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Numerous complex networks contain special patterns, called network motifs. These are specific subgraphs,
which occur oftener than in randomized networks of Erdés-Rényi type. We choose one of them, the triangle,
and build a family of random hierarchical graphs, being Sierpinski gasket-based graphs with random “deco-
rations”. We calculate the important characteristics of these graphs — average degree, average shortest path
length, small-world graph family characteristics. They depend on probability of decorations. We analyze the
Ising model on our graphs and describe its critical properties using a renormalization-group technique.
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1. Introduction

A great number of complex networks that occur in nature have recently been found to contain
characteristic sets of recurring subgraphs called network motifs [1-3]. These are small subgraphs
(typically three- or four-node) that occur far oftener than in the randomized networks of Erdés-
Rényi type. To find these motifs, one compares the subgraph content of the model representing a
real network and the randomized network of Erdos-Rényi type with the same degree distribution.

In [3], the model is built up as a portion of N elements of Z? with periodic boundary conditions.
A bond between the nodes 2 and y is placed at random according to a connectivity function F'(z,y),
such that max F(z,y) = 1 and of range 1 < R < N. The bond between the nodes = and y exists
with probability F'(z,y). The authors find the number of appearances of all three- and four-node
non-directed subgraphs in the model and compare them with the number of occurrences of the
corresponding subgraphs in the random network of Erdés-Rényi type having N nodes and the
same degree distribution. It turns out that certain subgraphs (triangles, squares and aggregates of
triangles) occur much oftener than in the Erdés-Rényi network. Those subgraphs are referred to
as network motifs. Of course, different networks may display different network motifs, but a given
motif can be used to characterize a family of networks. Many complex networks have a fractal-type
structure, in which nodes form groups and then join the groups of groups, and so forth, starting
from the lowest levels of organization (individual nodes) up to the level of the entire network [4].
This structure permits to consider useful network properties in a small part and then to expand
them to the whole network.

In this paper, we choose one of the motifs found in [3] — the three-node complete non-directed
graph. We build the family of random hierarchical graphs based on this motif, and analyze the
important network characteristics, such as average degree, average shortest-path length, small
world graph family [5], and the critical behavior of an Ising model.

Our family of graphs {Ay }ren is generated in an iterative way. Here k = 1,2,3, ... denotes the
level of the graph understood as a step of the construction. The initial graph (network motif), Ay,
is the complete graph of order 3. Each step of the construction k£ > 1 consists of two parts. First,
we join 3 graphs of level £k — 1 (called units) in a way shown in figure 1. We obtain a Sierpinski
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gasket-based graph, and this is a deterministic core of our model. In the second part of each step,
we decorate the graph at random by adding independent bonds connecting every pair of distinct
external nodes a, b, ¢ with probability p. This procedure yields two types of bonds: the nearest-
neighbor bonds (depicted by solid lines) and the long-range ones (dotted lines). Each graph has 3

Figure 1. Construction of the graph As.

external nodes of a special purpose. Units of the same level are attached to them to form the unit
of a higher level. In the figures we denote them by a, b, c. The rest of the nodes are called internal.

2. Network characteristics

Let Vi and Ej denote the sets of nodes and bonds, respectively. The latter set consists of two
separate subsets Ey(nn) and Ej(Ir), being the set of the nearest-neighbor and the long-range. It is
easy to see, that

|Vi| = ; (31 +1)

is independent of p. For Fj, we obtain the expected value
3
(|Bxl) = 3"+ 5 (3 ' —1)p,

where the first term corresponds to the nearest-neighbor bonds Ey(nn), and the second one is due
to the long-range bonds Ej(Ir).
Notice, that if p = 0 (nearest-neighbor bonds only), the number of bonds in Ay, is 3*. For p = 1,
3

one gets |Ex| = 33F — 2, so decorating does not affect the asymptotics of |Ey|.

