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The role of nonhydrodynamic relaxing processes in collective dynamics of
pure liquids is studied within a generalized collective modes approach. A
five-variable model of generalized hydrodynamics is solved analytically in
long-wavelength limit. Among five collective modes we found three hydro-
dynamic and two relaxing kinetic excitations. Two latter ones describe the
viscous and heat relaxation in liquid. A comparison of analytical results and
molecular dynamics data is performed for a Lennard-Jones fluid and a liq-
uid metal. A crossover from standard hydrodynamics to molecular regime
in relaxational behaviour of simple liquids is discussed.
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1. Introduction

Collective dynamics in liquids is an extremely difficult problem for theoretical
treatment because many microscopic processes occur on different time scales. A clear
picture of collective excitations and their contributions to experimentally measured
quantities (like dynamical structure factor S(k, ω) with k and ω being wavenumber
and frequency, respectively) is so far well established only in hydrodynamic limit
when k → 0, ω → 0 [1–3]. Three hydrodynamic equations reflect in fact the lo-
cal conservation laws and describe only the dynamical processes on large spatial
and temporal scales comparing with average interatomic distance and characteristic
molecular time, i.e. when liquids are treated as continuum without any details of
atomic structure. Beyond the hydrodynamic region, where there are mostly located
the wavenumbers being available in real experiments on light or neutron scattering
and in computer molecular dynamics (MD) simulations, the short-time processes
with finite lifetime and a spatial scale of several Angstroms become very important
and can significantly contribute to the shape of dynamical structure factors. There-
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fore, much effort has been made in order to derive analytical expressions for the
hydrodynamic time correlation functions (in particular, for the density-density time
correlation function Fnn(k, t) simply connected via inverse time-Fourier transform to
S(k, ω)) that generalize the known hydrodynamic results and could be used beyond
the hydrodynamic region. One of the most successful attempts, a nonlocal mode cou-
pling theory [4], can potentially explain dynamical phenomena in very broad range
of temperatures and densities. However, due to the necessity to evaluate intermedi-
ate integrations over wavenumbers it can be used practically in a limited number of
applications. Thus, less sophisticated schemes of generalized hydrodynamics based
on the memory function formalism in the local form [1] are often more useful for
practical needs.

However we still observe a lack of clear understanding of the mechanisms of spec-
tra formation in liquids (especially in two- and many-component cases) as well as
the role of coupling effects between relaxing processes and propagating excitations.
Another important issue is the analysis of contributions from different collective
excitations beyond the hydrodynamic region. Many researchers still analyze the da-
ta from scattering experiments or MD simulations with wavenumbers accessible far
beyond the hydrodynamic region using simple hydrodynamic Landau-Placzek ex-
pression [1] for dynamical structure factor. A new tendency in analyzing the experi-
mental data lies in fitting procedure based on an expression for dynamical structure
factor found within the framework of memory function approach, in which the sec-
ond order memory function is modelled as a sum of three exponentials in general
case, which reflect one thermal and two viscous, slow and fast, channels of correla-
tion decay [5]. Such an approximation corresponds to a five-pole model of dynamical
structure factor, i.e. in terms of eigenmodes the model corresponds to a treatment
of collective dynamics by a pair of propagating (sound) modes and three relaxing
processes. The authors [5] interpret the three relaxing processes contributing to the
central peak of dynamical structure factor as: generalized hydrodynamic process of
thermodiffusivity with the generalized coefficient of thermodiffusion DT(k); a slow
process of structural (alpha-)relaxation, and an unspecified fast relaxation process.

