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We present a systematic study of the thermodynamic properties of a poly-
disperse fluid mixture. The size of the particles, σ , is assumed to be dis-
tributed according to a continuous distribution function fΣ(σ) , for which
we have chosen a Γ -distribution. The interatomic potentials are given by
a hard core repulsion plus an adjacent attractive tail in the form of a square-
well or a Yukawa potential; for the size-dependence of the attraction strength
we have assumed different models. The properties of the mixture are cal-
culated using the optimized random phase approximation (ORPA), a ther-
modynamic perturbation theory which is known to give reliable results in
the case of simple liquids. To take into account polydispersity we com-
bine the ORPA with the orthogonal decomposition technique where all
σ -dependent functions (i.e., the correlation functions and the interatomic
potentials) are expanded in terms of orthogonal polynomials pi(σ) associ-
ated with the weight function fΣ(σ) .
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1. Introduction
For the past years considerable effort has been devoted to the concepts that make

it possible to determine structural and thermodynamic properties of polydisperse
fluid mixtures [1]. Certainly enough, a very important reason for these activities lies
in the fact that suspensions of mesoscopic particles (with diameters ranging from
1 µm to 1 nm), as they are often realized in colloidal suspensions, are in general
– as a consequence of their production process – polydisperse. This means that
the properties of the particles (size, interatomic potentials, etc.) are continuously
distributed according to a distribution function. Such colloidal suspensions play a
fundamental role in our every day life: ink, milk, as well as fog and smoke being
only a few examples. Further, they are of great biological importance and have vast
industrial applications [2].
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The first concepts of describing the structural and thermodynamic properties of
polydisperse systems date back to the late 1970s [3,4]. In subsequent contributions,
the concept of polydispersity was cast in a mathematically rigorous form by Salacuse
and Stell [5,6] and by Briano and Glandt [7] in the 1980s. Within this framework such
systems are viewed as mixtures with formally infinite number of components, each
of them characterized by a continuous index X, which replaces the discrete index i
in a mixture with a finite number of components. The most convenient choice for X
in the systems of spherically symmetric particles is the size of the particles, σ. The
amount of particles of size σ in the polydisperse mixture is then determined from a
continuous, positive, and normalized size-distribution function fΣ(σ) which replaces
the discrete set of concentrations in a mixture with a finite number of components.

The frameworks proposed in recent years in order to describe the properties of
polydisperse mixtures using the tools of statistical mechanics were developed by
merging this concept for polydispersity with standard liquid state theories that are
known to be successful for simple liquids and their mixtures [8]: (i) On the one hand,
benefit was taken from the availability of analytic solutions for a certain class of mod-
el systems, such as hard spheres (HS), adhesive hard spheres, hard sphere Yukawa,
or charged hard sphere systems [4,9–14]. Generalized to polydisperse mixtures these
models are called truncatable free energy models [1]. Their thermodynamic proper-
ties can be expressed by a limited number of generalized moments of the distribution
function which permits to determine the phase diagram [13,14]. (ii) On the other
hand, standard liquid state theories, such as integral-equations techniques or per-
turbation theories, have been successfully generalized to polydisperse mixtures, thus
opening access to the systems with arbitrary interactions [15–17]. Again, the struc-
ture and thermodynamic properties can be rather easily calculated. However, the
solution of the coexistence equations to determine phase diagrams is – due to the
numerical complexity of the problem – still out of reach [18,19].

In this contribution we present a systematic study of the thermodynamic prop-
erties of a polydisperse mixture of particles interacting via square-well (SW) and
hard sphere Yukawa (HSY) potentials. In both cases, the repulsive part of the inter-
actions are represented by simple hard spheres, a fact which substantially facilitates
– without loss of generality – the calculations. The size of the particles is distributed
according to a Γ- (or Schulz-) distribution [20]. For the size-dependence of the inter-
action strength (i.e. potential amplitude) we assume different relations. In particular,
we want to study the effect of polydispersity on the thermodynamic properties of the
system: these are calculated via the optimized random phase approximation (ORPA)
[21], a thermodynamic perturbation theory that has proven to give reliable results
for one- and two-component systems [22,23]. Generalization of this concept to the
polydisperse case was recently presented in [17], where the ORPA was merged with
a very efficient concept proposed by Lado [16], the so-called orthogonal decomposi-
tion technique. The basic idea of the latter concept is to decompose all σ-dependent
functions, in particular, the correlation functions and the interatomic potentials, in
terms of a set of orthogonal polynomials associated with the distribution functions
fΣ(σ).
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Since the determination of the phase diagram for the two model systems consid-
ered in this contribution is out of reach, we have taken reference – when “locating”
states of systems – to the phase diagram of the corresponding one-component sys-
tem. It can be considered as a particular polydisperse mixture with an infinitely
sharp distribution function, i.e. fΣ(σ) = δ(σ − σ̄), σ̄ being the mean value (or first
moment) of σ.

