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Recent Monte Carlo simulations of the critical point of the restricted prim-
itive model for ionic solutions are reported. Only the continuum version of
the model is considered. A finite size scaling analysis based in the Bruce-
Wilding procedure gives critical exponents in agreement with those of the
three-dimensional Ising universality class. An anomaly in the scaling of the
specific heat with system size is pointed out.
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1. Introduction

The primitive model (PM) for electrolytes, molten salts, colloids, etc is a mixture
of M species of charged hard spheres living either on a lattice or within a continuous
volume of real space. In this paper we shall focus only on the off-lattice version of the
model. The simplest version of the PM consists of a binary mixture (i.e. M = 2) of
positive and negative charged hard spheres ±q all with the same diameter σ. Under
this form the model which is thought to be the prototype of many ionic fluids has
been christened the restricted primitive model (RPM). A thermodynamic state of
the RPM is entirely specified by a reduced density ρ∗ = Nσ3/V (N number of ions,
V volume) and a reduced temperature T ∗ = kTσ/q2 (k Boltzmann’s constant).

The RPM undergoes a liquid-vapor transition which has been studied extensi-
vely these last past years by means of Monte Carlo (MC) simulations and various
theoretical approaches. In particular the behavior of the system at its critical point
(CP) has been the subject of a huge amount of numerical and theoretical studies.
The question is obviously of great importance since it is reasonable to assume that
real electrolytes – or at least a large class of them- and the RPM belong to the same
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universality class which dictates a similar critical behavior.

It is perhaps the right place to note that the main feature of ionic solutions is
that the pair potential between two ions i and j at a distance rij = |ri − rj| which
reads as

v(rij) =
qiqj

rij

for rij > σ,

v(rij) = +∞ for rij < σ (1.1)

is a long range interaction. This fact would suggest classical (mean field) behavior,
whereas the well-known screening of the interactions pleads in favor of an Ising-like
criticality typical of systems with short range interactions.

On the experimental side it seems well established now that for many real elec-
trolytes apparent mean field behavior applies with sharp crossover (much sharper
than in nonionic fluids) to Ising criticality close to the critical temperature [1].

At the moment there exists no convincing theoretical proof showing that the
RPM belongs to the Ising universality class [2–5] and only sophisticated Monte
Carlo simulations can support this claim. Most numerical studies of the CP of the
off-lattice version of the RPM were performed by the Orsay group and I would like
to review our contributions towards a better understanding of the critical properties
of this model in the lines below.

2. A brief historical survey

Quite generally, a single component fluid will undergo a liquid vapor transition
if the pair potential which is assumed to represent the molecular interactions is
(sufficiently) attractive at large distances. From this point of view the situation is
not so clear in the case of the RPM (cf equation (1.1)) and the very existence of the
transition is not guaranteed. Several studies were necessary to clarify this point and
a brief historical survey is worthwhile.

The first evidence that the RPM actually undergoes a liquid-vapor transition can
be tracked back to two papers of Chasovkikh and Vorontsov-Vel’ Yaminov (CVVY)
published as soon as in 1976 [6,7]. These authors performed isobaric MC simulations
and found a transition with a CP located at T ∗

c = 0.095, ρ∗
c = 0.24. Several years

after (in 1991) Valleau studied three isotherms of the RPM with his method of the
density scaling MC and obtained a different location for the CP, namely T ∗

c = 0.07,
ρ∗

c = 0.07 [8]. Subsequently (in 1992) Panagiotopoulos [9] obtained still different
results, i.e. T ∗

c = 0.056, ρ∗
c = 0.04, by performing MC simulations in the Gibbs

ensemble (GE), at the moment a powerful new method of simulation which he
had invented a little bit earlier [10]. Subsequent GE simulations using an improved
biased MC sampling [11] yielded Panagiotopoulos and Orkoulas to the new estimate
T ∗

c = 0.053, ρ∗
c = 0.025. Finally, making use myself of the Gibbs ensemble combined

with the use of hyperspherical geometries I obtained rather T ∗
c = 0.057, ρ∗

c = 0.04
[12,13].
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Commenting on this striking dispersion of the MC data Prof M. Fisher talked
once of the “sad street of numerical simulations”. This was in 1999, at the SCCS
conference, St Malo, France and, at this point of the story, I must agree with him
retrospectively. However many advances have been done since. Before giving an
account of these new achievements some comments are in order.

