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Mapping between two models of etching process
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We consider two models for the etching processes using numerical simulations based on cellular-automata
discrete-lattice approach. In one model we use a uniform etching probability for each surface site. In another
model the etching probability at a given site depends on the local environment of this site. In contrast to the
first model we have now a non-local description of the surface evolution. It is natural to consider the following
question: is this non-locality sufficient to induce new physics? To answer this question is the main goal of
the paper. We show that there exists an equivalence between the two models. This means that the non-local
model gives results similar to the local one provided we use an effective value of the etching probability.
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1. Introduction

There is observed an increasing interest not only to the surface growth but also to the etching
models. The interest to the growth models is stimulated largely by the molecular beam epitaxy
technique [1]. Etching has received much less attention and mainly in relation to corrosion problems
because of their economical significance [2]. A renewed interest in etching comes from the fact that
it can be considered as a method of obtaining sophisticated, nanostructured materials by means of a
sacrificial surface disaggregation of the bulk material or by anodic dissolution of oxydes [3]. The dy-
namics of the simple growth and etching models has already been studied using the scaling concepts
[4]. The same type of reasoning has been used in the study of crossover phenomena in the surface
dynamics. Thus, a lot of insight in the surface dynamics comes from the scaling concepts [5–8].

In parallel to this kind of approach, mainly due to physicists, it is interesting to analyze the
surface properties from the point of view of chemical-physicists that have developed an enormous
literature in the domain of corrosion. The problematic issue is then: to what extent the classical
models based on chemical kinetics, i.e., on a mean field approach, can be used in order to analyze
the simulation results in a quantitative way. We work on this line and we have shown that in the case
of very simple models the interpretation of basic quantities as the mean position of the corrosion
front requires a sophisticated analysis [9]. Here we consider two etching models. The first model,
model A, assumes that the etching probability of a given site depends on the number of nearest
neighbours in the solution. The physical idea behind this model is that one effect of the aggressive
species present in the solution is to avoid the formation of tips on the surface, therefore we mimic
a solution having a strong smoothing character. We compare the results of model A with those of
a model B in which the etching property is the same on each site. From a statistical mechanics
point of view we have to deal with two different kinds of models: one is non-local while the second
one is purely local. It is then reasonable to inquire whether these two models are qualitatively
different or not. In order to answer this question we will try to find if model B is appropriate in
order to predict the results for model A, i.e., we are looking for some simple relation between to
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models to fit their results. As we shall see we may consider that the model B can be a mean field
approximation of model A.

In the following section we describe the two models more in detail. We define the matching
condition for the simpler model. We describe our simulation and compare the results of two models
for the matching condition and conclude the paper in the last section.

2. Two models

In both models we assume that the etched material disappears in a surface reaction. Working
at a mesoscopic level we avoid a lot of details associated with atomic level and introduce a simple lat-
tice representation of the reaction (for more details and justification see [9,10]).

Figure 1. The histograms of the probability
function f(nS) for the models A (clean bars)
and B (shaded bars) and for the different pa-
rameters of Pms and Pdis.

Thus, we consider that the lattice sites can be
occupied by 3 species. The first species is the
bulk material of the etched block M . The sec-
ond species is the etching solution S. By con-
struction of the models the sites M and S can-
not be nearest neighbours in terms of the lat-
tice connectivity. They are separated by a layer
of surface reactive sites R. The surface reac-
tive sites have at least one nearest neighbour
occupied by the etching solution and they are
immediately exposed to etching components of
the solution. Thus they can undergo the disso-
lution reaction:

R → S (1)

which amounts to converting the etched site R
to an S site. Now the nearest neighbours of
the etched R site have an S site as the nearest
neighbour (nn). If these sites happen to be of
type M they are immediately converted to the
R sites according to:

M(nn of S) → R(nn of S). (2)

Both models share the above scheme. How-
ever, in model A we assume that this probabi-
lity is proportional to the number nS of S sites
being nearest neighbours of the site tested for
etching. We write it as follows:

PR→S = Pms

nS

Cn
, (3)

where Cn is the coordination number for the
lattice i. e. the number of nearest neighbours
for each lattice site. Thus Pms is the highest
possible probability of the R site destruction
which happens if the site forms a disconnected
island completely surrounded by solution sites
and Pms/Cn is the lowest possible probability
of destruction which happens when the R site
has only one S site as its nearest neighbour [10].