2.1. Average degree

Let ny (i) stand for the number of bonds ending at node i € Vj,. For each external node i € Vj,
one has (ng(7)) = 24 2(k — 1)p. Maximal degree in Ay is achieved for the internal nodes which are
the external ones in the unit of level £ — 1. One finds

maox(ny (i) = 41+ (k= 2)p] k> 1,
€A
so for p = 1 degree does not exceed 4(k — 1).

In Ay, there exist 3 external nodes of degree 2 + 2(k — 1)p, and 3~ internal nodes of degree
44+ 4(i—1)pfori=1,2,...,k — 1. So the average expected value of degree in Vj, is the average
of (ng(i)) over all i € V. This is

3(2+ 2(k — 1)p) + S0/ [3¥1(4 + 4(i — 1)p)]

3(3141)

_Ltp
k1417

<nk>: =4+4+2p—14
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which tends to 4 + 2p in the limit £ — oo.

2.2. Average shortest-path length

As the figure 2 suggests, it is convenient to introduce the following notations. The graph
of level k, k > 1, consists of 3 subgraphs of level k — 1

Ap =A% [ UAY JUAS .
Every node v € Vj, has a label pointing to a place in the graph
v={a1a2...01},a; € {a,b,c}.

Each symbol corresponds to the choice
of the triangle of previous level. Notice c
that every node, besides the external ones,
has two labels. In the example, the node
v from figure 2 can be labelled by {bacca}
or {bacac}.

The distance pg(i,v)between i and
v € {ag, by, ¢}, measured in terms of the
number of bonds along the path in Ay, is

k—1
Pk(i’ ’7) = (1_5ak’y)+z 2j71(1_60‘k}—j’y)'
j=1

Let i € A} _; and j € Az_l. Then the
distance between ¢ and j is

pk(zaj) < pk—l(i7b) + pk—l(j7 a)'

Figure 2. The graph of level 5.

Thus, for p = 0, the average shortest-path
length py, is

pr = Zi,jGVk Pk(i,j) - 2k
sIVel(IVa] = 1)

Notice that we do not include the distance from each node to itself in this average, but some
authors (Newman [5]) do. This difference is negligible from practical point of view.
2.3. Small world graph family

For the last years, small-world networks have been studied intensively, see [5,6]. The family of
graphs {Aj} is a small world graph family if the diameter of Ay (the maximal distance between
the two nodes in Ay) scales logarithmically or slower with the graph size, that is,

3C >0 diamAy < Clog,, [Vkl.

In our model, for p = 0, one has diamA; = 2¥~1. So it is not the case. But for the decorated
graph with p = 1, we obtain diamA; < k and corresponding constant is

C = (logg3) .
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3. The critical point of the Ising model

The critical behavior of the Ising and Pots models certainly characterizes the network [7-9].
The Ising model for the diamond hierarchical lattice was considered in [7,8]. In [9], authors decorate
this lattice and obtain exact results for the Ising model on it. We follow their example in describing
our model.

The Ising model on our graph Ay is defined by associating spin variables o; = +1 to the nodes
i € Vi, and by the Hamiltonian

—BH =J Z oi0j+ K Z oio; + Hp Z (Ui+0j)+HNZUi7 (1)

(1,5) €Ex(nn) (i,5)€E(Ir) (i,5) € Ex (nn) i€V

where J > 0 is the interaction for the nearest-
neighbor bonds and K > 0 is the interaction con-
stant for the long-range bonds. This Hamiltionian
includes two types of magnetic field terms: Hg at-
tached to bonds and Hy counted with nodes.

We use the renormalization-group transforma-
tion consisting of decimating the three internal
nodes «, 3,7 in the cluster shown in the fig-
ure 3. This transformation maps the Hamiltonian
—0BH(J, Hp, Hn, K, G) into a renormalized Hamil-
tonian —GH'(J', H, HY, K', G')

_BH = Z (J'oi0; + Hy(oi 4+ 0j) + G') + Hy ZU;‘-FKI Z 0i0;. (2)

(i.4) € Bk (nm) i€V (i.5) € B (Ir)

Figure 3. The cluster of level 2.

