Condensed Matter Physics 2008, Vol. 11, No 3(55), pp. 455-462 @oNDENSED
MATTER
BPHNSICS]

Effective t—J model of pairing: singlet versus triplet
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The t-J model is regarded as a canonical model of spin-singlet pairing induced by the kinetic exchange
interaction also responsible for an antiferromagnetic ordering in the strongly correlated narrow-band systems.
In the orbitally degenerate systems both ferromagnetic and antiferromagnetic kinetic exchange interactions
occur. | briefly review the analogy between the singlet and triplet types of pairing, as well as draw some
general conclusions about the pairing induced by these exchange interactions. The general discussion is also
illustrated with a concrete case of a two-dimensional lattice with the spin triplet pairing.
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1. Introduction

The t—J model contains a very attractive idea of spin-singlet pairing induced by electron correla-
tions and taking place in high-temperature superconducting cuprates [1,2], although some questions
remain whether the actual pairing should also include explicitly the hybrid 2p — 3d pairing induced
by interactions of the Kondo-type [3,4]. What is fundamental in this approach is the crucial role
of a strong Coulomb repulsion between electrons in these narrow-band systems, which leads to
the antiferromagnetic intersite interaction, yielding in turn the effective pairing in real space. Even
the effect of the atomic disorder leading to an enhancement of the pairing on local scale can be
accounted for semiquantitatively [5]. The question of the pseudogap appearance in the underdoped
systems is still under debate, but it may be related to the residual antiferromagnetic correlations
in a strongly disordered medium, induced by both the doping and the correlations of charge and
spin type (stripes). In general, the nature of the normal state is understandable to a lesser extent
than the condensed superconducting state in the two spatial dimensions. The role of the third
dimension (coupling between the planes), as well as that of electron-lattice coupling, still remains
at a further distance.

On the other hand, the first unambiguous defection of spin-triplet superconductivity in the
ferromagnetic phase [6,7] did not spark a corresponding modelling of the spin-triplet pairing based
on an analogous approach, as it deserved (see, however [8,9]). The systems such as UGez or URhGe
may not be as strongly correlated as the cuprates or heavy fermions, but still it is important to
explore the generalized t—J model for orbitally degenerate systems. This topic will be briefly overvi-
ewed here. In this connection, one should mention the just discovered Fe-pnictide superconductors,
which are orbitally degenerate systems, so they may be good candidates for a singlet-triplet super-
conducting transition as a function of composition (i.e. concentration of 3d electrons). The presence
of such a transition would provide an unambiguous evidence for the role of kinetic exchange in-
teractions in real-space pairing in orbitally degenerate narrow-band systems. The main purpose of
this paper is to comment of two nonstandard features of the t-J model and then, to turn attention
to an effective t—J model for orbitally degenerate systems.
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2. t—J model

The t—J model with inclusion of antiferromagnetic kinetic exchange and the three-site hopping
was derived over 3 decades ago [10]. Starting from the Hubbard model, it has the following form
for an electron moving in the lower Hubbard band

PHPy =Y tijal,(1-niz)ajo(1-njz)+ Y _ (2t5/U) |Si-S; — an nw)nja/anﬁ,)]
ij

ijo

+ Z JTjk [a}a (1 — nz)njz (1 — nje) ake (1 — ngz) — a . (1= nw)S arz (1 — nkg)} .

ijko
(1)
The first term represents the hopping between the neighbors ¢ and j (¢;; # 0 for ¢ # j only), the
second one represents the so-called kinetic exchange interaction with the fermionic representation
of the spins: S; = (S, 5., 57) = (87, 57) = (alyas,al, air, (na — na1)/2), and & = —o. The three
processes composmg the effective Hamiltonian are depicted schematically in figure 1.
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Figure 1. Possible hopping processes in the lower Hubbard subband: a) virtual hopping between
singly occupied sites that leads to an antiferromagnetic (kinetic) exchange interaction between
the neighboring sites; b) two-site hopping between empty and singly occupied sites (single-
particle hopping); and ¢) between the singly occupied and empty sites via a singly occupied
site.

