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The mean electrostatic potential approach to ionic solutions was initiated
by the mean field work of Gouy and Chapman for inhomogeneous systems,
and Debye and Hückel for bulk solutions. Any successful extension of the
mean field theories requires an adequate treatment of both the exclusion
volume and fluctuation terms. One such development has been the modi-
fied Poisson-Boltzmann approach. Although the bulk modified Poisson-
Boltzmann theory was introduced 35 years ago, only a limited amount of
work has been put into its development due to the successful application
of liquid state theories to ionic systems. We outline here the bulk modifi-
ed Poisson-Boltzmann equation, comment on some of its successes, and
mention some outstanding problems.

Key words: Poisson-Boltzmann, modified Poisson-Boltzmann, ionic
solutions, primitive model electrolytes

PACS: 05.20.Jj, 61.20.Qg, 82.45.Gj

1. Introduction

Electrolyte solutions arise in a wide variety of chemical, physical and biological
systems. Any true understanding of the structure and thermodynamics of these sys-
tems requires an appropriate molecular description based on statistical mechanics.
The first successful approach was the classical work of Debye and Hückel (DH) [1]
using the primitive model electrolyte. Subsequent progress was limited until the
application of liquid state theories [2] and computer development. Increased com-
puter power and speed now enables ever more models to be accurately simulated
and more complex theoretical analysis to be evaluated numerically. Many excellent
reviews have appeared over the years and we list a few of the most recent [3–9].

In this article we outline and comment upon the modified Poisson-Boltzmann
(MPB) theory. An early review of this theory is given in reference [10]. The basic
idea of the MPB approach is to extend the classical mean electrostatic approach
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of DH by expressing the distribution functions in the Kirkwood, Bogolubov, Born,
Green, Yvon (KBBGY) hierarchies [11] in terms of mean electrostatic potentials.
The resulting reformulation of the hierarchies allows both a clear identification of
the mean field approximations in the DH theory and a natural framework for higher
order closures. A further advantage is that any numerical work involving mean
electrostatic potentials deals with essentially damped exponential functions.

2. Theory

We assume that the potential of mean force UN for a neutral system of N ions
can be expressed as

UN =
N

∑

i<j

[

uel
ij + us

ij

]

, (1)

where
uel

ij =
eiej

4πε0εrr
= eiejνij (2)

and us
ij is any short ranged spherically symmetric interaction. Here ei, ej are the

charges on i and j respectively, r = rij their separation, ε0 the vacuum permittivity
and εr the solvent relative permittivity. When dealing with the primitive model
(PM) electrolyte

us
ij =

{

∞,
0,

r < aij ,
r > aij ,

(3)

where ai, aj are the radii of ions i and j respectively with aij = ai + aj. The special
case of ai = aj is the restricted primitive model (RPM) electrolyte.

Working in the canonical ensemble, the mean electrostatic potential ψ({n};q) at
the field point r q for ions fixed at r 1,. . . , rn is

ψ ({n}; q) =

〈

N
∑

k=1

ekν(k, q)

〉

=

=
n

∑

k=1

ekν(k, q) +
∑

s

es

∫

ν(n+ 1, q)ρs ({n} ;n+ 1) d(n+ 1), (4)

where the sum in s is over the ion species, n� N and

ρs({n};n+ 1) = (Ns − ns)

∫

exp(−βUN)d(n+ 2) . . . dN
∫

exp(−βUN)d(n+ 1) . . . dN
(5)

is the conditional number density of ions type s at rn+1 given ions at r 1, . . . , rn

and β = 1/kBT , kB Boltzmann’s constant and T the absolute temperature.
Interchanging q, n +1 in equation (4),

ψ({n};n+ 1) =
n

∑

k=1

ekν(k, n+ 1) +
∑

s

es

∫

ν(q, n+ 1)ρs ({n}; q) dq (6)
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and applying the Laplacian operator to rn+1, gives the generalised Poisson equation

∇2ψ ({n};n+ 1) = − 1

ε0εr

n
∑

k=1

ekδ (r k − rn+1) −
1

ε0εr

∑

s

esρ
s ({n};n+ 1) , (7)

where δ(r) is the three dimensional Dirac delta function. The first term on the right
hand side of equation (7) gives the charge contribution from the n fixed ions while
the second term is the mean charge at rn+1 from the mobile ions given n fixed ions.