The renormalized parameters are
1

J/ = g hl((RoRg,)/(RQRl)) + K,
K = K,
H]/_a) = E ln(Rg/Ro),
H{\I = Hy,
1
G = 21 In(R3Ro(RaR1)?) + 4G, (3)
where
Ry = (@432 %y 22 +ay 27 + 2% %27 %)k,
Ry = (22 day+2e 3y +a 3y 3272 4 20y 3272 2Py 22k g, 4)
Ry = (2% 2* + 2022 + 273322 + 22 3y + oy~ ay P2 Dk g,
Ry = (2%9°2° + 3xy°2* + 307 3y22 + 273y O)k3yg

and the useful variables x,v, z, g, k have a form
x=exp(2J), y=-exp(2Hp), z=-exp(Hn), g¢g=exp(12G), k= exp(K). (5)

Here G is an additive constant per bond, absent in the Hamiltonian (1), but always generated
by the transformation, and R; corresponds to the partition function of the external nodes with
J spins equal to 1 and the rest (3 — j) equal to —1.

The subspace Hg = Hy = 0 is up-down symmetric and closed under the transformation (3),
(4). Within this subspace we calculate the fixed point. Here y = z = 1 and from (4) we obtain the
following system of equations:

{ x® = (2% + 3z +4273)k3g,
7t = (2 +4x+ 3273k g
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Hence the final equation takes the form

3+3s+4
s:t8+8+ 7 (6)

s2+4s+3
where s = 2% and t = k*.
If t = 1 (the model without long-range bonds), we find only a fixed point s = 1, which is stable
and there are no critical points.
Solving the equation (6) for ¢ > 1 we obtain two solutions

o3t VOPRTSE 34t V91220~ 150
T 2(t—1) roT 2(t—1) '

So there are three types of behavior for the renormalization-group flows. For all K lower than
a threshold value K, and for all p € (0,1] we can find J such that the critical point exists. So the
flows go to a continuous line of fixed points J(K), K < K., with a distinct fixed point for each
starting interaction K. When K = K, there is one stable fixed point J.(K.) = éln 3, and there
are no phase transitions. For K > K. we can find sufficient small p, for which there exists J(K)
such that the critical point exists..

It is easy to see, that

1.9
K.=-In-. 7
o=t @
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MopenioBaHHS CKJIaAHNX MepeX 3 BUKOPUCTAHHAM BUNaaKOBUX
iepapxiyHux rpacdis

M.Bpyb6enb

IHCTUTYT MaTemaTtuku, YHiBepcuteT Mapii Kiopi-CknogoBcbkoi J1lo61iH, Monba
OtpumaHo 31 ciyHg 2008 p.

BaraTto KOMMnIeKkCHNX Mepex MICTATb 0Co6MBI LWaboHW, Tak 3BaHi MepexeBi MOTUBWU. BoHu € cheuianb-
HUMK nigrpadamu, Wo 3'ABNSITLCS YaCTIlle HiX Yy BUNaakoBux Mepexax Tuny Eppgowa-PeHi. Mu o6panun
OAVH 3 Takmx WabJIoHIB — TPUKYTHUK, | NOOyayBanu CiMeNncTBO BUMNAAKOBUX iepapxiyHMX rpadis, BU3Ha-
YyeHux 3a racketom CepniHCbKOro 3 BUNaakoBUMM “AekopaniaMmn’. PO3paxoBaHi BRXINBI XapakTePUCTUKN
Takmx rpadiB — cepeaHiii CTyniHb, cepeaHs AOBXUHA LUAXY, XapakTepUcTUkM cimeiicTea rpadisB “TicHo-
ro ceity”. BoHu 3anexatb Bif, IMOBIPHOCTI Aekopadin. NpoaHanisoBaHo Moaenb I3iHra Ha Hawmx rpadax,
onucaHo ii KPUTUYHI BNACTMBOCTI 3 BUKOPUCTAHHSAM MeToAy PEHOPM-Ipynu.

KniouoBi cnoBa: Bunaakosi rpagu, Mogesns 13iHra, cknaaHi Mepexi, Mepexesi MOTVBY
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