The whole dynamics can be expressed in a closed form by introducing projected fermionic
operators:
b, = al, (1 = niz), bis = aig (1 — niz),

’L

Vie = bly bie = Nio (1 — niz), vi = Z Vio (2)

and then the Hamiltonian assumes the following closed form:

22, 1
POHPO*th] o jg+z<—U]> (Si'SjZI/il/j>
tj

ijo
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As the projected operators {b;} and {b;,} obey the non-fermion anticommutation relations
from one side and the hopping term does not commute with the second order (~ t2/U) part,
the dynamics of this model is highly nontrivial. Physically, this is because the kinetic-energy part
vanishes in the limit of the Mott insulator ({(¢;) = 1), but in the metallic phase the first two terms
may be of the first two terms can be of comparable magnitude.
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An important comment can be made at this point. Namely, in the low-dimensional systems,
the Coulomb interaction screening is less effective (particularly for a small number of holes in the
Mott insulator). Therefore, the intersite interaction part

1
5 ZKUTL,"I’L]‘,

i#]

can be regarded as important, particularly near the Mott-insulator limit. In deriving the effec-
tive Hamiltonian, the coupling constant for the second-order terms is then ~ ¢;;t;r/(U — Kij),
which means that the effective spin-spin interaction becomes stronger. This is not so good for
the real space pairing, since one has to add to the effective Hamiltonian (3) an intersite repulsion
(1/2)>° K;j; vvj and if K;; > 4t?j/(U — Kj;j), then the spin-spin coupling is not sufficient to pro-
duce the attractive interaction, i.e., to produce bound pairs in the ordinary sense. To see this more
explicitly, we introduce the intersite spin-singlet pairing operators as follows:

1
ol bty — ol ! ) By = (B)T = ——= (bt bj, — bi bj1) , (4)

Bl = (
iJ \/_ i Vgl il 74T \/5

and hence (3) takes the most compact form

2t t;
PHPy = E :tzg io Ujo — [j]]k ;i Brj + E :K1J ViVj . (5)
ijo ijk z;é]

The destructive role of the intersite Coulomb repulsion is usually ignored (see also below).
However, taken literally, it simply can preclude any bound-state formation associated with the real-
space pairing, i.e. when (B;;) # 0. To overcome this intersite repulsion, a local lattice-distortion
induced attraction can play an important role. An elementary argument for the effect of the
distortion on the effective attractive interaction is briefly analyzed below [10,11].

3. Bond distortion and the effective attractive interaction in t—J model

In the narrow-band limit, the hopping integral diminishes roughly exponentially with the
increasing inter-atomic distance R;;. On the contrary, in this asymptotic limit, the intersite
long-range Coulomb repulsion can be approximated to the first order by its classical expression
K;j ~ e*/R;;. Therefore, the change of the system energy 6H under the effect of the classical
bond distortion dR;; is mainly obtained due to the change of the intersite Coulomb energy via
((5Kij/5Rij) . (SRij, i.e. as

(5Kij N 62 Rij
0R;; 2Rfj R;;

(6)

We can write down the total system energy with the inclusion of the lattice distortion in the
form (we omit three-site terms for simplicity):

- - 1
H = PRHPy + 6H = Y _t; bl bie + Z = BT Bij + 3 > Kijviv;
ijo i#]
w ) 5RZ] e 16}
_Z Z Wi T vivj+ = Z 71 (6Rij)* + 72 Z SRS OR (7)
Z#J Z#J a#p

where W;; ~ K;; ~ e¢?/(2R;;), 71 and 72 are the diagonal and off-diagonal elastic constants,
respectively. Minimizing the energy with respect to classical bond distortions éR;;, one obtains [11]
the following effective Hamiltonian including both strong correlations and the attractive interaction
induced by the particle motion (e.g. holes in the Mott insulator). Assuming that we have an
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isotropic distortion accompanying the hole motion in the planar case, we obtain the following
generalized t—J Hamiltonian (up to an irrelevant term):

2 2
TR ST T o (e R L R A D (8)
J Yie Y U*Kij 4 R‘2*')/1 J LA I N ) ?

ijo v

or equivalently,
H=>" (tij b, bis — %Jz‘j Vi Vﬁ) ; 9)
ijo

where J;; expresses the sum in the bracket in (8). This is the spin-dependent version of an attractive
density-density interaction [12], which still expresses the complementary character of antiferromag-
netic spin-spin correlations and the intersite singlet pairing (note that v, vjz = b;rgb;%bﬁbw).