We have calculated the isothermal compressibility, the virial pressure, and the
free energy and have studied the effect of polydispersity on these properties for
different densities and temperatures of the system.

The paper is organized as follows: in the subsequent section we summarize the
theoretical basis of the study (i.e. the systems and the ORPA). In section III we
present our investigations on the effect of polydispersity on thermodynamic proper-
ties of the systems. The paper is closed with concluding remarks.

2. Theory

In what follows we introduce the systems we have investigated and briefly sum-
marize those expressions that are required in order to calculate the structure and
the thermodynamic properties of a polydisperse mixture within the framework of
the ORPA. For a more extensive presentation of the formalism we refer the reader
to [17].

2.1. The systems

Our approach to the investigation of the properties of a polydisperse system is
based on the concept introduced by Salacuse and Stell [5,6], where such a mixture
is defined as a “system in which each particle is uniquely associated with a value of
some characteristic parameter X, distributed according to a probability distribution
function fX(x); X is a continuous random variable”. Here, as in many other appli-
cations, we have chosen the random variable X to be the diameter of the particles,
σ, which is distributed according to a normalized, positive size-distribution function
fΣ(σ). In case of non-ambiguity, this function will be denoted in the following as
f(σ). The fraction of particles with diameter σ′ε[σ, σ + dσ] is, therefore, given by
f(σ)dσ; the system is characterized by a number density ρ and a temperature T
with β = (kBT )−1.

The (spherically symmetric) pair potentials acting between particles of size σ1

and σ2 and separated by a distance r are denoted by Φ(r; σ1, σ2). Here we consider
only hard-core potentials, i.e. Φ(r; σ1, σ2) can be split into a repulsive HS reference
part Φ0(r; σi, σj) and a perturbation part Φ1(r; σi, σj),

Φ(r; σ1, σ2) = Φ0(r; σ1, σ2) + Φ1(r; σ1, σ2). (1)

In the following we will use indices “0” and “1” for the properties related to the refer-
ence and to the perturbation part. The HS potentials Φ0(r; σ1, σ2) are characterized
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by additive diameters (Lorentz-rule), d(σ1, σ2), i.e.,

d(σ1, σ2) =
1

2
[d(σ1, σ1) + d(σ2, σ2)] (2)

with d(σ, σ) = σ. The structural and thermodynamic properties of the reference
system are explicitly known within the Percus-Yevick (PY) approximation [4].

For the attractive tail in Φ(r; σ1, σ2) we have considered two model interactions
that are frequently used in liquid state physics: the SW and the HSY potential.

The SW potential is given by

βΦ(r; σ1, σ2) =




∞ r � d(σ1, σ2),

−ε(σ1, σ2) σ(σ1, σ2) < r � λ(σ1, σ2)d(σ1, σ2),

0 λ(σ1, σ2)d(σ1, σ2) < r,

(3)

here, the ε(σ1, σ2) are the parameters for the well-depth and the λ(σ1, σ2) charac-
terize the range of the well. This parametrization permits us to take into account –
independently from each other – polydispersity in particle size, interaction strength,
and potential range with distribution functions f(σ), fE(σ), and fΛ(σ).

The HSY potential is given by

βΦ(r; σ1, σ2) =

{ ∞ r � d(σ1, σ2),

−K(σ1,σ2)
r

exp{−z(σ1, σ2) [r − d(σ1, σ2)]} d(σ1, σ2) < r,
(4)

the K(σ1, σ2) being the contact values and the z(σ1, σ2) being the screening lengths,
distributed according to fK(σ) and fz(σ).

