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One of the best models of the Universe is the Poincaré Dodecahedral Space (PDS) model, which has the best
�t to the data of the cosmic microwave background (CMB) sky maps from the Wilkinson Microwave Anisotropy
Probe. The present work increased the falsi�ability of the PDS model by �nding a better estimate of the size of
the Poincaré space using parameters previously found by Roukema et al. (2008). The improved size of Poincaré
space model is 18.2 ±0.5h−1 Gpc for matter density parameter Ωm = 0.28± 0.02. This gives the lowest redshift of
multiply imaged objects as z = 106± 18.
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introduction
In 2003 J. P. Luminet et al. [11] gave Poincaré do-

decahedral space topology as possible explanation for
weak wide-angle temperature correlations in the cos-
mic microwave background (CMB) which were de-
tected by the COsmic Background Explorer (COBE)
and later by the Wilkinson Microwave Anisotropy
Probe (WMAP) [7]. These wide-angle temperature
correlations correspond to the largest scales in the
observable Universe, thus if the temperature corre-
lations are weak it implies a lack of structures in
the biggest scales (about 10 h−1 Gpc) which would
be observed in a �at in�nite space (R3) or in a big
enough positively curved space (S3). Such lack of
largest structures may suggest more sophisticated
topology of the Universe.

The locally homogeneous 3-manifolds that have
recently been studied as the best candidates to �t
the WMAP data include not only the Poincaré Do-
decahedral Space (PDS) S3/I∗ [3, 4, 8, 10, 11, 16, 17]
but also the 3-torus T 3 [1, 2, 5, 6, 19]. However
PDS seems to be better balanced than other spaces
[14, 15] and thus more attractive as a topological
model of the Universe.

Brie�y speaking, topology is a science about ge-
ometrical properties of objects, for example spaces
(or more general manifolds). Object (space) keeps
its topological properties when it is stretched, bent
or crumpled. This is unlike cutting or splitting, when

the topology of the object changes. If we consider a
loop γ ∈ M and basic properity of space M is that
every γ can be shrink to a point, then such space
is called simply�connected (e.g. euclidian spaces:
M1,M2 . . .Mn or spheres: S2,S3 . . .Sn) Otherwise,
if ∃γ ∈ M which cannot be shrink to a point (e.g.
because of some holes in M), the space M is multi�
connected.

One way of thinking about cosmic topology1 is
to consider space as a polyhedron whose opposite
faces are identi�ed. Such polyhedron is called fun-
damental domain (FD). For cosmologists the most
importatnt e�ect of multi�connectness are multiply
imaged objects (�copies� of objects). If we live in
multi�connected space and it is small enough, i.e.
the size of FD is smaler than observable universe,
we should see multiple copies of objects. This mean
that in principle it should be possible to �nd an op-
timal orientation and size of the FD in astronomical
coordinate system, by discovering those copies and
correlation between them.

poincaré dodecahedral
space model

From mathematical point of view Poincaré do-
decahedral space is a 3-sphere (hypersphere) S3 quo-
tiented by icosahedral holonomy group I∗ (so it can
be written as S3/I∗ [12]). Because of its geometry
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1In general there are three ways of thinking about topology of n-space: (i) as a n-space placed in (n + 1)-space, (ii) as a fundamental

domain with glued opposite faces and (iii) as a tiling of the full covering space by multiple copies of the fundamental domain [13, 12].
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(and its topological properties) PDS model requires
positively curved space (k > 0), which means a hy-
persphere S3 covering space. This gives a big con-
straint on this model because if space is con�rmed to
be �at (zero curvature) or hyperbolic (negative cur-
vature), then the Universe cannot have PDS topol-
ogy. Nevertheless, the data from WMAP spacecraft
gives us Ωtot ≈ 1.013±0.02. This uncertainty on Ωtot
parameter still allows space to be positively curved.
Fundamental polyhedron (fundamental domain) for
the Poincaré space is a regular dodecahedron. Its
opposite faces (which are pentagons) are identi�ed
(glued) after ±36◦ twist (Fig. 1).

Fig. 1: A regular dodecahedron being a fundamental do-
main of Poincaré space model is a one way of thinking
about topology of PDS model. Opposite faces of these
FD are identi�ed after ±36◦ twist. Such topology re-
quires positively curved space (k > 0).