In this work we study collective dynamics in pure fluids using an approach of
generalized hydrodynamics known as the method of generalized collective modes
(GCM) [6,7], in which the collective excitations in liquids are defined as the poles of
relevant spectral functions. The main feature of this approach is the existence of the
so-called kinetic collective excitations, which have finite lifetime and together with
generalized hydrodynamic excitations contribute to the shape of density-density time
correlation functions Fnn(k, t) beyond the hydrodynamic region. Since the GCM ap-
proach takes into account the mode coupling effects in local approximation, i.e.
interaction of hydrodynamic and kinetic excitations with the same wavenumber k,
one can obtain a very precious information about dispersion law and damping of
collective excitations studied within an analytical treatment of different models in
the GCM approach. Moreover, the GCM time correlation functions can be a good
starting point for nonlocal mode coupling approach, because they keep all the in-
formation about the local coupling of different microscopic processes. Recently [8]
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we have shown, on an example of mass-concentration fluctuations in binary liquids,
very clear physical mechanisms of damping the kinetic propagating excitations by
a hydrodynamic relaxing process [9,10]. It was concluded, that the damping of the
kinetic optic-like excitations in both longitudinal [8] and trasverse [9,10] cases is
defined by mutual diffusion and demixing properties, i.e. the binary systems that
tend to demixing when the atoms are mainly surrounded by the like ones do not
support optic-like excitations. At the same time high mutual diffusion of the com-
ponents does not permit optic-like excitations to propagate. Another example of
propagating kinetic collective excitations can be heat waves, studied for the case
of a liquid metal in [11]. Regarding relaxing collective excitations we have shown
[11,12], that the shape of the density-density time correlation functions in the range
of wavenumbers close to the main peak position of the static structure factor S(k) is
almost completely defined by a single relaxing kinetic mode originated by relaxation
of the cage of nearest neighbors.

In this study we are interested in the origin of relaxing kinetic modes in the
long-wavelength region. We shall analytically solve a five-variable dynamical model
in the long-wavelength limit in order to understand the behaviour of the kinetic long-
wavelength relaxing processes. It is not an easy task to correctly separate purely real
eigenvalues obtained numerically within the GCM scheme in a small-k region. That
is why the knowledge of analytical expressions for kinetic relaxing modes would be
helpful. In particular, analytical solutions provide us with deeper understanding a
crossover from hydrodynamic to molecular-scale region, when the main contributions
to the central peak of dynamical structure factor S(k, ω) essentially change.

The remaining paper is organized as follows: in the next Section we give some
general remarks on the GCM approach and details of our MD simulations; in Section
III a five-variable model for pure liquids is solved analytically in long-wavelength
limit that permits to study two solutions corresponding to kinetic relaxing processes;
for the wavenumbers beyond hydrodynamic region we report a numerical GCM anal-
ysis of collective dynamics in a Lennard-Jones fluid and liquid metallic Beryllium;
and in the last Section we give the conclusions of this study.

2. Method

The approach of GCM allows us to study fast dynamical processes on the same
footing with hydrodynamic processes. In this study we use the following five-variable
basis set of dynamical variables for generalized treatment of longitudinal collective
dynamics in pure liquids:

A
(5)(k, t) =

{

n(k, t), JL(k, t), J̇L(k, t), h(k, t), ḣ(k, t)
}

, (1)

where the number density n(k, t), longitudinal mass-current JL(k, t) and heat density
h(k, t) are the hydrodynamic variables, while extended ones contain overdots which
mean time derivative of relevant fluctuations. The basis set of five variables (1) is
used in constructing a generalized hydrodynamic matrix T(k) [7], eigenvalues zj(k)
of which represent dynamical eigenmodes existing on different spatial scales reflected
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by the wavenumber k in the studied liquid. Purely real eigenvalues correspond to
relaxing processes (we will mark them as dj(k) to distinguish them from the complex
eigenvalues zj(k) = σj(k)±iωj(k)), while complex roots reflect propagating processes
in the liquid. An important consequence of GCM treatment is the possibility to
represent any time correlation function between basis dynamical variables as a sum
over mode contributions. For example, the symmetrized form for normalized density-
density time correlation functions within the GCM approach reads:

FGCM
nn (k, t)

S(k)
=

Nr
∑

j

Aj
nne−dj(k)t +

Np
∑

j

e−σj(k)t
[

Bj
nn cos(ωjt) + Cj

nn sin(ωjt)
]

. (2)

