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Ab initio Monte Carlo computations were carried out on HoO dimer system. By introducing the energy parti-
tioning scheme that we have developed recently, ab initio calculated HoO-H3O interaction can be analyzed
from the viewpoint of atom-atom interaction. The electronic polarization caused by the interaction and its
temperature dependence are also discussed. To our best knowledge, this is the first report on the thermal
distribution of electronic distortion energy assigned to a molecule.
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1. Introduction

In aqueous solution, a strong intermolecular interaction exists between water molecules. It is
the hydrogen-bonding that characterizes the structure of the liquid. In order to understand the
nature of this ubiquitous liquid, a huge number of molecular simulations have been performed so
far. Most of them are based on empirically derived intermolecular potential energy functions, which
is essentially the sum of Coulombic interaction and repulsive interaction.

Of course we know very well that these functions can reproduce various properties of liquid
water as a result. But how can we trust these empirical functions from the viewpoint of the first
principle? In other words, can we construct the intermolecular potential energy functions from
the first principle without any empirical adjustments? The electronic structure of a molecule is
considerably changed when the molecule interacts with other species. Even if its electronic wave
function is obtained, it is numerical description of the molecule, and is often far from our chemical
sense or chemical intuition. Thus, a bridge between the intuition and modern computational results
described by wave functions is needed.

One of the attempts to meet such demands is to partition the total energy of a molecule as
follows,

E=Y"E+)Y Epy. (1)
I

J>I

where E is energy contribution from atom I in the molecule (one-center part), and Ej; represents
energy contribution from the interaction between two atoms, I and J (two-center part). The energy
partitioning has been well recognized in semi-empirical method. But it is not the case for ab initio
molecular theory since the treatment of many-body contribution is not trivial. The way to partition
ab initio total energy has unlimited number of possibilities, and there is no unique way of defining
E; and Ejj. Ichikawa et al. proposed a partitioning scheme which describes bond-dissociation limit
correctly [1]. Mayer reported somewhat different scheme [2]. Nakai has proposed another type of
partitioning scheme called bond-EDA [3,4].

Recently we have proposed another scheme [5]. As mentioned above, there are innumerable
possibilities to introduce energy partitioning scheme for the electronic energy, but it should be
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emphasized that our method provides physically reasonable behavior for a wide range of interaction
potential energy, and the intermolecular interaction is treated equivalently with intramolecular
interaction. We also found that the components of molecular interaction in aqueous solution closely
resemble those obtained by widely used empirical intermolecular potential functions such as TIP3P.

In the present study, we combined this partitioning scheme with ab initio Monte Carlo tech-
nique. The water-water interaction is undoubtably the fundamental interaction in condensed phase,
and the minimum-size molecular pairs having hydrogen-bonding. Since ab initio molecular orbital
calculations should be repeated at each step of the Monte Carlo simulations, together with the
partitioning analysis, the computational costs is no small matter even for this small system. The
present computation can offer a new view of the intermolecular interaction based on the site-site
description, completely from the first principle. It should be emphasized that the electronic dis-
tortion energy assigned to a molecule can be computed only by introducing energy partitioning
scheme. To our best knowledge, this is the first report on the thermal distribution of such distortion
energy.

2. Method and computational details

2.1. Energy partitioning scheme

We shall start with the total energy of the system,

Z1Z
E= ZPabhba+ Zab|cd { Py Py — PaCPbd} 3 IéuJ’ (2)

abcd I<J

where hgp is the matrix element of the one-electron hamiltonian over the basis orbitals {xa},

1_, Zc
Mo = <b —5V —XC:— a>. (3)

rc
ab Z f10a1 be ) (4)

P, is the “density matrix”

where f; = 2 for closed shell system. T'wo electron integrals are defined as follows,

1

mXZ@)Xd(Q)- (5)

(abled) = / drydrax; (1)xe(1)

Note that all the centers of the basis functions are located on any one of the atoms composing the
molecule. Using the symmetry of the two electron integrals of the basis sets in real numbers, we
finally reach the following expression,

5= X (e e a5
a,bel 2 acl b
+ Z Zab|cd { PPy — ;W}’
a,ce€l bd
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As shown in the previous study [5], the present expression provides a physically reasonable behavior
for the energy components. It is also noted that the following reduction to one-center contribution
of this expressions,

_ 1
E1:E1+§ZELM (7)
J(>I)

comes down to the energy defined in EDA [6].