In model B the probability of reaction 1 is
a constant that we denote Pdis. In particular it
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does not depend on the geometrical situation of the etched site. We write it as follows:

PR→S = Pdis . (4)

Our purpose is to find out whether model A with a linear dependence of PR→S on nS can be sim-
plified to the case of model B where PR→S is constant. To this end we propose a relation converting
the parameter Pms of model A to the parameter Pdis of model B. Actually, Pdis can be presented
as an averaged etching probability observed during simulation of model A for the given Pms:

Pdis =

Nc
∑

nS=1

f(nS)Pms

nS

Cn
, (5)

where f(nS) – is a probability to find one of the reactive sites connected to nS solution sites. The
distributions f(nS) are extracted from the simulations of model A for the different parameters of
Pms = 0.05, 0.20 and 0.80 (figure 1). Using these distributions the corresponding values of Pdis are
calculated (table 1). The probability distributions f(nS) for model B for the adjusted parameters
of Pdis can been seen in figure 1 as well. From the situations sketched in figure 1 we easily learn
that the singular topmost sites (corners) will be more readily etched than the bottommost valley
sites leading to a roughness reduction compared to model B.

Table 1. The correspondence between some values of parameters of Pms and Pdis.

Pms Pdis Pms/Pdis

0.05 0.0189 2.647
0.20 0.0753 2.656
0.80 0.2964 2.699

3. Simulation details

Using conception of cellular automata technique a two-dimensional lattice with 4 or von Neu-
mann connectivity [11] is simulated. According to above mentioned we determine three types of
lattice sites: reactive (surface) sites (R), material (M) and solution sites (S). The simulation box
is of the size of Nx ×Ny and the periodical boundary conditions are applied in the x-direction. At
every simulation step Ns surface sites can be etched with the probability PR→S defined according
to the model considered. Due to the site destructions the island formations can be observed. The
numbers and the sizes of the islands formed during simulations are collected to build histograms of
size distribution. Each simulation run takes from 200000 to 700000 steps depending on the charac-
teristic to be calculated and/or on the parameter of Pms (Pdis). The obtained results are averaged
through the number of simulation runs. Due to the time consumption of calculations this number
depends on the maximum number of simulation steps in each run. For instance, when the number
of simulation steps is 700000 only 50 runs are used, while in the case of the number of simulation
steps equal to 200000 we use 300 runs to average our results.

To estimate the absolute values of the obtained characteristics, the averaging through the time
in the saturation regime is made, which allows us to achieve a satisfactory accuracy of the most of
our results. To collect the islands appearing during simulation and to extract the data about them
as well as to remove them from the simulation box, the Hoshen-Kopelman algorithm is applied [12].
This algorithm is quite consumptive, but rather general, thus it is efficient for an arbitrary system
where intensive islands production is considered. Moreover, this is very convenient in calculating
the island sizes which is needed in our study.
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4. Results

To compare the model A and model B two types of roughness are calculated from simulations.
The first one is presented as the ratio of the number of surface sites Ns to the number of surface
sites of the plain surface:

r(t) =
Ns(t)

Nx
. (6)

Another type of roughness describes the width of the etched front and it is expressed as the root
of mean-square deviation of the front position hi from its average position h(t):

σ(t) =

[

1

Nx

Nx
∑

i=1

(hi − h(t))2

]1/2

. (7)

Figure 2. Variation of the roughness r versus the number of simulation steps for the models A
and B.

Figure 3. The evolution of the root of mean square deviation from the average position, σ, for
the models A and B.

In figure 2 the roughness r(t) is presented for the models A and B. For both models this
characteristic saturates rapidly after 2000 simulation steps. As it was expected for the model B the
higher values of roughness r are observed. The more detailed data for the roughness r are collected
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in table 2. Also the ratio of the roughness obtained for model B to the roughness obtained from
model A is calculated for the parameters considered. It is noticed that this ratio is constant. This
result is obtained with a quite high accuracy which is less than 0.4%. An increase of the parameter
Pms and the corresponding parameter Pdis leads to a decrease of the roughness r, although in the
case of model B this decrease is faster.

Table 2. The roughness r for the models A and B.

Pms rA rB rB/rA

0.05 1.447 ± 0.003 1.691 ± 0.004 1.169 ± 0.004
0.20 1.403 ± 0.003 1.636 ± 0.004 1.166 ± 0.003
0.80 1.237 ± 0.002 1.443 ± 0.003 1.166 ± 0.003

A width of the front σ cannot be calculated with the same accuracy as for r due to the big
oscillations of this characteristic around its average value (figure 3). Also a remarkable difference
in time needed for σ saturation is observed for different parameters of Pms and Pdis. The lower is
the value of Pms (Pdis), the larger is the time to get a saturation for σ. Therefore, for Pms = 0.05
(Pdis = 0.0189) the maximum number of steps of simulations are taken equal to 700000 while for
Pms = 0.80 (Pdis = 0.2964) it is set to 200000. In table 3 one can find the average values of σ
with the corresponding ratios between them. Taking into account the accuracies for the calculated
ratios which are around 5% it can be concluded that the ratio σB/σA is constant and greater than
one as well as for rB/rA. The obtained data indicate that the front width for model B is slightly
larger than in the case of model A. Also similar to the roughness r, the front width σ decreases
when Pms increases.