We need at least �ve parameters describing ori-
entation and size of PDS fundamental domain (FD).
Three for describing orientation of the dodecahedron
(l, b, θ) one for twist angle2 (φ), and one for describ-
ing size of dodecahedron (α). The relation between α
and the curvature radius RC (hence rinj = (π/10)RC,
which gives the size of the FD) is:

tan
rSLS

RC
=

tanπ/10
cosα

(1)

(i.e. Eq. (15) of [17]), where rSLS is a radius to the
surface of last scattering (SLS). Fig. 2 shows how the
size of FD depends on α parameter.

the method of calculations
The basic principle for �nding the size and orien-

tation of the FD is called the matched circles princi-
ple [9]. The principle and its corollary matched discs

[18] method are shown in Fig. 2. This shows multiple
copies of the observable Universe, each bordered by
a copy of the SLS, in the covering space. The mul-
tiple copies of the sub-SLS Universe intersect with
themselves on matched discs. See Sec. 2.1 of [18] for
more discussion.

An improved estimate of α is obtained using the
optimal cross-correlation method [16, 17] over α, and
the previous solution for the fundamental domain
axes (Table 1). Np = 2 × 105 points are used per
correlation calculation, so that the r <∼ 1 h−1 Gpc
scale is usable. The optimisation criterion is de�ned
as the mean cross-correlation below a given length
scale, normalised by rSLS so that it has only a weak
dependence on Ωm and ΩΛ,3 i. e.:

ξ̄β(α) :=
1

βrSLS

∫ βrSLS

0
ξC(r, α)dr (2)

(Eq. (6) of [18]). Cross-correlations at the scales
β = 0.033 and 0.1, i. e. βrSLS ≈ 0.33 and 1 h−1 Gpc,
respectively, are checked in the 7-year WMAP ILC
map.4

Fig. 2: Matched discs for the Poincaré dodecahedral
space, with injectivity radius rinj = (π/10)RC, shown in
the universal covering space S3 of radius RC. Any object
in a matched disc (orthogonal to the plane of the page)
has a topologically lensed copy in the second matched
disc of a matched disc pair. The matched-disc angular
radius is α, redshift to the centres of matched discs is
zmin and SLS radius is rSLS.

results and conclusions
In previous work of Roukema et al. (2008) [17] ori-

entation of dodecahedron in galactic coordinates was
found. Coordinates to the centres of faces are shown
in Table 1. Using these coordinates a new estimate of
α parameter (matched circle angular size) and thus
size of Poincaré space was found: α = 23◦ ± 1.4◦.
Fig. 3 show that mean cross-correlation function

2Twist angle is needed for gluing/identifying FD faces � we can only identify them after ±36◦ twist.
3See Sec. 2 in [18] for details.
4http://lambda.gsfc.nasa.gov/data/map/dr4/dfp/ilc/wmap_ilc_7yr_v4.fits
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ξ̄β(α) [see Eq. (2)] is maximized near α = 23◦, even
for β = 0.4, i. e. βrSLS ≈ 4 h−1 Gpc. Value α =
23± 1.4◦ corresponds to 2rinj = 18.2± 0.5 h−1 Gpc
for Ωm = 0.28 ± 0.02 which is the �inner� size of
the Universe (i. e. size of FD). The redshift to the
matched disc centres and thus the lowest redshift of
expected multiply-imaged objects is zmin = 106±18.

The estimate of α from [17] (α = 21◦) was sus-
pected to have signi�cant systematic error (about
10◦), but the smaller scale cross-correlations from
Fig. 3 clearly overcome this risk.

Fig. 3: Gpc-scale cross-correlation ξ̄β(α) from Eq. (2) in
µK2 against matched-circle radius α, for the WMAP7
ILC map, for β = 0.03, 0.1, 0.2, 0.4 (from top to bot-
tom at α ∼ 23◦) adopting |b| > 10◦ as an approximate
galactic mask.

Table 1: Orientation of the FD of Poicaré space found by
Roukema et al. (2008) [17]. For each face, {l, b}i shows
centre of i face in FD (i + 6 is opposite). Coordinates
are estimated with 2◦ accuracy.

i l [◦] b [◦]
1 184 62
2 305 44
3 46 59
4 117 20
5 176 −4
6 240 13

This result implies that if very high density peaks
collapse and form stars so that they are visible in
the redshift range 200 > z > 106, then matched
discs, with objects at z = 106 ± 18 at the centres
and successively higher redshifts radially outwards
up to z = 200, should cover about 20% of the full

sky. A pair of topologically lensed objects in a pair
of matched discs would be seen at identical redshifts.
This provides a potential sub-SLS way of testing
the Poincaré dodecahedral space hypothesis through
photometry and spectroscopy of very high redshift
objects.
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