For n = 1, equations (6), (7) reduce to

ψ(1; 2) =
ei

4πε0εrr
+

1

4πε0εr

∑

s

esρs

∫

gis(1, q)dq

r2q

, (8)

∇2
2ψ(1; 2) = − ei

ε0εr

δ(r 1 − r 2) −
1

ε0εr

∑

s

esρsgis(1, 2), (9)

where ρs is the mean number density of ions type s and gis the pair distribution
function for ions i and s. Equation (9), with formal solution equation (8), is the
familiar Poisson equation of the DH theory. When n = 2, equations (6), (7) are

ψ(1, 2; 3) =
2

∑

k=1

ekv(k, 3) +
∑

s

es

∫

v(3, q)ρs(1, 2; q)dq, (10)

∇2
3ψ(1, 2; 3) = − 1

ε0εr

2
∑

k=1

ekδ(r k − r 3) −
1

ε0εr

∑

s

esρ
s(1, 2; 3). (11)

The application of equations such as (8)–(11) depend upon knowing a practical
relationship between the conditional densities and the mean electrostatic potentials.
A convenient relationship is provided by the Kirkwood charging process for a single
ion [12,13], although the BBGY formulism can be employed [14]. We suppose that
the ion i at r 1has a charge λ1ei(0 6 λ1 6 1) so that

UN =
N

∑

i<j

us
ij +

N
∑

j 6=i

uel
ij(λ1) +

N
∑

j < k
6= i

uel
jk . (12)

Then taking the natural logarithm of the number densities for {n} and {n+1} ions,
differentiating each with respect to λ1, subtracting and using the definition of the
mean electrostatic potential equation (6) gives

ρs ({n};n+ 1) = ρs ({n};n+ 1|λ1 = 0)

× exp







−βei

1
∫

0

lim
q→1

[ψ({n + 1}; q) − ψ({n}; q)]







dλ1, (13)
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for n > 1. In particular for n = 1, equation (13) reduces to

ρs(1; 2) = ρs(1; 2 |λ1 = 0) exp







−βei

1
∫

0

lim
q→1

[ψ(1, 2; q) − ψ(1; q)] dλ1







. (14)

Writing

ψ(1, 2; q) = ψ(1; q) + ψ(2; q) + φ(1, 2; q), (15)

where φ(1,2;q) is the fluctuation potential, then equation (14) simplifies to

gij = gij(λ1 = 0) exp







−βei



ψ(2; 1) +

1
∫

0

φ(1, 2; 1)dλ1











(16)

on using ρs(1; 2) = ρsgij. The fluctuation potential describes the departure from
linear superposition, for two fixed ions, of the mean electrostatic potential at r q

from that of the two individual ions. Alternatively charging an ion j at r 2,

gij = gij(λ2 = 0) exp







−βej



ψ(1; 2) +

1
∫

0

φ(1, 2; 2)dλ2











(17)

so that Poisson’s equation (9) becomes

∇2ψ(1; 2) = − 1

ε0εr

eiδ(r 1 − r 2) −
1

ε0εr

∑

s

esρsζi,s

× exp







−βes



ψ(1; 2) +

1
∫

0

φ(1, 2; 2)dλ2











, (18)

where ζ i,s = gis(λ2 = 0).

3. Poisson-Boltzmann theories

The Poisson-Boltzmann equation is derived from equation (18) by putting
φ(1, 2; 2) = 0 and ζi,s = 0 for r less than the distance of closest approach of i
and s, and 1 otherwise. These two approximations were first delineated by Kirk-
wood [15] although his fluctuation term is not cast in a form suitable for further
analysis. A drawback of using the classical Poisson-Boltzmann theory is its unsym-
metrical gij, which restricts any consistent use to ions of equal size and valence. This
drawback stems from the unsymmetrical formulation of gij in equations (16), (17).
A symmetrical gij can be derived by putting ei = 0 in equation (17) and ej = 0 in
equation (16), substituting for ζj,i, ζ i,j in equations (16) and (17) respectively, and
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then combining the results to give