In the present study, we are interested in the intermolecular interaction. Based on the present
partitioning procedure, we can define the interaction between a water (W1 consisting of three
atoms, O1, H1 and H1’), and the other water (W2 including 02, H2 and H2'), as follows:

By = Z Eyy = Eoi—o2+ Eoi—n2 + Eoi—n2 + Eai—o2 + Exi—ne
IEWL, JEW?2

+  Eui—uz + Ear—o2 + Eav—n2 + Eav—nor. (8)

The remains of the total energy express the locally defined energy of each molecule.

EWVL — Z Er+ Z FEiy,

IeW1 J>I(I,JEW1)
EV? = N E/+ >  Ep. (9)
IeW2 J>I(I,JEW2)

When the molecules interact with each other, the change in the energy of the molecule is evaluated
with respect to that of an isolated water molecule, Eyyg.

E}, = EX — Ewo, where X =W1 or W2. (10)
Note, however, that the label (W1 or W2) is arbitrary and there is no physical meaning to disti-
nguish the water molecules in the actual Monte Carlo step. The following quantity is much more
practically useful,

Epol = Eyel + Epet = EV' + EW2 — 2By . (11)
By considering the total energy of the dimer system (EW!*W2) the interaction energy computed
by the standard Hartree-Fock procedure (AE) is related to these quantities.

AE = EV'W2 —2Bwo = Eint + Fpol - (12)

It should be remembered that Ep))(ol represents the deviation of electronic distribution in individual
water molecules from their isolated situation, and does not include contribution from the inter-
action between them after this electronic change. Fji,; expresses the interaction energy between
the electronically altered molecules. Note that both of E, and Ei, are not constant values but
depend on the relative configuration of water. The distribution functions of these quantities are
computed as described below.

2.2. Ab initio Monte Carlo computations

Standard metropolis algorithm was employed to generate the water-dimer configurations. At
each step, the energy was computed by ab initio molecular orbital theory at the level of Hartree-
Fock method. 6-31G(d,p) basis sets were used throughout the study. The geometry of each water
molecule is fixed at the optimized one (Rop=0.943 A and ZHOH = 105.968°) since we are focusing
on the intermolecular interaction. If the molecular geometry is flexible, the partitioned energy
assigned to a specific atom can be attributed both to the change of the molecular geometry and
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to the change in the configuration between the molecules. All the computational procedures were
carried out with program code GAMESS [7] modified by us.

Sampling was collected until the sufficient ensemble was obtained (~ 2.0-10°) at the temperature
of 50 K, 100 K and 150 K, respectively. The intermolecular interaction becomes too weak at 200 K
or higher. The entropic contribution overcomes the interaction between the molecules and they
begin to dissociate each other. This phenomena can be easily controlled by introducing a biased
sampling technique. However, in the present study, we are interested in behaviors at relatively low
temperature, because of the connection to the standard ab initio molecular orbital calculations
corresponding to 0 K.

The maximum of the obtained distribution is located around 3.0 A of O- - - O distance (Roo) [8]
and around 0.0 radian of the smallest intermolecular O--- O—H angle (f) at any temperatures (not
shown here). Namely, the oxygen atom and one of the four O-H bonds are in co-linear position.
It is well known that the potential energy minimum of water dimer is this linear configuration.
Meanwhile, the broadening of the distributions depends on the temperature. The distribution is
strictly localized 2.7 A< Roo < 3.2 A and 6 < 0.5 at 50 K, while it expands to 2.5 A< Roo < 3.7
A and 0 < 1.0 at 150 K.

3. Results and discussion

3.1. The hydrogen-bonding and its atomic level partitioning
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Figure 1. Energy distribution function of the in- Figure 2. Radial distribution function of the in-
termolecular O- - - H pairs. termolecular O- - - H pairs.