Here in our case of the five-variable dynamical model Nr + 2Np = 5, where Nr and
Np are the numbers of relaxing modes and pairs of complex-conjugated eigenvalues,
respectively. The expression (2) generalizes the three-term hydrodynamic expres-
sion [13] onto the case of additional kinetic modes in the liquid. The amplitudes
of mode contributions from relaxing processes Aj

nn(k), as well as symmetric Bj
nn(k)

and asymmetric amplitudes Cj
nn(k) from propagating processes are the functions of

wavenumber and will be studied here numerically for two pure liquids.
We performed MD simulations of a system of 1000 particles in microcanonical

ensemble for a Lennard-Jone fluid at reduced density n∗ = 0.845 and at temperature
T ∗ = 1.71 and a liquid metal Be with mass density ρ = 1688.3 kg·m−3 and temper-
ature T = 1560 K. The time evolution of all five dynamical variables was observed
over the production run of 3 · 105 timesteps and stored for the calculations of rele-
vant time correlation functions and static averages needed for estimation of the 5×5
generalized hydrodynamic matrix T

(5)(k). Eigenvalues of the generalized hydrody-
namic matrix formed the spectra of eigenmodes dj(k) and zj(k), and were used in
the analysis of density-density time correlation functions according to expression (2).

3. Results and discussion

3.1. Analytical solutions in long-wavelength region

In the long-wavelength limit the five-variable model (1) can be solved analytically.
This generalized five-variable dynamical model has been known in liquid theory since
the paper by Akcasu and Daniels [14], in which they studied generalized transport
coefficients in pure liquids. However, in the literature there is no analytical solution
for this five-variable dynamical model in terms of generalized collective modes. The
matrix elements of generalized hydrodynamic matrix were estimated in the following
way [7]:

T
(5)(k) = F(k, t = 0)F̃−1(k, z = 0), (3)

where the 5 × 5 matrices of time correlation functions F(k, t) and their Laplace
transforms F̃(k, z) were constructed using dynamical variables (1). Analytical ex-
pressions for the hydrodynamic correlation times τij(k), i, j = n, h in k → 0 limit
were taken from the paper [13]. Only the terms within the precision not higher than

474



Kinetic relaxing processes in collective dynamics of pure liquids

O(k2) were kept in T
(5)(k), which reads:

T
(5)(k) =

















0 −i k
m

0 0 0
0 0 −1 0 0

T31 T32 d0
2 T34 T35

0 0 0 0 −1
T51 T52 T53 T54 d0

3

















, (4)

where

d0
2 =

c2
∞
− c2

s

DL
, d0

3 =
cV

mλ
(Gh −

(γ − 1)

κT
).

In the last expressions c∞ and cs are the high-frequency and adiabatic speed of sound,
respecively, cV is the specific heat at constant volume, λ is thermal conductivity, κT

is isothermal compressibility, γ is ratio of specific heats, and Gh is heat rigidity
modulus. The other matrix elements read:

T31 = −ik
m

γ
c2
sd

0
2 , T32 = k2 1

γ

(

c2
s + 2Γd0

2

)

,

T34 = −ik
γ − 1

αTT
d0

2 , T35 = −ik
γ − 1

αTTc2
s

(

c2
s + (DL − DT)d0

2

)

,

T51 = −k2 mαTTc2
s (DL − DT)

γDL

DTd0
3 , T52 = −ik

αTTc2
s

γ
d0

3 ,

T53 = −ikαTT

(

c2
s

γ
+

(DL − DT)DT

DL
d0

3

)

, T54 = k2 2ΓDT

DL
d0

3 , (5)

where 2Γ = DL +(γ−1)DT with DL and DT being kinematic viscosity and thermal
diffusivity, respectively, and αT is the linear expansion coefficient.

The set of eigenmodes for this model contains three hydrodynamic modes

d1(k) = DTk2, z±(k) = Γk2 ± icsk , (6)

exactly as they appear in hydrodynamic approach being thermodiffusive relaxing
process d1(k) and propagating sound excitations z±(k). Additionaly two purely real
eigenvalues correspond to two kinetic relaxing modes:

d2(k) = d0
2 − DLk2 + (γ − 1)∆k2, d3(k) = d0

3 − γDTk2 − (γ − 1)∆k2. (7)

In (7) the following shortcut was used:

∆ =
d0

2d
0
3

d0
3 − d0

2

DT

DLc2
s

(DT − DL)2.