gij = g0
ij exp







−βej

2



ψi + ψ0
i +

1
∫

0

(φ(1, 2; 2) + φ(1, 2; 2 |ei = 0)) dλ2





− βei

2



ψj + ψ0
j +

1
∫

0

(φ(1, 2; 1) + φ(1, 2; 1 |ej = 0)) dλ1











, (19)

where g0
ij = gij(ei = ej = 0), ψ0

i = ψi(1; 2 |ei = 0) and ψ0
j = ψj(2; 1 |ej = 0). Ne-

glecting the fluctuation potentials in equation (19) gives a symmetric mean field
radial distribution function, and from equation (9) the corresponding set of sym-
metric PB (SPB) equations [16]

∇2ψt(1; 2)=− et

ε0εr

δ(r 1−r 2)−
1

ε0εr

∑

s

esρsg
0
st exp

{

−β
2

[

es(ψt + ψ0
t ) + et(ψs + ψ0

s )
]

}

(20)
for t running over the ion species. If all the ions have the same size then the dis-
charged potentials ψ0

t are zero. The SPB formulation enables a mean field treatment
to be made of single, or mixtures, of electrolytes with unequal radii and valences.

The linear form of equation (20) can be solved for a single PM electrolyte, species
p and q say, when ψ0

p = ψ0
q = 0 and g0

pq = H(r − apq) where H(r) is the Heaviside
unit step function [17,18]. For r > 2aqq, with ap 6 aq,

ψs =
esB

(ep − eq)r
exp (−κr) +

C

r
exp

(

− κr√
2

)

, s = p, q, (21)

where κ = [(β/ε0εr)
∑

s

e2sρs]
1/2 is the DH constant and B, C are constants depending

on the system parameters. When the ions have the same size C = 0. The first term on
the right hand side is the classical screened potential with an effective charge while
the second term is also screened but with a larger screening length. This second
term arises because the different exclusion volumes of the ions leads to a coupling
of the two ion species in the pair of differential equations.

4. Modified Poisson-Boltzmann theories

To improve upon the mean field formulation we need a procedure to calculate the
fluctuation potential φ(1,2;3). Consider the triplet distribution function gijk(1,2,3).
Formally we can write

−kBT ln gijk(1, 2, 3) = Wijk(1, 2, 3)

= Wij(1, 2) +Wik(1, 3) +Wjk(2, 3) + wijk(1, 2, 3), (22)

where Wij, Wijk are the pair and triplet potentials of mean force respectively and
wijk is the departure from linear superposition of the pair potentials for three ions.
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Thus
−kBT ln [gijk/gij] = −kBT ln gijk(1, 2; 3) = Wik +Wjk + wijk . (23)

The unsymmetrical MPB closure is given by [12]

wijk = ekφij(1, 2; 3) (24)

so comparing equations (8) and (23), the MPB closure is the replacement of the
departure of linear superposition of the potential of mean force by the corresponding
energy ekφ(1,2;3). This is in exactly the same spirit as the DH closure

Wij = ejψ(1; 2) (25)

at the previous hierarchical level. The closures (24) and (25) are not symmetric, but
symmetric closures can be obtained from the symmetric formulations

Wij =
1

2
[ejψ(1; 2) + eiψ(2; 1)] , (26)

wijk =
1

3
[ekφ(1, 2; 3) + eiφ(2, 3; 1) + ejφ(3, 1; 2)]. (27)

The symmetric closures (26) and (27) do not imply fully symmetric gij and gijk

respectively as the neglect of the discharged potentials means the distribution func-
tions are inconsistent when an ion is discharged. Nevertheless, a symmetric gij will
be given by equation (19) even if an estimate of φ(1,2;3) is found using either (24)
or (27).