As described in equation (8), there are four interacting O---H pairs in the dimer system.
Figure 1 shows the energy distribution function (EDF) of intermolecular O---H pairs. At 50 K,
two peaks are found around —53 kcal/mol and —23 kcal/mol. In view of the radial distribution
function (RDF) of the O- - - H pairs in this system (figure 2), the stronger interaction (—53 kcal/mol)
can be attributed to the direct interacting hydrogen-bonding pair. It is noted that the classical
Coulombic interaction is estimated to —51 kcal/mol when two point charges (—0.8 and +0.4;
typical effective charge of oxygen and hydrogen atom in water, respectively) separated from 2.1 A
are assumed (see the first peak position in figure 2). In the similar manner, when the distance
is 3.4 A, corresponding to the second peak in figure 2, the interaction energy is estimated about
—31 kcal/mol. At the minimum energy structure of water dimers, the distances of remaining three
O- - - H pairs are about 3.4 A (~ -30 kcal/mol) and 3.9 A (~ —27 kcal/mol). While they are slightly
lower in energy than the weaker interaction shown in figure 1, they are reasonably close [9]. In
summary, the interaction energy given by equation (6) is very similar to the classical estimation
although the present partitioning scheme deals with the interaction described in the electronic
wave function of the system.
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As the temperature raises, the distribution of the hydrogen-bonding interaction shown in fig-
ure 1 becomes broader and the peak position shifts to the right-hand side, say weaker interaction,
which is consistent with the depression of the first peak in the RDF. On the contrary, the distributi-
ons of the weaker interaction energy (other three O- - - H pairs) do not show significant temperature
dependence. At the low temperature of 50 K, the two peaks found both in EDF and in RDF are
separated from each other, indicating that the hydrogen atom making hydrogen-bonding keeps the
bonding through to the end. In other words, the configuration of the molecules is extremely localized
near the potential energy minimum and the ‘roles’ of the atoms are rarely exchanged. As increas-
ing the temperature, the two peaks in EDF and RDF begin to connect with each other, and the
hydrogen atom making the hydrogen-bonding can be replaced with other atoms much more easily.

One should notice that this interaction energy of O---H pair (~ —50 kcal/mol and ~ —30
kcal/mol) is much stronger than standard value of hydrogen-bonding energy (~ —5 kcal/mol). It
is obvious that the another contribution is necessary to complete the hydrogen-boning.

Figure 3 shows the EDF of intermolecu-
lar O---O pair. Strong repulsive interaction 0.4

appears around 60 kcal/mol. This is again I — 0K |
consistent with the estimation of the classi-

cal Coulombic energy (~ +70 kcal/mol) when 03f |7TTIOK 1
assuming the effective charges separated from I i

3.0A (O---O distance). Temperature depen-
dence of the distribution is similar to the O- - - H
pairs: the peak shifts to the left-hand side and
its height is depressed as the temperature in- o1
creases. Thus, it might be possible to draw

the following understandings: the hydrogen-

bonding between water molecules can be essen- 0.0, 5’0
tially described by the classical Coulombic in-

teraction. Relatively great repulsive interaction
between O- - - O and great attractive interaction Figure 3. Energy distribution function of the in-
between O- - - H compensate each other, and the termolecular O- - - O pairs.

resultant energy of the hydrogen-boding is one-

digit smaller, say about —5kcal/mol. This would be the reason why an empirically derived simple
point-charge-type model works surprisingly well to describe various properties of water.

Probability
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3.2. Interaction energy between water molecules

Figure 4 shows the interaction energies be-

tween the water molecules, AE and Ei. AE is 0.4

the interaction energy between the molecules, || E_(50K) |
which is commonly recognized within the ~~"E, (100K)

framework of ab initio molecular orbital the- 0.3 1 |—E,_ (150K) 1
ory. As mentioned above, the energy is found L™ AE(50K) .; i
around —b5kcal/mol. Since the left-hand-side z TTTAEA00K) ;'l AE

edge of this distribution corresponds to the bot- _":g 02| ——Ar(50K) | ' i
tom of the potential energy of the interaction, & - H 8
the minimum limit is absolutely fixed and the o1l ; ' |
distribution becomes narrower as the tempera- i

ture decreases. The width of the distributions I il
are directly related to the width of the effec- 0.0

tive interaction potential well, in which all the 2 2
relative orientations are integrated over. Energy/keal mo™

Eing 18 negatively greff\ter b.y about 3kcal/ mol Figure 4. Distribution of Fin, and AFE of the
than AF because the distortion energy of the

electron clouds (Epe) is not included in Eiy.

water dimer.
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The width of the distribution is slightly wider than that of Ej,. Note that the fineness of the
horizontal scale is much smaller than the above figures. The overall character of the distribution
and its temperature dependence are similar both in AE and Ej;.