Table 3. The root of the mean square deviation from the average position σ for the models A
and B.

Pms σA σB σB/σA

0.05 11.7 ± 0.4 12.6 ± 0.4 1.08 ± 0.06
0.20 11.1 ± 0.3 12.3 ± 0.3 1.10 ± 0.04
0.80 9.3 ± 0.3 10.5 ± 0.2 1.13 ± 0.05

Except roughnesses, a change of the mean position of the etched front with time can be obtained
from simulations using the following expression:

h(t) =
1

Nx

Nx
∑

i=1

hi . (8)

At large t when a stationary regime is observed h(t) depends linearly on t. A slope of such a depen-
dence describes the dynamics of the etching process and represents a rate of material etching. In
table 4 one can see the values of the slopes for the models A and B. The ratio hB/hA between them
is not constant, but if one plots these data (figure 4), a strict linear dependence on Pms will be ob-
served.

Table 4. The slope of the mean position of the corrosion front for the models A and B.

Pms hA/t hB/t hB/hA

0.05 0.0306 ± 0.0001 0.0404 ± 0.0002 1.320 ± 0.008
0.20 0.1182 ± 0.0002 0.1524 ± 0.0002 1.289 ± 0.003
0.80 0.4168 ± 0.0003 0.4899 ± 0.0003 1.175 ± 0.002
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Figure 4. The ratio of the slopes of the mean
position of the corrosion front for the models A
and B.

Figure 5. Normalized distribution functions of
island sizes formed during simulations for the
model A (closed squares and solid lines) and the
model B (open squares and dashed lines).

A standard deviation of the linear fit in this
case is less than 0.002 and the linearization
parameters are derived with an accuracy less
than 0.3%. It is worth noting that the slope for
the model B is larger than for the model A. It
means that a yield per one simulation step for
the model B is higher than for the model A and
the etching process is faster. Also an increase
of the parameter Pms (Pdis) leads to the accel-
eration of this process for the both models.

Finally, the normalized distributions of is-
land sizes formed during simulations are pre-
sented in figure 5. The only maximum of these
characteristics appear at the size equal to one.
For the model B this maximum is lower than
for the model A, therefore more islands with
larger sizes can be produced during simula-
tion of the model B. This result could be pre-
dicted from the roughness. The higher are the
roughnesses r and σ the higher is the prob-
ability of the large islands production. Since
the roughness decreases with Pms increasing,
the number of the islands with sizes larger
than one decreases. Thus one can see a rise
of the maximum at the distributions consid-
ered. The points presented in figure 5 are ap-
proximated by functions in the form of y =
a/xb. The power b for the given parameters
of models A and B vary within the range of
b = 1.9 − 3.0.

5. Conclusions

In conclusion we can say that the two mod-
els describe the etching process of a solid ma-
terial and show qualitatively the same results.
From the results one can see that the sec-
ond model is sufficient to describe the surface
roughness and qualitatively the non-locality of
the first model plays a minor role in the rough-
ness formation. Also, it is worth noting that
for the both models a saturation regime for σ
is observed at long times.
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Отримано 16 жовтня 2007 р.

Використовуючи комп’ютерне моделювання на основi комiркового автомату, дослiджено двi гратко-
вi моделi, якi описують процеси витравлювання. В однiй моделi використано однакову iмовiрнiсть

витравлювання для всiх поверхневих вузлiв. В iншiй моделi iмовiрнiсть витравлювання вузла зале-
жить вiд оточення даного вузла. Таким чином, на противагу першiй моделi, в другiй моделi присутнiй
нелокальний опис розвитку поверхнi. Тому природно розглянути наступне питання: чи ця нелокаль-
нiсть є достатньою, щоб спричинити якiсно новi результати? Вiдповiдь на дане запитання є основ-
ною метою цiєї роботи. Показано, що iснує еквiвалентнiсть мiж двома розглянутими моделями. Це

значить, що нелокальна модель приводить до якiсно подiбних результатiв, що i локальна модель,
яка описується певною ефективною iмовiрнiстю витравлювання.

Ключовi слова: рiст поверхнi, витравлювання, середньо-польовий опис
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