It can be shown that [16]

wijk = −kBT ln ζ0
ijk +

1

3

3
∑

t=1

χt , (28)

where for t = i(≡ 1)

χi = ei

{

Φi +
1

2
[Φi(ej = 0) + Φi(ek = 0)] + Φi(ei = ej = 0)

}

(29)

with similar expressions for χ2(≡ χj) and χ3(≡ χk). Here

ζ0
ijk = g0

ijk/g
0
ikg

0
jkg

0
ij , (30)

Φi = φ(2, 3; 1) +

1
∫

0

φ(1, 2, 3; 1)dλ1 (31)

with analogous expressions for Φj, Φk, and φ(1, 2, 3; 4) defined by

ψ(1, 2, 3; 4) =
3

∑

t=1

ψ(t; 4) +
3

∑

t<s

φ(t, s; 4) + φ(1, 2, 3; 4). (32)

The MPB closures (24) and (27) thus neglect the fluctuation potential φ(1,2,3;4)
at r 4 for three fixed ions, discharged fluctuation terms involving two fixed ions and
the exclusion volume term ζ0

ijk. Improved closures at this level can be made by
incorporating approximations to ζ0

ijk and the discharged fluctuation potentials.
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5. Calculation of the fluctuation potential

For simplicity we now restrict ourselves to a RPM electrolyte with ions of diam-
eter a. From equations (9) and (11) we have

∇2ψ(1; 3) = − 1

ε0εr

∑

s

esρs exp [−βW (1, 3)], (33)

∇2ψ(2; 3) = − 1

ε0εr

∑

s

esρs exp[−βW (2, 3)], (34)

∇2ψ(1, 2; 3) = − 1

ε0εr

∑

s

esρs exp {−β[W (1, 3) +W (2, 3) + esφ(1, 2; 3)]}, (35)

where equations (33), (34) are exact but equation (35) incorporates the MPB un-
symmetrical closure (24). Subtracting equations (33) and (34) from (35) gives the
differential equation for φ (= φ(1,2;3)),

∇2φ = − 1

ε0εr

∑

s

esρs {exp (−β[W (1, 3) +W (2, 3) + esφ])

− exp [−βW (1, 3)] − exp [−βW (2, 3)]} . (36)

Figure 1. The linearized fluctuation potential problem, equations (38)–(41), for
ions of equal diameter a.

To make analytical progress we linearize equation (36) outside the exclusion
volume of the two ions. Writing ωk as the exclusion volume rk3 < a and putting
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ω∗ = ω1 ∩ ω2,

∇2φ =
1

ε0εr

∑

s

e2sρsgisgjsφ in V − (ω1 + ω2) (37)

or using a more approximate equation outside the exclusion volumes

∇2φ = κ2φ in V − (ω1 + ω2), (38)

∇2[φ+ ψ(2; 3)] = 0 in ω1 − ω∗, (39)

∇2[φ+ ψ(1; 3)] = 0 in ω2 − ω∗, (40)

∇2φ = 0 in ω∗, (41)

where equations (39–41) are exact. Figure 1 illustrates the fluctuation potential
problem for intersecting and non-intersecting exclusion volumes. The boundary con-
ditions associated with the potential problem are

(i) φ and the normal derivative ∂φ/∂n are continuous at the boundaries,

(ii) φ→ 0 as any of r13, r23, r12 → ∞.

An approximate solution can now be found for large r (= r12) when we can as-
sume spherical symmetry around the individual exclusion volumes [14]. Considering
the exclusion volume centered at r 2, then the general solution is

φ =
A0

κr2
exp(−κr2) +

A1(1 + κr2)

(κr2)2
exp(−κr2) cos θ2 + · · · , r2 > a, (42)

φ = B0 − c0 + [B1κr2 − c1] cos θ2 + · · · , r2 < a, (43)

where r2 = r23 and

cn(r2, r) = (n+ 1/2)

π
∫

0

ψ(1; 3)Pn(cos θ2) sin θ2dθ2 (44)

with θ2 the angle between r and r2. So as

φ(1, 2; 2) = lim
r3→r2

φ(1, 2; 3) = B0 − ψ(1; 2), (45)

we have from equation (17) that

gij = gij(ej = 0) exp



−βej

1
∫

0

B0dλ2



 (46)

so that only B0 is required. A similar analysis for the BBGY hierarchy requires only
B1 [14]. Application of the boundary conditions (i) at r2 = a gives