(i) All the MC studies confirm the existence of a liquid vapor transition for the
RPM. It seems to take place at unusually low densities and temperatures.
Caillol and Weis give further support for such a low critical temperature [14].
Moreover it turns out that the coexistence curve is very dissymmetric [9,11,12].

(ii) The MC simulation of ionic systems is a numerical challenge due to the long
range of Coulomb potential. In order to deal with this, some caution is needed.
Thus, in the case of MC simulations performed in a cubic box with periodic
boundary conditions (PBC), one must use Ewald potentials in order to ob-
tain the correct physics [15–17]. The point is that the Ewald potential is the
solution of Poisson equation in a cubico-periodical geometry [17] and many
properties of ionic fluids (electro-neutrality, screening, etc) are a consequence
of this fact. In their MC simulations CVVY and Valleau considered truncated
Coulomb potentials and very small samples of N = 32 particles which yields
quantitatively wrong results. By contrast the data of Panagiotopoulos et al.

[9,11] are more reliable since Ewald sums have been used. The same remark
apply to my simulations which were performed on a 4D sphere (a hypersphere
for short) by considering interactions obtained by solving Poisson equation
in this geometry. This alternative method of simulation is therefore also in-
disputably correct, moreover it is much more efficient. The rough agreement
observed between the simulations of [9,11] and [12] both involving the same
number of ions, i.e. N = 512, is therefore not fortuitous.

(iii) None of the above mentioned studies took correctly into account finite size ef-
fects which are of an overwhelming importance near a CP. These effects affect
the behavior of finite systems as soon as the correlation length of the critical
density fluctuations is of the same order of magnitude as the size of the simu-
lation box. In the simulations [9,11,12] some “apparent” critical temperature
T ∗

c has been measured which could be very different from its infinite volume
limit T ∗

c (∞).

In order to extract from MC simulations the critical behavior of the RPM in the
thermodynamic limit (i.e. the critical exponents) as well as the infinite volume limit
of T ∗

c and ρ∗
c it is necessary to perform an analysis of the MC data in the framework

of the finite size scaling (fss) theory which is part of the renormalization group (RG)
theory [18,19]. In this approach one needs to work in the Grand Canonical (GC)
ensemble rather than in the Gibbs ensemble which is ill adapted for a fss analysis.
Subsequent MC simulations on the RPM were thus all performed in this ensemble.
Panagiotopoulos and coworkers turned their attention to the lattice version of the
RPM whereas the Orsay group continued to work on its off-lattice version.
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3. Finite size scaling analysis of MC data

3.1. Scaling fields and operators

Starting with the seminal work of Bruce and Wilding (BW) [20–22] simulation
results for the critical behavior of fluids have customarily been analyzed along the
lines of the so-called revised scaling theory of Rehr and Mermin [23]. In this approach
one first defines scaling fields and operators aimed at restoring the particle-hole
symmetry and therefore to map the the fluid onto a magnetic sytem with Ising-like
symmetry.

The two relevant scaling fields h (the strong ordering field) and τ (the weak
thermal field) are assumed to be linear combinations of deviations from their critical
values of the chemical potential µ and the inverse temperature β = 1/T (reduced
values are assumed henceforward). One thus has

h = µ − µc + r(β − βc),

τ = βc − β + s(µ − µc) , (3.1)

where r and s are the field mixing parameters which define the mapping. Of course
relations (3.1) are valid only in the vicinity of the CP. The conjugate scaling oper-
ators M and E are then defined as

〈M〉 =
1

V

∂

∂h
ln Ξ =

1

1 − sr
(〈ρ〉 − s〈u〉),

〈E〉 =
1

V

∂

∂τ
ln Ξ =

1

1 − sr
(〈u〉 − r〈ρ〉) , (3.2)

where Ξ is the GC partition function of the RPM, ρ is the total number density,
and u is the internal energy per unit volume. Brackets 〈. . .〉 denote GC averages. M
is the order parameter (magnetization) of the magnetic system associated with the
fluid and E is its magnetic energy. E should be invariant under the transformations
(M, h) → (−M,−h) for appropriate values of s and r. In this framework the
coexistence curve is therefore defined by the equation h = 0.