For simplicity we assume the particle diameter σ to be distributed according to
a Γ- (or Schulz-)distribution [20],

f(σ) =

(
α + 1

σ̄

)α+1
σαe−(α+1)σ/σ̄

Γ(α + 1)
, (5)

where σ̄ is the mean diameter and α is a positive parameter; it is related to the poly-
dispersity index, I, via I = (α+2)/(α+1). The Γ-distribution, being frequently used
to describe polydisperse fluids, has the attractive feature that the orthogonal poly-
nomials pi(σ) associated with the Γ-distribution are known explicitly (see below):

they are proportional to the associated Laguerre polynomials L
(α)
i (x),

pi(σ) =

[
i!Γ(α + 1)

Γ(i + α + 1)

]1/2

L
(α)
i

[
(α + 1)

σ

σ̄

]
i = 0, 1, . . . . (6)

Further, for the moments of this distribution, mi =
∫ ∞
0

dσf(σ)σi, closed expressions
can be presented (see, for instance, [18]); in particular, the third moment, m3, is
related to the packing fraction, η, via
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η =
π

6
ρm3 =

π

6
ρ

∫ ∞

0

f(σ)σ3dσ =
π

6
ρσ̄3 (α + 2)(α + 3)

(α + 1)2
. (7)

In figure 1 we have depicted the Γ-distribution function for four different α-values.
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Figure 1. Γ-distribution function f 0(σ∗) as function of σ∗ = σ/σ̄ for four different
α-values as labeled – c.f. equation (5)

2.2. The optimized random phase approximation for the polydisperse case

The ORPA for a polydisperse liquid mixture is based on the generalized Ornstein-
Zernike (OZ) equation

h(r12; σ1, σ2) = c(r12; σ1, σ2) + ρ

∫ ∞

0

dσ3f(σ3)

∫
dr3c(r13; σ1, σ3)h(r32; σ3, σ2), (8)

where the c(r; σ1, σ2) and the h(r; σ1, σ2) are the direct and total correlation func-
tions, respectively. These correlation functions are split – similar as the potential
[cf. (1)] – into their respective reference and perturbation part, e.g. c(r; σ1, σ2) =
c0(r; σ1, σ2) + c1(r; σ1, σ2), etc. We further introduce the pair distribution functions
(PDFs), g(r; σ1, σ2) = h(r; σ1, σ2) + 1.

The OZ equation is supplemented by the random phase (RPA) closure relation

c(r; σ1, σ2) = c0(r; σ1, σ2) − βΦ1(r; σ1, σ2), (9)

or equivalently,

c1(r; σ1, σ2) = −βΦ1(r; σ1, σ2), d(σ1, σ2) < r, (10)

and the core condition (optimization criterion),

g(r; σ1, σ2) = 0, r < d(σ1, σ2). (11)

305



S.Leroch, D.Gottwald, G.Kahl

Using the orthogonal expansion technique proposed by Lado [16], we introduce
orthogonal polynomials pi(σ) that are associated with the distribution function f(σ),
i.e. ∫ ∞

0

dσf(σ)pi(σ)pj(σ) = δij i, j = 0, 1, . . . . (12)

δij is the Kronecker-delta. Starting from p0(σ) = 1, the polynomials can be construct-
ed – in case they are not known explicitly – via a Gram-Schmidt orthogonalization
procedure. All size-dependent functions, x(r; σ) and y(r; σ1, σ2), are expanded in
terms of these polynomials, i.e.,

x(r; σ) =
∞∑

j=0

xj(r)pj(σ), y(r; σ1, σ2) =
∞∑

i,j=0

yij(r)pi(σ1)pj(σ2), (13)

with the coefficient functions

xi(r) =

∫ ∞

0

dσf(σ)x(r; σ)pi(σ), (14)

yij(r) =

∫ ∞

0

dσ1dσ2 f(σ1)f(σ2)y(r; σ1, σ2)pi(σ1)pj(σ2). (15)

Truncating the expansions in (13) at some suitably chosen value n, the coefficient
functions xi(r) and yij(r) are most conveniently calculated in practical applications
via a Gaussian quadrature algorithm, using the set of n roots, {σk;n, k = 1, . . . , n}, of
the polynomial pn(σ). Detailed numerical studies have shown (for details we refer the
reader to [17,18]), that n = 5 is a sufficiently large value to truncate the expansions
and simultaneously maintaining a high accuracy for the results.