B0 = c0(a, r) +
a

(1 + y)
c′0(a, r), (47)
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where y = κa and c′0 = ∂c/∂r2. From equation (44) we can derive

c0(a, r) =
1

2ar

r+a
∫

r−a

u(R)dR, (48)

c′0(a, r) =
1

2ar



u(r + a) + u(r − a) − 1

a

r+a
∫

r−a

u(R)dR



 , (49)

where u = rψ(1; 2). Similarly the correspondingB0 for the exclusion volume centered
at r 1 can be found, hence using the symmetric formulation (19) for gij gives

gij = g0
ij exp {−(β/2) [ejL(ui) + eiL(uj)]} , r > a, (50)

where

L(u) =
1

2(1 + y)r



u(r + a) + u(r − a) + κ

r+a
∫

r−a

u(R)dR



 . (51)

The corresponding analysis for unequal ion sizes cannot be easily carried out as
there is more than one exclusion volume region about an ion. For a single electrolyte
with species p having the smaller radius, and ignoring the different exclusion regions
about an ion so that equation (38) still holds [19],

gst = g0
st exp

{

(−β/2)[es(Lt + L0
t ) + et(Ls + L0

s )]
}

, (52)

where

Ls =
1

2r(1 + κaps)



us(r + aps) + u(r − aps) + κ

r+aps
∫

r−aps

us(R)dR



 (53)

with L0
s = Ls(es = 0). The approximation outside the exclusion volumes becomes

increasingly inaccurate as the size discrepancy increases and allows too great a weight
to the approach of like ions. Putting Ls = ψs gives the SPB radial distribution
function.

Combining the gij RPM result (50) with Poisson’s equation (9) gives

u′′s
r

= − 1

ε0εr

∑

t

etρtg
0
st exp {−(β/2)[esL(ut) + etL(us)]}, r > a, (54)

us =
r

a
us(a) −

es
4πε0εra

(r − a), 0 < r < a, (55)

which for a single electrolyte of species p, q is a pair of coupled equations for up, uq.
If the valences are equal, then up = −uq = u say and there is only one equation to
solve. The PB equation is then derived from equation (54) by putting a = 0 in L(u)
and g0

st = H(r − a).
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6. Discussion

The linear form of equation (54) enables us to make comparisons with the DH
and other theories. Considering the special case of a single RPM electrolyte with
equal valences and g0

st = H(r − a), the linear form with L(u) of equation (51) is

u′′ = κ2rL(u) (56)

and for the equivalent fluctuation problem with the MPB closure in the BBGY
hierarchy [14]

L(u) =
3

4a3r(y2 + 3y + 3)

r+a
∫

r−a

[

a2(y2 + 2y + 2) − y2(R− r)2
]

u(R)dR. (57)

Expanding L(u) about r for equation (51),

u′′ = κ2u+

[

y2(y + 3)

6(y + 1)

]

u′′ +O(u(iν)) (58)

and for equation (57),

u′′ = κ2u+

[

y2(y2 + 5y + 5)

10(y2 + 3y + 3)

]

u′′ +O(u(iν)) (59)

so that second order terms of the order u′′ and above on the right hand side give the
MPB corrections to the DH theory from the Kirkwood and BBGY hierarchies [10].

Solving the fluctuation potential problem as before but now with ∇2φ = 0 in
V − (ω1 + ω2), gives the Kirkwood operator [20,21]

L(u) =
1

2r
[u(r + a) + u(r − a)] (60)

and with the resulting B1 for the BBGY hierarchy, the Martynov operator [22]

L(u) =
1

2ar

r+a
∫

r−a

u(R)dR. (61)

The linear equation (56) gives the behaviour of the non-linear equation (54) for large
r. Taking the Laplace transform of equation (56) with L(u) given by equation (51),
the general solution is of the form

u =
∞

∑

n=1

An exp(−znr/a), (62)

where the sum is over the roots zn = αn + βn, αn > 0, of

z cosh z + y sinh z =
z3(1 + y)