The revised scaling of Rehr and Mermin implies the analyticity of the coexistence
chemical potential µ(T ) at T ∗

c . Although this is the case for some peculiar lattice
gas models with “hidden” symmetries there is no reason that in general, for fluid
systems µ(T ) should lack a singularity as recognized already by Rehr and Mermin
[23] and emphasized more recently by Fisher and co-workers [40–42] .

3.2. The scaling hypothesis

A central role in the subsequent fss analysis is played by the GC joint distribution
PL(M, E) ∝ PL(ρ, u) for the scaling operators M and E . Following BW [20–22]
we will assume that, in the immediate vicinity of the CP, PL(M, E) obeys to the
following scaling law:

PL(M, E) = a−1
M a−1

E Ld−yτ Ld−yhP̃
(
a−1
MLd−yh δM ,

. . . a−1
E Ld−yτ δE , aMLyh h, aEL

yτ τ, aiL
yi , . . .

)
, (3.3)
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where L are the linear dimensions of the system (taken as V 1/3, where V is the
volume of the simulation box, either a cube or a hypersphere). I have denoted by
δM ≡ M−〈M〉c and δE ≡ E−〈E〉c the deviations of the scaling operators from their
value at criticality. The cornerstone of this scaling hypothesis is that the function
P̃ which enters equation (3.3) is universal in the sense that it depends only upon
the universality class of the model and on the type of geometry considered. The
constants aM, aE , and ai are system dependent constants which are defined in such
a way that P̃ has unit variance. Finally, the renormalization exponents yh, yτ , and
yi which enter equation (3.3) are defined as

yh = d − β/ν, yτ = 1/ν, yi = −θ/ν (3.4)

in terms of the usual critical exponents:

• β exponent of the ordering field, i.e. < δM >∼ |τ |β for T ∗ < T ∗
c at h = 0;

• ν exponent of the correlation length, i.e. ξ ∼ |τ |−ν ;

• θ Wegner’s correction-to-scaling exponent (first irrelevant exponent).

The scaling hypothesis (3.3) was established on a solid RG basis for Ising-like systems
[24] and received substantial support from MC studies [25]. We stress once again
that the coexistence curve is determined in this approach by the condition h = 0
and that, at coexistence, the order parameter distribution PL(M) should be an even
function of M. In practice this symmetry requirement can be satisfied by tuning
the two parameters (µ, s) at a given β. We now concentrate our attention on the
scaling behavior of the histogram PL(M).

3.3. The matching procedure

Integrating both sides of equation (3.3) over E one finds that, along the coexis-
tence line h = 0 one has

PL(M) = a−1
M Ld−yhP̃

(
a−1
MLd−yh δM, aEL

yτ τ, aiL
yi

)
, (3.5)

where, in the r.h.s. the dependence of the universal function P̃ upon h has been
discarded for clarity. Let us define now x = a−1

MLd−yhδM, then, assuming τ ∼ 0 and
L ∼ ∞ a Taylor expansion of equation (3.5) yields

PL(M) = a−1
M Ld−yh

[
P̃∗(x) + aEL

yτ τ P̃∗

1 (x)

+ a′2
E L2yτ τ 2P̃∗

2 (x) + . . . + aiL
yiP̃∗

3 (x) + . . .
]

, (3.6)

where the various P̃∗ entering the r.h.s. are universal functions. Note that, for L =
∞ the normalized ordering field distribution PL(M) collapses onto an universal
function P̃∗(x) at τ = 0. For L finite but large PL(M) collapses approximately onto
P̃∗(x) at some apparent τL ∝ L−yτ+yi . Since for h = 0 one has τ ∝ β − βc then the
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matching of the histogram PL(M) onto the universal function P̃∗(x) should occur
at some apparent temperature T ∗

c (L) scaling with system size as

T ∗

c (∞) − T ∗

c (L) ∝ L−(θ+1)/ν + . . . , (3.7)

where T ∗
c (∞) denotes the infinite volume limit of the critical temperature.