The essence of the above argument is as follows. The inclusion of a bond distortion associated
with the particle density-density correlation ({v;v;) # 0) results in an effective t—J model of the
type (9). The bond-distortion contribution can be large as the ratio of the bare intersite Coulomb
interaction (W;;) to flefj can be large and therefore, together with the kinetic-exchange contribu-
tion (~ tfj)7 it can overcome the intersite repulsion ~ K;; between the particles with the opposite
spins. In this manner, the t—J model looks like a model of real-space pairing in a single narrow
band, in which the Cooper pairs are formed as bound states in an attractive potential. In the
absence of the bond distortion, the Cooper-pair and the condensed states are formed purely by the
electronic correlations induced by the repulsive Coulomb interactions.

4. Hybrid singlet d—p vs. d-d pairing: A brief comment

The magnetism of strongly correlated electrons started with the pioneering introduction of
Hubbard model by Anderson [13,14] in the context of antiferromagnetic ordering of transition-
metal oxides. In this treatment, the role of the filled 2p states due to oxygen (0?7) is passive, i.e.,
to mediate the effect of d — d interaction between the magnetic ions. The role of oxygen is not only
passive in metal-insulator transition, for example [15]. The question is what happens if the state is
metallic and the p bands become partially filled and the p—d hybridization starts playing an active
role in the dynamics of the metallic phase. The passive role of the p electrons has been assumed by
Zhang and Rice [16] in their intuitive justification of the t—J model by assuming that the Kondo-
like (Zhang-Rice) singlet is so tightly bound that the p — d antiferromagnetic correlations lead to
effective d — d interactions. The situation seems very likely for the cuprates (see however e.g. [17]).
However, it is certainly not the case for the heavy fermions, where the hybridization between the
strongly correlated 4f states (of e.g. Ce3" ion) and the 5d — 6s valence states destabilizes the 4 f
localized moments, and in effect leads to the heavy-fermion behavior, and can at the same time
become the source of hybrid pairing [8,10]. Parenthetically, the situation may be different in heavy-
fermion uranium compounds such as UPt3, where the U** (approximately 5f2) configuration may
lead, in conjunction with the Hund’s rule coupling among 5f electrons, to the triplet pairing. This
type of situation will be considered in the next section.

5. Real-space pairing in the doubly degenerate band

5.1. The physical situation and the model

As we have seen in the two foregoing sections, the real space pairing in the orbitally nondegener-
ate case leads, even in the two-band situation, to the singlet correlations and to the corresponding
bound Cooper pairs [19]. Now we discuss the situation in the orbitally degenerate Hubbard model
and include the Hund’s rule coupling directly, as well as highlight its role in the strong-correlation
limit, where both ferro- and antiferromagnetic kinetic exchange interactions appear at a proper
band filling. The purpose of this discussion is to show that the real-space spin-triplet pairing is
theoretically as feasible as is the singlet pairing in the single-band case.
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The starting Hamiltonian for such a two-band case has the following form

Z £ a’zlo ajre + U Z nalt il |

gl o

+ Z [(U' —3 JH) nygngy — JaSa - Sa + JHGLT azuaiz'i aiq| s (10)
Al

where [,]’ = 1,2 are the orbital indices, the first and the second terms are respectively the hopping
and the Hubbard parts, whereas the last three terms describe the interorbital Coulomb repulsion,
the ferromagnetic Hund’s rule and the pair-electron-hopping terms, respectively (both have the
same amplitude Jy). Without a loss of generality, one may assume that U’ = U — 2Jy which holds
at least for 3d e, orbitals. To simplify the discussion, we assume that the hopping is diagonal and
the same, i.e. téljl = t;;0, to avoid the complications associated with the interorbital hopping part
(with [ #1’) and the corresponding exchange.