y2
. (63)
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For low y there are two real roots with the lower corresponding to the DH solu-
tion. As y increases the two real roots converge, coalesce at a “Kirkwood value”of
yC = 1.2412, then move off as complex conjugates. Eventually this complex con-
jugate pair merges and becomes purely imaginary at yI = 7.83. The other roots
are complex conjugates, with larger real parts, and infinite in number. The linear
equation thus predicts a damped solution for y < yC, a damped oscillatory solution
for yC < y < yI and for y > yI, a purely oscillatory solution which is unjustifiable
mathematically. The behaviour of the linear solutions for L(u) given by equations
(57), (60), (61) are similar, with the corresponding values of yC being 1.032, 1.720,
1.642 respectively, and of yI being 2.79, 17.7, 9.17 respectively. Casting the mean
spherical approximation (MSA) in terms of the mean electrostatic potential also
leads to equation (56), with the MSA L(u) predicting yC = 1.229 and yI = ∞ [23].
Another linear theory, the generalised DH of Lee and Fisher [24], predicts yC = 1.178
and yC = 6.652. All these linear theories predict the same value of yC and yI for
both symmetric and asymmetric valences. Indeed, for a symmetric valence RPM,
the value of yC for a particular linear theory is unaltered if ψ(1;2) is linear in charge
or the direct correlation function cij is given by

cij = c0(r) + eiejf(r), (64)

where c0 is short-ranged and both c0 and f(r) are independent of ei and ej [25].
Investigations of the hypernetted chain (HNC) equation [8,26–28] indicate that

yC is dependent on the electrolyte valence. Also, from diagrammatic techniques
[29] and dressed ion theory [30], the asymptotic behaviour of the screening length
for small values of the coupling parameter Γ = βκe2/4πε0εr, e elementary unit of
charge, has a purely electrostatic contribution for a → 0. Unequal ion sizes further
complicate the screening length behaviour [31]. The unequal size L(u) of equation
(53) predicts variations in yC and yI for different ion sizes and valences [19], but its
inherent approximations limit its applications.

The combination of the neutrality condition with the second moment condition
of Stillinger and Lovett [32] predicts “charge oscillations” for y >

√
6. This value

of y =
√

6 is also the limiting value for which a single screening length is possible
which allows these two conditions to hold [33]. A simple derivation of this limitation
is given [25] by considering ψi = A1 exp(−κ1r) and then finding κ1 for which ψi

satisfies both the neutrality condition and the PM mean potential reformulation of
the second moment condition [34]

β
∑

s

esρs

∫

ψsdV = 1. (65)

Numerical solutions of the non-linear SPB and MPB equations (20), (52), (54) have
been found for various PM systems. Once g0

st is specified, then for m ionic species
there are only m coupled equations to solve for ψs, s = 1, . . . ,m, rather than the
m(m+1)/2 equations in a standard integral equation approach. Early work utilized
a density expansion, but now the Percus-Yevick hard sphere distribution function
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for mixtures, with the Verlet-Weis correction [35], is used. Note that g0
st is not the

uncharged hard sphere radial distribution function but the pair distribution for two
discharged ions in a sea of fully charged ions. In the BBGY potential formulation
the analogous distribution function for an uncharged ion is given by the Kirkwood
superposition approximation in the hierarchy. The numerical solution of the SPB
and MPB equations have been based on a quasi-linearization technique [36], with
a fixed point iteration process used for the MPB in the BBGY hierarchy [37]. The
quasi-linearization technique is very efficient and robust, with none of the usual
difficulties associated with the Coulomb potential because of the damped nature of
the mean electrostatic potential.

The SPB and MPB bulk theories have been applied to a wide range of physical
situations. At present these are:

(i) symmetric and asymmetric single electrolytes [10,17,38–40],

(ii) electrolyte mixtures and electrolytes including neutral species [41–43],

(iii) classical ion criticality [44–46],

(iv) simple polyelectrolytes and colloidal suspensions [42, 47].

For a single electrolyte the MPB structural and thermodynamic properties are on a
par with those of the benchmark HNC integral equation when compared with MC
simulations, while in some other situations the MPB is more accurate and can be
solved for a greater parameter range. Thus in contrast to the HNC equation, the
MPB (and SPB) equations can predict a gas-liquid co-existence region for the PM
electrolyte, and can be solved for a larger neutral species concentration range in an
electrolyte + neutral species mixture [42]. As a general principle the SPB theory
is most suited to those physical situations involving univalent ions [9]. However,
in cases where neutral species are present, the SPB can usually provide at least
qualitative, if not quantitative, predictions.