To be more specific, we can then represent the direct correlation functions of the
polydisperse system, c(r; σ1, σ2), via

c(r; σ1, σ2) =

∞∑
i,j=0

cij(r)pi(σ1)pj(σ2) (16)

similar relations hold for the g(r; σ1, σ2) and the h(r; σ1, σ2).
It is now convenient to collect the coefficient functions of the correlation functions

to matrices, e.g., Cij = cij(r), and similar relations for the hij(r) and gij(r). Further
we use the tilde for functions in q-space. We also introduce the coefficient functions
for the static structure factor of the HS reference system, S0;ij(q); they are given by
S0;ij(q) = 1 + ρh̃0;ij(q) and are collected to a matrix S0(q).

As also outlined in detail in [17], one can show that the solution of the OZ
equation along with the ORPA closure relation (9), (10), and (11) is equivalent to
minimizing the functional

F [C1] =
1

2(2π)3

∫
dq

{
Tr

[
ρC̃1(q)S0(q)

]
+ ln

[
det

(
1 − ρC̃1(q)S0(q)

)]}
(17)
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with respect to variations of the C1;ij(r) inside the core. In the above equation 1 is
the unit matrix and “Tr” denotes the trace of a matrix. For technical and numerical
details of the solution of the ORPA we refer the reader to [17].

2.3. Thermodynamic properties

Once the ORPA has been solved, several thermodynamic properties can be easily
calculated from closed expressions; for the virial pressure P v and the isothermal
compressibility χT they are given by

βP v

ρ
= 1 − 2

3
πβρ

∑
l,m

∫ ∞

0

drr3dΦlm(r)

dr
glm(r), (18)

1

ρkBTχT
=

(
∂βP c

∂ρ

)
T

= 1 − ρc̃00(q = 0), (19)

where P c is the compressibility pressure.
Within the ORPA and using the coupling constant formalism [16], one can derive

for the Helmholtz free energy A the expression

βA = βA0 + βAHTA + βAORPA, (20)

where A0 is the free energy of the polydisperse HS reference system [4] and the other
two contributions are found to be

βAHTA = 2πNρ
∑
l,m

∫ ∞

0

drr2Φ1;lm(r)g0;lm(r), (21)

βAORPA = −N

ρ
F [C1], (22)

N is the total number of particles of all species and V (required below) is the volume
of the system.

Following the route of Høye and Stell [25] in order to calculate the chemical
potential in a one-component system for the ORPA (or the mean spherical approxi-
mation), we could derive an explicit expression for the chemical potential of particles
of size σ, µ(σ), as follows: we have first generalized their expressions for the µi of
a mixture with a finite number of components M and a set of concentrations {ci},
and have then made the transition to a polydisperse mixture, replacing the ci by
f(σ). We finally obtain – for details see [18] – the following expression:

βµ(σ) = βµid(σ) + βµ0;ex(σ) − ρ

∫
dσ′f(σ′)c̃1(q = 0; σ, σ′) +

1

2
c1(r = 0; σ, σ), (23)

or, in terms of the coefficient functions,
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βµi = βµid;i + βµ0;ex;i − ρc̃0i;1(q = 0) +
1

2
cii;1(r = 0). (24)

Index “id” refers to the ideal gas contribution, index “ex;0” to the excess (over ideal
gas) contribution of the HS reference system.

3. Results

3.1. Polydisperse square-well mixture

Using the parametrization (3) for the SW interaction we have used the following
relation between the well-depth of ε(σ1, σ2) and the particle size:

ε(σ1, σ2) =
√

ε(σ1, σ1)ε(σ2, σ2) = ε̄e[z(σ1−σ̄)/2]e[z(σ2−σ̄)/2] . (25)

For the well-range we put λ(σ1, σ2) ≡ 1.5, i.e. a size independent constant. Relation
(25) guarantees that the Berthelot rule [8,12] is satisfied for the interatomic strength.
Note that the above equation induces a distribution function for the well-depth
fE(σ). For the parameter z in (25) we have chosen z = 0, 1, and 2: for z = 0, i.e.,
all potentials have – irrespective of the particle diameter – the same attraction, the
system is polydisperse only in size, while for z = 1 and 2 our model shows both size-
and amplitude-polydispersity.