The last terms in the right hand sides of (7) appear due to the coupling between
the heat and density fluctuations. When the coupling is not taken into account, i.e.
γ = 1, one would obtain results of viscoelastic approximation. The expressions (7)
reveal that the modes d2(k) and d3(k) reflect viscous and heat relaxation in liquids.
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The most interesting fact is the increasing lifetime of kinetic relaxing process-
es d2(k) and d3(k), i.e. inversed eigenvalue, against wavenumbers. The tendency is
opposite to the behaviour of the lifetime for hydrodynamic processes of thermal dif-
fusivity and sound propagation, and at the boundary of hydrodynamic region these
relaxation times can have comparable values. This implies that the approximate
location of the crossover region can be estimated from the condition of equivalent
relaxation times for hydrodynamic and kinetic processes. In the simplest case when
we neglect the coupling between thermal and viscous processes, i.e. γ = 1, one can
obtain that the crossover between hydrodynamic thermodiffusive relaxation and
structural one takes place at

kcr ≈

[

(c2
∞
− c2

s )

DL(DL + DT)

]1/2

. (8)

This expression means that in highly viscous liquids kcr becomes extremely small
and structural processes are more important on large spatial scales than in regular
liquids.
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Figure 1. Spectrum of dynamical eigenmodes in liquid metallic Be at 1560 K. In
the top frame the dispersion of generalized sound excitations (open circles) and
low-frequency heat waves (filled circles) is shown together with hydrodynamic
linear sound dispersion. In the lower frame the damping coefficients of propagat-
ing excitations (relevant circles) are shown together with relaxing modes dj(k).
Analytical results for relaxing processes are shown by dashed and dotted lines.

3.2. Numerical analysis beyond hydrodynamic region

Analytical treatment of the five-variable model (1) is possible only in the long-
wavelength limit, while numerically we can estimate all matrix elements of the gen-
eralized hydrodynamic matrix T

(5)(k) at any k-point sampled in MD simulations.
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The results for five eigenmodes obtained for liquid Be at 1560 K are shown in fig-
ure 1. From the top frame of figure 1 one can note that in general there can exist
two pairs of propagating excitations in the metallic liquid:

(i) generalized sound excitations (open circles) with almost linear dispersion law in
the long-wavelength region and roton-like minimum in the region of wavenum-
bers close to the location of the main peak of static structure factor kp ≈

3.4 Å−1,

(ii) and kinetic heat waves (filled circles), which can exist only behind the so-called
propagation gap.

The linear dispersion csk with the hydrodynamic speed of sound cs = 10935 m/s
obtained from the exptrapolation to k = 0 of generalized ratio γ(k)/S(k) shows,
that the smallest point sampled in MD is quite close to the hydrodynamic region.
The damping coefficients of propagating excitations are shown in the lower frame by
line-connected circles. Three relaxing processes are shown as well in the lower frame
of figure 1 by the following symbols: d1(k) by asterisks, d2(k) by open boxes and
d3(k) by filled boxes. The dashed and dotted lines in small-k region correspond to
the analytical expressions (6) and (7) with the thermodynamic quantities obtained
by us from the numerical GCM analysis: DT = 60.9 Å2/ps, DL = 67.6 Å2/ps and
c∞ = 12482 m/s. Remarkably, that in agreement with our analytical treatment the
kinetic relaxing modes d2(k) and d3(k) obtained by numerical approach (symbols)
show a decaying behaviour in the small-k region. At the boundary of propagation
gap, two relaxing modes connected to thermal processes d1(k) and d3(k) disapper
creating a pair of heat waves. The kinetic relaxing process d2(k), which is defined
by longitudinal viscosity in a small-k region, becomes the slowest process behind
the hydrodynamic region. As it was shown in [11,12] this kinetic relaxing process
corresponds to the effects of structural relaxation in pure liquid. Note, that at k = 0
analytical expressions (7) for kinetic relaxing modes give very reasonable agreement
with the numerical values obtained at kmin by numerical GCM analysis. Also, the
crossections of lines reflecting analytical results in the small-k region exactly corre-
spond to the width of propagatin gap for heat waves, and crossover region kcr (8).