The model in the strong-correlation limit U > Ju > |t;;| leads to ferromagnetic Mott insulator
(with possible orbital ordering) for quarter-filled band (n = 1) and to the ordinary antiferromag-
netic Mott insulator at half filling (n = 2) [20-22]. The reason for ferromagnetism near n ~ 1 is
due to the fact that the dominant virtual hopping process between two neighboring sites takes
place to the local spin-triplet state in the intermediate state. This intermediate on-site spin-triplet
state does not appear in an orbitally nondegenerate model. On the other hand, for the case of
two electrons per atom (n = 2) only the virtual-hopping processes leading to the spin-singlet
pair configuration in the intermediate state are allowed, so the kinetic exchange interaction is an-
tiferromagnetic, in a direct analogy to that in a single-band case. This gradual transition from
paramagnetism through ferromagnetism to antiferromagnetism has been observed in a series of
isostructural compounds FeSo—CoS2—NiSs and their mixtures, as then a doubly degenerate band
of ey symmetry is filled when we go from FeSy (n = 0), through CoSs (n = 1), to NiSy (n = 2).
At an intermediate composition 1 < n < 2 a spin-glass-like state appears and is caused by the
competing ferro- and antiferromagnetic interactions [23].

5.2. Spin-triplet paired states

The model of the real-space pairing is built in a direct correspondence to the theory of kinetic
exchange. We consider the case of identical orbitals, for which the nearest hopping integrals are
the same ¢ = t(;;y. The relevant virtual hopping processes are depicted in figure 2. The effective
t—J—Ju model takes the form for n < 1 [24]

-~ 4
PHPy = > tibl, b — iy Z tijtjr Bl Bijn
ijlo iEJET
m=—1,0,1
J > tijtieCli Crijo — Z tijtjrClim Ciom
i Ui
m==%1
4
7 2 titiClin Crm, (11)
it
m=—m=

where blh7 = a;rla(l — n415)(1 — n425), etc. The pairing operators with —1,0, 41 are the projected

interorbital pairing operators for the spin-triplet states with S* = 1, —1, and 0, respectively, i.e.
Bl = bjmijT for m = 8% =1,
BZJ 1 = ble b;r2l for m = 5% = —1, (12)

Bl = 5 (b blay = by blyy) for m =57 = 0.
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Figure 2. Possible virtual hopping processes leading to the three pairing terms shown in the
text (the corresponding denominators in equation (11) are written on the right).

The operators C are the spin-singlet pairing operators which we call the orbital pairing opera-
tors. That is why they are defined as follows:

1 _
Cliv = J5 (bl b1y — bl by m= L7 =1,
o 1 (Al (Al — _
w1 = va \Diag Ojay — biz) bjy m=L* = -1, (13)
o1 ot ot ot Al — _
Cij() = 2 (bilT bj21 + biQT bju - biu ijT - bz‘2¢ ble) m = L* = 0.

The pairing operators ijm are both intraorbital (m = +1) and interorbital (m = 0) char-
acter. We see that the spin-triplet term is dominant for n < 1. One should also note that the
intersite projected pairing operators (12) replace their intraatomic correspondant [25,26], which
appear in the limit of low and intermediate correlations and are related directly to the intraatomic
ferromagnetic Hund’s rule coupling. Therefore, our work shows that the Hund’s rule coupling can
lead not only to ferromagnetism (e.g. when the Stoner criterion is fulfilled), but also to spin-triplet
superconductivity in both moderate- and strong-correlation regimes. It is tempting to propose that
the spin-triplet superconductivity may appear in pure samples of e.g. CoSy under pressure, when
ferromagnetism is suppressed. The question of a coexistence of the spin-triplet superconductivity
and ferromagnetism is a separate issue.

6. Phase diagram of spin-triplet paired states

Finally, we provide an overall phase diagram of the spin-triplet phases and leave the details
to a separate paper [27]. We consider a two-dimensional square lattice case with the isotropic gap
(A,, = A). The superconducting order parameter is chosen in the form

Apx = Ay (coskm + el cosky) . (14)