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

ρ∗

0,9

1

1,1

1,2

1,3

t

B
SP

Figure 2. Phase diagram of the monodisperse SW system, i.e. f(σ) = δ(σ − σ̄),
calculated within the ORPA: dotted line – spinodal, full line – binodal. The two
dot-dashed lines for t = 1.12 and t = 1.25 denote the isotherms along which
the trends in the thermodynamic properties in the following figures have been
investigated.

In figure 2 we show the phase diagram (in terms of the binodal and the spinodal)
of the corresponding one-component system [i.e. f(σ) = δ(σ− σ̄)]; this case has been
realized by α = 1000 which leads to a very sharp Γ-distribution (c.f. figure 1). Density
is measured in units of ρ∗ = ρσ̄3. The two dot-dashed, horizontal lines indicate those
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reduced temperatures t (t = kBT/ε̄) along which the trends in the thermodynamic
properties have been investigated. In the following figures of the thermodynamic
properties the two vertical dotted lines locate ρ∗-values on the spinodal of the one-
component system for the corresponding isotherms (t = 1.25 and t = 1.12).

As we first look at the characteristic trends in these figures we observe, that, in
particular, if the amplitude-polydispersity is strong (z = 2) and the α-values are
rather small, the ORPA breaks down close to the spinodal of the one-component
case. This can be understood as follows: firstly, as α becomes smaller, the tails of
the distribution functions extend to larger σ-values and hence the probability to find
large (and therefore strongly attractive) particles in the mixture increases; secondly,
the high z-value introduces an additional strong attraction for the large particles
even though they might only represent a small fraction of the particles in the system.
The combination of these two trends leads to a breakdown of the ORPA since the
basic idea of a perturbation of reasonable size due to the square-well is no longer
justified. We point out that a similar scenario was encountered for the polydisperse
HSY mixture within the MSA [13].

In figures 3 and 4 we show the reduced isothermal compressibility χ∗
T = ρkBTχT

for the two t-values considered, for z = 0, 1, and 2, and for different degrees of
polydispersity; note that α = 1000 represents the one-component case. First we
observe the general tendency that the curves are shifted to smaller ρ-values as the
polydispersity is increased. Furthermore, we see that size-polydispersity leads to a
small shift to lower values in the χT-curves as the distribution becomes broader. If
we take into account both size- and amplitude-polydispersity, the compressibility
curves show larger differences with respect to the monodisperse case. The trends
outlined above hold for both temperatures considered.

In figures 5 and 6 we show the trends in the virial pressure as density and poly-
dispersity varies. Again we find qualitatively similar trends for the different tem-
peratures. Size-polydispersity alone leaves the pressure in the gas phase unaffected;
decreasing α, monotonically increases the pressure, in particular for high densities.
As we introduce amplitude-polydispersity, we observe an effect in the pressure of
the gas phase while in the fluid phase we also note a decrease in the pressure values
for the intermediate densities. In addition, for the case z = 2 the pressure can also
become negative.

Further, we have also calculated the pressure directly by differentiating the free
energy A with respect to the density, P a. Comparison with the virial pressure gives
some insight into the thermodynamic consistency of the ORPA. As space is limited,
we have not displayed the curves here and rather discuss the results: the trends
observed for P v and P a are qualitatively similar. For small and intermediate densities
the internal consistency is very satisfactory, while for larger densities differences of
the order of several percent are observed. We point out that this situation is similar
to the one observed in simple one-component fluids.