3.4. Technical details

To assess the critical behavior and the critical parameters of the system, we need,
in a first step, to locate the coexistence curve h = 0. At a given temperature β close to
βc the ordering distribution function PL(M) depends solely on the chemical potential
µ and the mixing parameter s. At coexistence, the value of (µ,s) can be obtained
unambiguously by requiring that PL(M) is symmetric in M−〈M〉 [22]. Tuning at
will µ and s at given β requires to know the joint histogram PL(M, E) ∝ PL(ρ, u)
for a continuous set of values of µ at a given β. Moreover, since this analysis must
be performed at different β one needs in fact to know PL(M, E) for a continuous
set of values of (β,µ) in the critical region. This technical difficulty is circumvented
by using the multiple histogram reweighting proposed by Ferrenberg and Swensen
[26–28]. With this method one can obtains Pβ,µ

L (ρ, u) for a continuous set of values
of (β,µ) from the knowledge of R histograms Pβi,µi

L (ρ, u), i = 1, . . . , R obtained by
performing R distinct MC simulations in the R (neighbor) thermodynamic states
(βi, µi).

Since the precision of the simulations of fluid systems has still not reached that
obtained in the MC simulations of Ising like systems it is impossible to construct
ex nihilo the fixed point universal distribution P̃∗(x). In [29,30] our attempts to
match PL(M) on P̃∗(x) were realized by using the estimate of P̃∗

is(x) made by Hilfer
and Wilding [32] for the 3D Ising model. Two new -and better- estimates of P̃∗

is(x)
obtained by Tsypin and Blöte [33] for the 3D Ising model and the spin-1 Blume-
Capel model were considered in [31]. The discussion is postponed to next section.

4. Results

4.1. General discussion

It turns out that the field mixing parameter s of the RPM is practically indepen-
dent of the temperature and of the size L of the system. Its magnitude, s ∼ −1.46
[29–31], is much higher than for neutral fluids (typically s ∼ 0.02 for square well or
Lennard-Jones fluids [34]) which explains the large dissymmetry of the liquid-vapor
coexistence curve of the RPM.

The collapse of the ordering operator distribution PL(M) onto the universal
ordering distribution P̃∗

is(x) given by the Blume-Capel model [33] is depicted in
figure 1 for four different values of the volume ranging from V/σ3 = 5000 to V/σ3 =
40000, i.e. up to a linear size L/σ = 34. At volume V/σ3 = 5000 a mismatch
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Figure 1. Collapse of the ordering distribution PL(M) onto the universal Ising
ordering distribution P̃∗

is(x) for V/σ3 = 5000, T ∗
c (L) = 0.004934, s = −1.45;

V/σ3 = 10000, T ∗
c (L) = 0.004926, s = −1.465; V/σ3 = 20000, T ∗

c (L) = 0.004921,
s = −1.47; and V/σ3 = 40000, T ∗

c (L) = 0.004922, s = −1.43. P̃∗
is(x) (solid circles)

if the MC result of Tsypin and Blöte ([33]) obtained for the Blume-Capel model.
The scaling variable is x = a−1

M
Lβ/νδM where aM is chosen in such a way that

PL(x) has unit variance.
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Figure 2. The apparent critical temperature T ∗
c (L) as a function of L−(θ+1)/ν

with θ = 0.53, ν = 0.630 obtained by matching the universal ordering distri-
bution calculated for the Blume-Capel model (top) and the Ising model (bot-
tom). Extrapolating by linear least square fit to the infinite volume limit yields
T ∗

c (∞) = 0.04917 ± 0.00002 (top) and T ∗
c (∞) = 0.04916 ± 0.00002 (bottom).
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is observed at the lowest values of M due to an inadequate sampling of the low
density configurations at small volume. The overall good agreement leads us to
conclude that the universality class of the RPM is that of the 3D Ising model.

The reduced apparent critical temperature T ∗
c (L) versus the size L of the system

(in reduced units) has been plotted in figure 2. Depending on the choice made for
the universal ordering distribution P̃∗

is(x) one obtains two sets of values of T ∗
c (L)

from which T ∗
c (∞) can be obtained by making use of equation (3.7). One obtains

T ∗
c (∞) = 0.04917 ± 0.00002 using P̃∗

is(x) derived from the Blume-Capel model and
T ∗

c (∞) = 0.04916 ± 0.00002 using P̃∗
is(x) obtained for the 3D-Ising model. The

approximate P̃∗
is(x) of Hilfer and Wilding yields slightly different results. Note that

in all cases we have used the Ising values ν = 0.630 [35] and θ = 0.53 [36] of the
critical exponents.