In the slave-boson language, originally developed for t—J model [28], this fermionic gap ampli-
tude Ay is multiplied by the slave boson occupancy A, = <bjbj> ~ b2, and the superconducting
state is achieved when both the fermionic parameter Ay ~ <B;rjm> and the bosonic amplitude Ay
are simultaneously different from zero. The solutions then are of extended s-wave type (if o = 0),
s +id type (when o = 7/2), and of d type (if @ = 7). In general, when a # (0,7/2,7) the state
is called s — d mixed state. The phase diagram representing the stable phases in the ground state
is shown in figure 3 on the plane § = 1 — n versus Ji/U. The other parameter is |t|/U = 0.2. For
0 = 0, the system is a ferromagnetic insulator, so the paired states evolve from a ferromagnetic
Mott insulator. Note the presence of a usual “dome” of d-wave superconductivity, located in the
interval 0.04 < § < 0.13. In the regime of low electron concentration § > 0.20, an ordinary gapless
(s-wave) type of pairing takes place. It should be underlined that in order to determine stability of
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the phases we have to solve the system of equations for Ay, Ay, and the chemical potential i, for
a given phase factor a. The details of this cumbersome analysis will be discussed elsewhere [27].

0,25
0,20
0,15 .
s+id, Ap#0
5 ]
0,10 ]
0,05 MIXED: (n/2<0<r) 8=0, s+id (a=n/2), A=0
| FERRO MOTT INSUL. / )
0,00 I 1 I 1 ! ! ! !
0,00 0,05 0,00 0,15 020 025
Jy/U

Figure 3. Paired ground states on the plane number of holes (per site) in ferromagnetic Mott
insulator versus the relative strength of Hund’s rule coupling. For details see the main text.

7. Outlook

In this brief overview we have first discussed the effect of the classical bond distortion in deriving
an effective form of the spin-singlet pairing for strongly correlated electrons in a nondegenerate
band. The inclusion of the lattice allows to draw a distinction between the pairing achieved by the
effective attractive interaction and the pairing achieved solely by the correlations induced by the
purely repulsive Coulomb interaction. The role of hybrid 2p — 3d or 5d — 4 f correlations in deriving
respectively the effective spin-singlet pairing for high temperature and heavy-fermion systems is
noted in passing. The main message of our paper is though to indicate that an analogous type
of pairing can take place for electrons in orbitally degenerate and strongly correlated systems.
Namely, we have discussed the hole pairing in the doped ferromagnetic Mott insulator, with the
doping 6 = 1 —n > 0. It would be interesting to see if such a situation is possible in one of the
newly synthetized materials. This new possibility at least extends the theoretical applicability of
the t—J model.

Acknowledgements

This work is dedicated to Professor Thor Stasyuk on the occasion of his 70th Bithday. His
papers on the Hubbard atomic representation belong to the pioneering works on strongly correlated
systems. I also acknowledge the Grant from the Ministry of Science and Higher Education of
Poland, No. 1 P0O3B 029 001. The project is being carried out under the auspices of the European
COST P-16 Projects Emergent Behaviour of Correlated Matter. The author is also grateful to
Drs. Andrzej Klejnberg and Robert Podsiadly for discussions and technical help. This project is
also partially supported by the Marie Curie TOK Grant MTDK-CT—-2004-517186 Correlations in
Complex Systems (COCOS).

References

1. Ruckenstein A.F., Hirschfeld P., Appel J., Phys. Rev. B, 1987, 36, 857; Plakida N.M.,
Yushankhai V.Yu., Stasyuk I.V., Physica C, 1989, 160, 80.

2. Anderson P.W. Frontiers and Borderlines in many-Particle Physics, Eds. Broglia R.A., Schrieffer J.R.

North-Holland, Amsterdam, 1988, p. 1ff.

Spalek J., Phys. Rev. B, 1988, 38, 208.

4. Spalek J., Gopalan P., J. Phys. (France), 1989, 50, 2869.

@

461



J.Spatek

© XN o

11.

12.
13.
14.

15.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

Magka M. et al., Phys. Rev. Lett., 2007, 99, 147006.

Saxena S.S. et al., Nature, 2000, 406, 587.

Aoki D. et al., Nature, 2001, 413, 613.

Klejnberg A., Spalek J., Phys. Rev. B, 2000, 61, 15542.

Spalek J., Wrébel P., Wéjcik W. Ruthenate and Rutheno-Cuprate Superconductors, Eds. C. Noce et
al. Springer Verlag, Berlin, 2002, vol. 603, pp. 60-75.