Finally in figure 7 we display the results for the free energy for t = 1.25; for t =
1.12 we observe, again, a qualitatively similar behaviour. Polydispersity in size alone
leads to an increase in the free energy for rather high densities only, leaving the small-
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Figure 3. Reduced dimensionless isothermal compressibility χ∗
T = ρkBTχT for

the polydisperse SW mixture (as defined in the text) for a reduced temperature
t = 1.25; α-values as indicated, z = 0, 1, and 2 (from top to bottom).
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Figure 4. Reduced dimensionless isothermal compressibility χ∗
T = ρkBTχT for

the polydisperse SW mixture (as defined in the text) for a reduced temperature
t = 1.12; α-values as indicated, z = 0, 1, and 2 (from top to bottom).
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Figure 5. Reduced virial pressure P v,∗ = βP v for the polydisperse SW mixture
(as defined in the text) for a reduced temperature t = 1.25; α-values as indicated,
z = 0, 1, and 2 (from top to bottom).
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Figure 6. Reduced virial pressure P v,∗ = βP v for the polydisperse SW mixture
(as defined in the text) for a reduced temperature t = 1.12; α-values as indicated,
z = 0, 1, and 2 (from top to bottom).
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Figure 7. Reduced free energy A+ = βA/V for the polydisperse SW mixture (as
defined in the text) for a reduced temperature t = 1.25; α-values as indicated,
z = 0, 1 and 2 (from top to bottom).
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and intermediate-density range unaffected. As polydispersity in amplitude comes
into play, we observe a decrease as α becomes smaller which leads – in particular
for intermediate and large densities – to very pronounced effects for z = 2.

3.2. Polydisperse hard sphere Yukawa mixture

We now proceed to the results of the polydisperse HSY mixture. For the size-
dependence of the parameters of the interatomic potential (4) we have chosen the
following relations which were motivated by the van der Waals study in [24]

K(σ1, σ2) =
√

K(σ1, σ1)K(σ2, σ2) = K̄
σa

1

σ̄a−1

σa
2

σ̄a−1

√
z(σ1, σ1)z(σ2, σ2) (26)

z(σ1, σ2) =
√

z(σ1, σ1)z(σ2, σ2). (27)

In contrast to the SW case, disentanglement of size- and amplitude-polydispersity is
with this parametrization no longer possible due to the exponent in (4). z has been
put to 1.8, the reduced temperature t is given by t = kBT/K̄, again ρ∗ = ρσ̄3.

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

ρ∗

1,8

1,9

2

2,1

2,2

t

B
SP

Figure 8. Phase diagram of the monodisperse HSY system, i.e. f(σ) = δ(σ − σ̄),
calculated within the ORPA: dotted line – spinodal, full line – binodal. The two
dot-dashed lines for t = 1.98 and t = 2.16 denote the isotherms along which
the trends in the thermodynamic properties in the following figures have been
investigated.

In figure 8 we show the phase diagram (in terms of the binodal and the spin-
odal) of the corresponding one-component system [i.e. f(σ) = δ(σ − σ̄)]. The two
dot-dashed, horizontal lines indicate those reduced temperatures t (t = kBT/ε̄) along
which the trends in the thermodynamic properties have been investigated. In the
following figures of the thermodynamic properties the two vertical dotted lines lo-
cate ρ∗-values on the spinodal of the one-component system for the corresponding
isotherms (t = 2.16 and t = 1.98).

In figures 9 and 10 we show the results for the isothermal compressibility. With
respect to the SW system, we see for a = 0 (amplitude-polydispersity via the expo-
nent) an enormous effect on the compressibility: going from the one-component case
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Figure 9. Reduced dimensionless isothermal compressibility χ∗
T = ρkBTχT for

the polydisperse HSY mixture (as defined in the text) for a reduced temperature
t = 2.16; α-values as indicated, a = 0, and 1 (left and right).
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Figure 10. Reduced dimensionless isothermal compressibility χ∗
T = ρkBTχT for

the polydisperse HSY mixture (as defined in the text) for a reduced temperature
t = 2.16; α-values as indicated, a = 0, and 1 (left and right).

to α = 20 we observe a decrease by a factor of three (in particular for t = 1.98).
This strong effect is somewhat reduced as we introduce an additional amplitude-
polydispersity via the contact value. We also observe that including polydispersity
in the HSY case always makes the compressibility smaller, while we have found
opposite tendencies in the SW system.