In figure 2 we show, for the case of liquid Be, the mode contributions to the
normalized dynamical structure factor, which in GCM approach can be represented
as follows:

S(k, ω)

S(k)
=

Nr
∑

j

Aj
nn

dj(k)

ω2 + d2
j(k)

+
Np
∑

j

Bj
nn[

σj(k)

(ω + ωj(k))2 + σ2
j (k)

+
σj(k)

(ω − ωj(k))2 + σ2
j (k)

] + Cj
nn[

ω + ωj(k)

(ω + ωj(k))2 + σ2
j (k)

−
ω − ωj(k)

(ω − ωj(k))2 + σ2
j (k)

]. (9)

Relaxing processes which define the central peak of S(k, ω) are characterized by
the amplitudes Aj

nn(k). In a small-k region there exist three contributions from the
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Figure 2. Amplitudes of main contributions to the dynamical structure factor
(9) from the dynamical eigenmodes in liquid Be obtained by five-variable GCM
approach. The symbols correspond to contributions of the same eigenmodes as
in previous figure.
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Figure 3. Spectrum of dynamical eigenmodes in Lennard-Jones fluid at reduced
density n

∗ = 0.845 and temperature T
∗ = 1.71. The symbols and lines correspond

to the same modes as in figure 1.

relaxing processes: one from the hydrodynamic process of thermal diffusion, which
according to hydrodynamic treatment should be (γ − 1)/γ in the limit k → 0, and
two kinetic processes, which contributions must vanish in hydrodynamic limit. We
estimated the value of γ = 1.15 ± 0.05 for liquid Be, which means that A1

nn(k →

0) ≈ 0.13 is in good agreement with the figure 2. The contribution from sound
excitations tends to the value 1/γ in long-wavelength limit again in good agreement
with hydrodynamic predictions. More interesting is behaviour of contribution from
the kinetic relaxing mode d2(k) which describes processes of structural relaxation.
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From figure 2 one can see that for k > 0.5 Å−1 the shape of the central peak of
S(k, ω) is almost completely defined by the contribution from the kinetic relaxing
process d2(k). The crossover in contributions to the central peaks of S(k, ω) which
we obtained in the analytical GCM treatment takes place around kcr ≈ 0.35 Å−1.
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Figure 4. Amplitudes of main contributions to the dynamical structure factor
(9) from the dynamical eigenmodes in a Lennard-Jones liquid obtained by five-
variable GCM approach. The symbols correspond to contributions of the same
eigenmodes as in previous figure.

Similar behaviour of eigenmodes against the wavenumber is observed for Lennard-
Jones liquid. In figure 3 we show the propagating and relaxing dynamical eigenvalues
along with analytical results for d2(k) and d3(k) obtained in k → 0 limit. We note
again, that the analytical treatment predicts correctly the width of propagation gap
for heat waves and crossover region kcr where the change in main contributions to the
central peak of dynamical structure factor takes place. The thermodynamic quan-
tities obtained by us from the numerical GCM analysis have the following values:
DT = 12.7 Å2/ps, DL = 16.2 Å2/ps, cs = 1177 m/s, c∞ = 1789 m/s, and γ = 1.64.

In figure 4 the amplitudes Aj
nn(k) and Bj

nn(k) of main contributions to the dy-
namical structure factor S(k, ω) (9) for the Lennard-Jones fluid are shown. An es-
sential difference here comparing to the case of liquid Be is in the values of the
amplitudes from hydrodynamic excitations, which due to larger ratio of specific
heats γ tend to the following values: A1

nn(k → 0) ≈ 0.39 and B1
nn(k → 0) ≈ 0.61.