For recent review see e.g.: Spalek J., Acta Phys. Polon. A, 2007, 111, 4009.

Spalek J., to be submitted; Spalek J., Oles A.M., Physica B, 1977, 86—88, 375; Chao K.A., Spalek J.,
Oles A.M., J. Phys. C, 1977, 10, L271.

Micnas R., Ranninger J., Robaszkiewicz S., Rev. Mod. Phys., 1990, 62, 113.

Anderson P.W., Phys. Rev. B, 1959, 115, 2.

Anderson P.W. Solid State Physics, Eds. Seitz F. and Turbull D. Academic Press, New York, 1963,
vol. 14, p. 99ff.

Zaanen J., Sawatzky G.A., Allen J.W., Phys. Rev. Lett., 1985, 55, 418; J. Magn. Magn. Mat., 1986,
55-57, 607.

Zhang F.C., Rice T.M., Phys. Rev. B, 1988, 37, 3759.

Eremin M., Rigamonti A., Phys. Rev. Lett., 2002, 88, 037002.

Spalek J., Maska M., Mierzejewski M., Kaczmarczyk J., submitted for publication.

Byczuk K., Spalek J., Wéjcik W.; Phys. Rev. B, 1992, 46, 14134.

Kugel K.I., Khomskii D.I., Sov. Phys. — JETP, 1973, 37, 725.

Cyrot M., Lyon-Caen C., J. Phys. (France), 1975, 36, 253.

Spalek J., Chao K.A., J. Phys. C: Sol. State Phys., 1980, 13, 5241.

Ogawa S., J. Appl. Phys., 1979, 50, 2308.

Klejnberg A., Ph. D. Thesis, Jagiellonian University, Krakéw 2006, unpublished.

Klejnberg A., Spalek J., J. Phys.: Condens. Matter, 1999, 11, 6553.

Spalek J., Phys. Rev. B, 2001, 63, 104513.

Klejnberg A., Spalek J., in preparation.

Suzumura Y., Hasegawa Y., Fukuyama H., J. Phys. Soc. Jpn., 1988, 57, 401, 2768; Fukuyama H.,
Hasegawa Y., Suzumura Y., Physica C, 1988, 153—155, 1630.

EdekTnBHa t—J mopenob cnaproBaHH4A. CUHIMeT NpoTu TpunineTty

N.Cnanek

IHCTUTYT Pi3nkm iMm. Map’sHa CMOnyx0BCbKOro, ArefloHCbkuin yHiBepcuTeT, Byn. PelimoHTa 4, Kpakis
30-059, MonbLua

OTtpumano 30 TpaeHa 2008 p., B octaTo4yHOMy Burnsai — 18 uepsHa 2008 p.

YacTo t—J Mopenb po3rnsaaeTbes Sk KaHOHIYHA MOAesb CMiIHOBOrO CUHIMETHOrO CnapioBaHHS, L0 CTBO-
PIOETLCA KIHEMaTn4HOIO 0OMIHHOIO B3aEMO/ielo, ika TakoX BiANoBiAae 3a aHTMdepomarHiTHe BNopaaKy-
BaHHS Y CUJIbHO CKOPEeSIbOBaHMX BY3bKO30HHMX crcTemax. Y opbiTanbHO BUPOAXKEHNX CUCTEMAX OfHOYacC-
HO NPUCYTHI depomarHiTHa Ta aHTUdepoMarHiTHa kKiHemaTuU4Hi 0OMiHHI B3aemogji. POOUTLCS KOPOTKWUIA
o[, aHanorii Mk CUHMETHUM Ta TPUMIETHMM TUNAMM CNAapIOBaHHS, a TaKOX OKPECIIIOITLCA AedKi 3a-
rasibHi BUCHOBKW LLLOAO CMaploBaHHs, sike CTBOPIOETLCS LMK OOMIHHMMW B3aEMOAiISIMU. 3arafibHuii po3a-
NS4 TaKoX [OMOBHIOETLCH OOrOBOPEHHSAM BUMAAKy ABOBUMIPHOI rpaTky 3i CNiHOBUM TPUMAETHMM cna-
pIOBaHHAM.
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