For the virial pressure P v, shown in figures 11 and 12, we observe, that already
a = 0 (i.e. amplitude-polydispersity via the exponent) leads to a strong effect on the
pressure even for intermediate densities (while in the SW case only the high-density
data were affected). Again, including amplitude-polydispersity via the contact value,
brings the curves for different α-values rather close together, while in the SW system
we observe the opposite tendency. The region where the pressure becomes negative
is now larger than in the SW system. For the internal consistency between P v and
P a we have found that it is now slightly worse than in the SW case.

Finally, we investigate the free energy curves in figure 13 for the reduced tem-
perature t = 2.16. Again, we observe that an additional amplitude-polydispersity
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Figure 11. Reduced virial pressure P v,∗ = βP v for the polydisperse HSY mixture
(as defined in the text) for a reduced temperature t = 2.16; α-values as indicated,
a = 0 and 1 (from top to bottom).
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Figure 12. Reduced virial pressure P v,∗ = βP v for the polydisperse HSY mixture
(as defined in the text) for a reduced temperature t = 1.98; α-values as indicated,
a = 0 and 1 (from top to bottom).

brings the curves for different α’s rather together with respect to the case that only
amplitude-polydispersity via the exponent is present.

4. Conclusions

We have presented a systematic study of the effect of size- and amplitude-
polydispersity on the thermodynamic properties (isothermal compressibility, pres-
sure, and free energy) in a polydisperse fluid mixture. Assuming a Γ-distribution
for the size of the particles and different relations between the size and the inter-
action strength of the particles of the system we have studied mixtures where the
particles interact via a SW or a HSY potential. The liquid state theory we have
used is a merger of the ORPA and the orthogonal decomposition technique, where
the size dependent functions (i.e. correlation functions and interatomic potentials)
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Figure 13. Reduced free energy A+ = βA/V for the polydisperse HSY mixture
(as defined in the text) for a reduced temperature t = 2.16; α-values as indicated,
a = 0 and 1 (left and right).

are decomposed into the orthogonal polynomials associated with the distribution
function. Taking the one-component system as a particular polydisperse reference
system, we could point out the effect of size- and amplitude-polydispersity on the
thermodynamic properties as functions of the density; in these studies we have cho-
sen two particular temperatures. We have observed different tendencies in the SW
and in the HSY systems which are obviously due to the longer range of the latter
one. Similar to the MSA-based truncatable free energy models we have found that a
distribution function, such as the Γ-distribution with an unlimited carrier in σ-space
must lead to a breakdown of the ORPA when the distribution has exceeded some
value of broadness: then, even though with a very small probability, large particles
with a very strong attraction are encountered in the mixture and the premise of the
weak perturbative character underlying the concept of the ORPA is violated.
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Термодинамічні властивості полідисперсних рідких
сумішей

С.Лєрох, Д.Готвальд, Г.Каль

Центр обчислювальних досліджень матеріалів
та Інститут теоретичної фізики, Технічний університет Відня
Віднер Гауптштрасе 8-10, A-1040 Відень, Австрія

Отримано 9 березня 2004 р.

Представлено систематичне дослідження термодинамічних власти-
востей полідисперсної рідкої суміші. Розмір частинок σ вважається
розподіленим згідно з неперервною функцією розподілу fΣ(σ) , для
якої ми вибрали Γ -розподіл. Міжатомні потенціали задаються від-
штовхуванням типу твердих кульок та приєднаним притяганням у
формі квадратної ями або потенціалу Юкави; для залежності сили
притягання від розміру частинок ми приймаємо різні моделі. Влас-
тивості суміші розраховуються за допомогою оптимізованого на-
ближення хаотичних фаз (ОНХФ), термодинамічної теорії збурень,
яка, як відомо, дає надійні результати для випадку простих рідин.
З метою врахування полідисперсності ми комбінуємо ОНХФ з тех-
нікою ортогонального розкладу, в якій всі σ -залежні функції (тобто
кореляційні функції та міжатомні потенціали) розкладаються за ор-
тогональними поліномами pi(σ) , пов’язаними з ваговими функція-
ми fΣ(σ) .

Ключові слова: рідка суміш, полідисперсність, колоїди, фазова
діаграма, структура рідин

PACS: 05.70.Ce, 61.20.Gy, 82.70.Dd
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