Due to wider region with almost hydrodynamic behaviour of the lowest collective
excitations one can observe the specific behaviour of amplitudes A1(k) and A3(k)
which by approaching the boundary gap for heat waves (in our case approximate-
ly at k ≈ 0.3 Å−1) display divergence to +/ − ∞, respectively. Such a behaviour
of amplitudes of relaxing processes can be easily obtained analytically using rele-
vant two-variable model. The other amplitudes behave quite similar as in the case
of liquid Be with the leading contributions from the generalized sound excitations
(B1

nn(k) - open circles in figure 4) and relaxing kinetic mode responsible for struc-
tural relaxation (A2

nn(k) - open boxes in figure 4) to the shape of S(k, ω) far beyond
the hydrodynamic region.
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4. Conslusions

The main consclusions of this study are as follows:

(i) we have solved analytically a generalized five-variable model of longitudinal
collective dynamics in long-wavelength limit for pure liquids. It was shown that
two eigenvalues additional to the hydrodynamic ones correspond to kinetic
relaxing processes in the liquid with the increasing lifetime against k. The
kinetic relaxing processes correspond to structural and heat rigidity relaxations
in the liquid;

(ii) the behaviour of relaxing long-wavelength eigenvalues obtained from the nu-
merical study of dynamical eigenmodes in a wide region of wavenumbers is in
agreement with analytical results;

(iii) the behaviour of amplitudes of mode contributions to the central peak of dy-
namical structure factor S(k, ω) reveals a crossover between hydrodynamic
contribution from thermal diffusion to leading contribution from structural
relaxation beyond the hydrodynamic region.
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4. Bosse J., Götze W., Lücke M. // Phys. Rev. A, 1978, vol. 17, p. 434.
5. Scopigno T., Balucani U., Ruocco G., Sette F. // J. Phys.: Cond. Matt., 2000, vol. 12,

p. 8009.
6. de Schepper I.M., Cohen E.G.D., Bruin C., van Rijs J.C., Montfrooij W., de Graaf L.A.

// Phys. Rev. A, 1988, vol. 38, p. 271.
7. Mryglod I.M., Omelyan I.P., Tokarchuk M.V. // Mol. Phys., 1995, vol. 84, p. 235.
8. Bryk T., Mryglod I. // J. Phys.: Cond. Matt., 2002, vol. 14, p. L445.
9. Bryk T., Mryglod I. // J. Phys.: Cond. Matt., 2000, vol. 12, p. 6305.

10. Bryk T., Mryglod I. // Phys. Rev. E, 2000, vol. 62, p. 2188.
11. Bryk T., Mryglod I. // Phys. Rev. E, 2001, vol. 63, p. 051202; vol. 64, p. 032202.
12. Bryk T., Mryglod I. // J. Phys.: Cond. Matt., 2001, vol. 13, p. 1343.
13. Cohen C., Sutherland J.W.H., Deutch J.M. // Phys. Chem. Liq., 1971, vol. 2, p. 213.
14. Akcasu A.Z., Daniels E. // Phys. Rev. A, vol. 2, p. 962.

480



Kinetic relaxing processes in collective dynamics of pure liquids

Кінетичні релаксаційні процеси в колективній

динаміці простих рідин

Т.Брик, І.Мриглод

Інститут фізики конденсованих систем НАН України,
79011 Львів, вул. Свєнціцького, 1

Отримано 7 серпня 2004 р.

Негідродинамічні релаксаційні процеси в простих рідинах досліджу-
ються в рамках підходу узагальнених колективних мод. Аналітично

розв’язано п’ятизмінну модель узагальненої гідродинаміки в довго-
хвильовій границі. Серед п’яти отриманих власних мод є три гідро-
динамічні та дві кінетичні моди, які описують процеси в’язкої та теп-
лової релаксації в рідині. Порівняння аналітичних результатів з дани-
ми, що отримані в комп’ютерних симуляціях методом молекулярної

динаміки, проведено для Ленард-Джонсівської рідини та рідкого ме-
тала. Обговорюється кросовер у релаксаційній поведінці рідин від

гідродинамічної області до молекулярних масштабів.

Ключові слова: узагальнена гідродинаміка, колективне

збудження, динамічний структурний фактор, релаксаційні процеси

PACS: 05.20.Jj,61.20.Ja,61.20.Lc
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