7. Main problems

The two major approximations in the present MPB theory for the PM electrolyte
are:

(a) the linearization of equation (36) outside the exclusion volumes,

(b) the restriction of the solution of the fluctuation problem to large separations
of the ions.

Clearly the ideal result is a numerical solution of equation (36), using perhaps a
finite element technique. For consistency a fully symmetric closure should be used
although it is expected that either of the closures (24), (27) would be adequate.

The linear analysis provides physical insight into the MPB approach. Within the
present linear analysis the most important progress would be to (i) treat the inter-
secting exclusion volume problem and (ii) adequately treat unequal ion sizes. The
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neglect of (i) leads to incorrect weighting for the short range interaction of two ions,
and hence shortfalls when concepts such as ion pairing are important. An adequate
treatment of (i) should give the required variation of yC with different valences, and
further corrections could be given by including in the fluctuation potential problem
the exclusion volume term (30) or the non-linear term for unequal valences [12].
The point ion contribution in the screening length for small Γ should come from a
solution of the fluctuation potential problem using the more accurate equation (37)
rather than equation (38). This is expected as in the corresponding inhomogeneous
MPB theory for a planar double layer [48,49], there is a point ion contribution in
the singlet distribution function which can readily be shown to contribute to the
screening length. The present flawed unequal size analysis compounds the error in-
troduced in (i). Ionic criticality clearly exposes the limitation of (i) and (ii) where,
for example, the RPM critical density is too low and for the PM the variation of the
critical parameters is not in accord with simulation predictions [50,51]. A satisfac-
tory treatment of (i) and (ii) is also important in colloidal applications where large
variations in size and valences can occur.

A further interesting problem is finding the MPB closure in terms of the direct
correlation function cij. Given the accuracy of the MPB theory, even with the ap-
proximations after the closure, such an insight could well prove useful for approaches
based on the Ornstein-Zernike equation. An associated problem is whether or not
the MPB closure implies that the second moment condition is satisfied. The present
numerical solution indicates that it is nearly satisfied for typical electrolyte soluti-
ons, but the agreement diverges in the neighbourhood of the PM co-existence region.
Of course, neutrality is automatically satisfied in the MPB formulation through the
boundary conditions. A simple linear theory satisfying both neutrality and the sec-
ond moment condition (65) can be constructed from the first two terms of equation
(62) by the appropriate choice of A1 and A2 [25].

Emphasis has been placed here on PM electrolytes. Suffice it to say, it is ex-
tremely important to consider models which treat the solvent in a realistic fashion.
The application of the MPB approach to treat such models has been hampered by
some of the present PM limitations. Applications have only been made to the neu-
tral solvent PM [42] and ion-dipole mixtures [52,53]. There is clearly great scope for
the application of mean electrostatic potential theories, based on the MPB closure,
to improved electrolyte models.
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Модифікований підхід Пуассона-Больцмана до

однорідних іонних розчинів

К.Аутвайт

Відділення прикладної математики, університет Шеффілда,
Шеффілд, Великобританія

Отримано 4 серпня 2004 р.

Підхід середнього електростатичного потенціалу був ініційований

роботами Гуї і Чепмана для неоднорідних систем та Дебая і Гюккела

для об’ємних розчинів. Будь-яке успішне розширення теорії серед-
нього поля вимагає адекватного трактування ефектів як виключено-
го об’єму, так і флуктуаційних членів. Одним із них є модифікований

підхід Пуассона-Больцмана. Хоча “об’ємна” модифікована теорія Пу-
ассона-Больцмана була запропонована 35 років тому, тільки є обме-
жене число робіт використало її завдяки успішному застосуванню

теорій рідкого стану до іонних розчинів. Тут ми викладаємо “об’ємне”
модифіковане рівняння Пуассона-Больцмана, обговорюємо його пе-
реваги і згадуємо деякі найважливіші проблеми.

Ключові слова: Пуассон-Больцман, модифікований

Пуассон-Больцман, іонні розчини, примітивна модель електролітів

PACS: 05.20.Jj, 61.20.Qg, 82.45.Gj
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