The previous analysis merely establishes the compatibility of the MC data with
an Ising-like criticality. One can try to go beyond by considering the scaling behavior
of the Binder cumulant

QB(L) =
〈δM2〉2L
〈δM4〉L

. (4.1)

As a consequence of the scaling hypothesis (3.6) one can show that, at coexistence
(h = 0), QB(L) should scale with system size as

QB(L) = Qc + q1(β − βc)L
1/ν + q2(β − βc)

2L2/ν

+ q3(β − βc)
3L3/ν ... + b1L

yi + . . . , (4.2)

where the last term takes into account contributions from irrelevant fields and q1, q2,
q3, and b1 are non-universal constants. If the contribution of irrelevant fields could be
neglected then the curves QB(L) would intersect at the fixed point Qc. As apparent
in figure 3 this is clearly not the case and corrections to scaling must be taken into
account.

Recall that for the 3D-Ising model the fixed point value is Qc = 0.623 [37] and
that the exponent of the correlation length has the value ν = 0.630 [35]. We have
attempted to fit all our MC data with equation (4.2). If all the parameters in the
RHS of equation (4.2) are kept free such an ambitious fit turns out to be impossible.
Various other less satisfactory strategies can be considered however.

• Fixing βc = 1/0.04917, yi = −θ/ν = −0.84 and leaving free all the other
parameters one finds a fit better than 1 per cent and Qc = 0.63 ± 0.01, ν ∼
0.66 ± 0.03.

• Conversely, fixing Qc = 0.623 and θ = 0.53 one obtains βc = 1/0.04918 and
ν ∼ 0.63 ± 0.03.

The variations of QB(L) as a function of β for the different volumes is shown in
figure 3. Although there is considerable spread in the intersection points due to
correction-to-scaling contributions, the corresponding values of Qc are close to the
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Figure 3. Variation of QB(L) as a function of the inverse temperature β
for the different volumes considered in [31]. From top to bottom V/σ3 =
40000, 20000, 10000, and 5000 respectively. The symbols are the MC data and
the lines are the fits obtained by means of equation (4.2).

Figure 4. Variations of ln〈δM2〉 at T ∗
c (L) as a function of lnL. The slope of the

linear least square fit is 2β/ν = 1.04.

Ising value Qc = 0.623 and permit to rule out mean field behavior (i.e. Qc = 0.457
[38]).

Further support for Ising criticality is provided by the behavior of 〈δM2〉 at
T ∗

c (L). According to the scaling hypothesis (3.6) it should scale as L2β/ν with system
size. From the slope of the curve displayed in figure 4 one obtains β/ν = 0.52 in
accord with the 3D Ising value (0.517) and in clear contrast with the classical value 1.

In summary, our fss analysis leads to an estimate of the critical exponents ν
and β/ν and the Binder cumulant Qc based on the sole knowledge of the critical
temperature and the renormalization exponent θ. Within the numerical uncertainties
these values are compatible with Ising-like criticality. Our conclusion is that the
RPM, as ordinary neutral fluids, belongs to the universality class of the Ising model.

A complete discussion of our MC data is out of the scope of the present paper
and can be found in [31]. For completeness I give below the values obtained for
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the critical temperature, chemical potentials and densities (the critical pressure is
largely unknown):

• T ?
c = 0.04917 ± 0.00002,

• ρ?
c = 0.080 ± 0.005,

• µ?
c = −13.600 ± 0.005.

Figure 5. Variations of the total specific heat at constant volume CV/V and
the contribution Cµ/V with temperature along the locus χNNN = 0 at volumes
V/σ3 = 5000, 10000, 20000, and 40000 (from left to right).

