at different values of a.
This curve approaches the free fermion curve w = £(k) as « increases.

From equations (28), (29) and (31) one can estimate the values of phenomenological parameters
¢, aand I' by comparing theoretical results with experimental data. In particular, one can get that
I' ~ T and £ is a weakly-dependent function of temperature for a wide temperature range above 1.

To conclude this section, we would like to demonstrate how some of the non-Fermi-liquid
properties could result from the cut-like structure of the Green’s function by using the anomalous
conductivity as an example. One can roughly estimate the conductivity to be proportional to
the quasiparticle life-time 7(k,w) at |k| = kp. This quantity can be estimated to be inversely
proportional to the imaginary part of the one-hole self-energy, i.e. 7(kp,w) ~ 1/Im¥(kp,w). On
the other hand, since

Im>(k,w)

(k2/2m* — )2 + ImX2(k,w) ’
where we have neglected the real part of the self-energy, one immediately gets 7(kr,w) ~ A(kp,w).
The frequency dependence of this quantity at different values of « is presented in figure 3, where
we have subtracted the frequency-independent part from the spectral function. As it follows from
this figure, at low and moderate frequencies the dependence of the conductivity on frequency can
be approximated by o ~ w’, where b is a parameter. As it follows from equation (25), at small
frequencies

Alk,w) =

a?&(kp) /E(T) — a
(€(ke) /E(T) + 1)ot2" (32)

Such a dependence obtained by using a rather rough approximation already indicates that the
cut-like form of the Green’s function can result in a non-Fermi-liquid behavior of the system.

In order to make a comparison with experiments for conductivity and other quantities in the
pseudogap phase, one needs to more accurately take into account different properties of the materi-
als, like the band structure, the antiferromagnetic spin coupling, which defines J and others. Such
a comparison is also necessary in order to estimate the values of the phenomenological parameters
for the spin fluctuation correlation function (20).

A(kF,w) - A(]{JF,LU) ~

6. Conclusions

In this paper, we have considered the spectral properties of a phenomenological model of HTSC
in the underdoped regime by taking into account fluctuations of the phases in the AF spin back-
ground. Namely, we have considered the temperature evolutions of the spectral function and of the
density of states. By studying the spectral function, we have shown that its temperature depen-
dence in the case of HTSCs can be qualitatively described by this model in the case of a proper
choice of the decoherence time correlation length and other parameters for the spin angle correla-
tion function. These parameters can be taken from experiments and they are directly connected
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Figure 3. The leading frequency-dependent term of the spectral function (in arbitrary units) at
small w, k = kr and different values of «. This term is proportional to A(kr,w) — A(kr,0). The
frequency w is given in units of 1/(2m*¢?).

to the microscopic model parameters. Similarly, we have derived and analyzed the expression for
the density of states. Finally, we have shown that the spin fluctuations can be responsible for
the anomalous behavior of the conductivity in the underdoped regime. We have compared our
result for the Green’s function with the expression proposed in [28], and have shown that both
models can describe anomalous properties of underdoped cuprates without using exotic models,
like the marginal Fermi-liquid etc. The validity of the model studied in this paper to describe all
the properties of cuprates in the pseudogap phase can be tested by taking into account different
experimental phenomena, which requires a further investigation.
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CniHoBi pnykTyauii Ta noBegiHka Tuny “AnMBHOro metany”y
cnabo neroeaHoMy aHTUPEepoOMarHeTuKy

B.M.JNokTes', B.TypkoBCbKMIA?

-

IHCTUTYT TeopeTuyHoi disukn im. M.M. Boronto6osa HAH Ykpainu,
03680 Kwuis, Byn. MeTtponoriyHa, 14-6

®dakynbTeT di3nkm Ta acTpoHoMii, yHiBepcuTeT Miccypi, Konymbia, 65211 Miccypi, CLUA

N

OtpumaHo 16 TpaeHa 2008 p., B octatouHoMy Burnsai — 18 yepsHa 2008 p.

lMpoaHanizoBaHO crnekTpasnbHi BNacTUBOCTI peHOMEHONOrYHOi Moaeni ana cnabo neroBaHoro ABOBMMIpP-
HOro aHTUdEepomMarHeTuka, B \KOMy HOCIi pyxatoTbCsl y came Till 3 ABOX MiarpaTok, kyau BoHM 6ynu BBee-
Hi. Take 0OMeXeHHs1 NPMBOANTbL A0 CMEKTPIB BiIbHUX HOCITB 3 Makcumymamu npu k = (+£7/2, +7/2), wo
crnocTepiralTbesl y Aesiknx Kynpatax. CnekrpanbHi BNacTUBOCTI MOAENi OCIIKEHO LUISXOM BpaxyBaHHS
dnykTyaujin cniHiB BiZHOCHO aHTUdepomarHiTHoro goHy. MokasaHo, Wo Taki dnykTyauii BeayTb oo 6e3-
MOMIOCHOT CTPYKTYPU OAHOAIPKOBMX (yHKLIM ['piHa, a Takox Ui dhiykTyauii MOXyTb BiAMOBiAaTK 3a NEBHi
aHOMaJibHi BNacTMBOCTI He0IeroBaHMX KynpaTiB TUMy “OUBHOIO MeTany” y HeHaanpoBiAHOMY PEXUMI.

Kniou4oBi cnoBa: kynparHi HaanpoBiaHWKY, HEAO1ErOBaHNI PEXUM, NCEBAOLLIINHA

PACS: 74.20.-z, 74.20.Fg, 74.20.Rp, 74.72.-h
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