4.2. The specific heat

The revised scaling theory of Rehr and Mermin which is the framework of our fss
analysis is however not the most general scaling theory which can be proposed for a
fluid system lacking the “particle-hole” symmetry. Its main weakness, as recognized
already by Rehr and Mermin [23], Yang and Yang [39], and more recently by Fisher
and co-workers [40–42], is that it assumes the analyticity of the chemical potential at
coexistence µ(T ) at the critical point. The more general scaling assumption should
yield singularities for both µ(T ) and p(T ) as T ∗ → T ∗

c . Let us examine the effects of
these singularities on the behavior of the specific heat capacity at constant volume
CV. In the two phase region it can be rewritten as [39]

CV = V T
∂2p

∂T 2

∣∣∣∣∣
V

− NT
∂2µ

∂T 2

∣∣∣∣∣
V

= Cp + Cµ , (4.3)

where Cp (not to be confused with the specific heat capacity at constant pressure)
and Cµ (not to be confused with the specific heat capacity at constant chemical
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potential) denote the two contributions to CV. I stress that, in equation (4.3) p(T )
and µ(T ) denote the pressure and the chemical potential at coexistence. The formula
can be used for any density ρg(T ) < ρ < ρl(T ) within the two phase region (ρg(T )
and ρl(T ) being the densities of the gas and the liquid at coexistence respectively).
In the revised scaling theory only Cp diverges as |T ∗ − T ∗

c |
−α whereas one expects a

divergence of both Cp and Cµ (both as |T ∗−T ∗
c |

−α). In figure 5 I display the curves
Cµ(T ) and CV(T ) along the locus

χNNN ∝
〈
(N − 〈N〉)3

〉
= 0, (4.4)

for the four volumes considered in our last MC simulations [31]. Although the peak
positions shift correctly as ∝ L−1/ν with system size, in accord with fss theory [18,19],
there is no detectable scaling of the heights of the peaks which should scale as Lα/ν

with L. These observations corroborate similar results obtained by Valleau and
Torrie [43,44]. In particular Cµ does not show any anomaly which should challenge
the use of equations (3.1) for the scaling fields. A possible explanation for the non
singular behavior of CV(T ) is that the amplitude of the singular term in CV(T ) is
small in the RPM and that the specific heat is dominated by its regular part. Note
however that the peak heights in CV(T )/V would scale, assuming Ising value for α
only by a factor 2α/ν ∼ 1.12 when doubling the linear dimensions of the system. It is
possible that such a small effect is not detectable within the statistical uncertainties
of our calculations.

5. Conclusion

In this paper which resumes my talk at the Lviv NATO workshop I have described
recent attempts to elucidate the nature of the critical behavior of the RPM model
for ionic fluids, prototype of a system governed by long range Coulomb interactions
by means of MC simulations. After endeavor over more than a decade we have
now reached a point where we can claim confidently that the RPM belongs to the
same universality class as the 3D Ising model. The critical values of non-universal
quantities such as the temperature and the chemical potential were established with
a high accuracy whereas the uncertainties on the critical density are more significant,
and the critical pressure is unknown.

The behavior of the constant volume specific heat gives no indication of the
expected Lα/ν scaling of the peak height within the range of system sizes considered
in the most recent simulations. Recent investigations of Camp and co-workers [45]
where differences in the behavior of CV in the canonical and the GC ensemble are
reported have emphasized this problem. At the moment it is difficult to explain this
unexpected behavior of the specific heat.

I have only discussed the properties of the continuous version of the RPM. The
phase diagram of the various lattice versions of the model is in fact more complex
[46,47] and was not described here due to a lack of place. I have also excluded
from my presentation assymetric versions, either in charge or/and in size, of the
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continuum or lattice versions of the primitive model. The interested reader should
consult recent works of Panagiotopoulos et al. [48–50] and de Pablo et al. [51–53].
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Моделювання методом Монте Карло критичних

властивостей примітивної моделі електролітів

Ж.-М.Кайоль

Лабораторія теоретичної фізики, Університет Парижу XI, Орсей,
Франція

Отримано 16 серпня 2004 р., в остаточному вигляді –
25 серпня 2004 р.

Представлені результати моделювання методом Монте Карло кри-
тичної точки примітивної моделі електролітів. Розглянуто тільки

неперервну версію моделі. Аналіз скінченомірного скейлінгу, що

базується на процедурі Брюса-Вілдінга дає критичні індекси, які

узгоджуються з класом універсальної тривимірної моделі Ізінга.
Відмічено аномалію в скейлінговій поведінці питомої теплоємності.

Ключові слова: примітивна модель, іонна критичність,
моделювання методом Монте Карло

PACS: 05.70.Jk, 05.10.-a, 64.70.Fx, 61.20.-p
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