3.3. Distortion and polarization energy

Eq1 is plotted in figure 5, in which two sep-

arated peaks are clearly recognized at any tem- 0.2

perature. One is located around —1 keal/mol 30K

and the other is around +4 kcal/mol. It should ~ 100K

be noted that this component is related to the T — 150K 1

electronic distortion (relaxation) with respect
to that of isolated molecule, as well as to the
number of electrons belonging to the molecule.
If the number of the electrons is conserved with
the same geometry, the distortion always raises i/ .
the energy positively, due to the variational pri- i L\
nciple for the wave function. If the number of 7Y A\
the electron is not conserved, it can contribute 0.0 ‘ temmooll

to either increase or decrease of the energy. i
The two peaks crossing the zero energy suggest Energy/kcal mol”
that the electron is more or less interchanged
between the molecules through the hydrogen-
bonding. Actually, the effective charge assigned
to the proton donor water is about —0.03|e|
(Mulliken or Lowdin population), and EW of this water (equation 9) is lower than that of isolated
molecules. In other words, the left-hand side peak in the figure corresponds to the proton donor
water while that in the right-hand side is the proton acceptor. At 50 K these peaks are completely
separated from each other, indicating that the roles of the water molecules in the hydrogen-bonding
is always fixed. However, as temperature increases, the two peaks begin to overlap, and the water
molecules can act as both the donor or acceptor in the hydrogen-bonding. It is also noteworthy
to point out that the midpoint of these centers is not located at 0.0 kcal/mol but at nearly 1.5
kcal/mol. Because of the variational principle for the electronic structure, the distortion energy of
the overall dimer system should be positive.

Probability

Figure 5. Distribution of E,o of the water di-
mer.

4. Conclusions

In the present study, hydrogen-bonding, which is the representative intermolecular interaction
in aqueous solution phase, is investigated from the viewpoint of locally defined energy. By using the
energy partitioning scheme combined with the Monte Carlo method, intermolecular interaction,
the electronic distortion of a water molecule and their distribution were discussed. We would like
to emphasize that the combination used in this study enables us to compute the distribution of
Ein¢ and Epq for the first time, while the standard ab initio calculated Monte Carlo simulation
can only compute the distribution of AE.

We found that the hydrogen-bonding between water molecules seems to be understood essen-
tially as the Coulombic interaction. In other words, this traditional view of the interaction can be
obtained from the first principle bridged by the energy partitioning scheme. The present method
may be a useful tool for analyzing and systematic-understanding of the empirical potential energy
parameters.
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Po3pineHHs eHeprii B MDKMONIEKYNSPHUX NoTeHWianax: ab initio
MoHTte Kapno pocnipxeHHs aumepiB Boau

T.AmaHo?, X.CaTo?!, C.Cakakil?

1 dakynbTET MONIEKYNAPHOI iHXeHepil, yHiBepcuTeT, M. KioTo, AnoHis
2 dykyi IHCTUTYT DyHOAMEHTanbHOI xiMmii yHiBepcuTeT, M. KioTo, AnoHis

OTtpumaHo 5 nunHa 2007 p., B ocTaTo4dHOMY BUrnaai — 8 cepnHsa 2007 p.

BukoHaHi ab initio MoHTe Kapno po3spaxyHku ans HoO ammepHoi cuctemn. Beogsun po3pobneHy paHi-
e cxeMy po3aineHHs eHeprii, ab initio pospaxosaHa B3aemopnis HoO-H2O Moxe 6yTu npoaHanizoBaHa
3 TOYKM 30pYy aTOM-aTOMHOI B3aemogii. OBroBoploeTbCS eNekTPoHHAa Nnossipuaadis, 06yMoBieHa B3aeMo-
nieio, Ta ii TemnepartypHa 3anexHiCTb. 3 TO4KM 30py HALLUX BIAOMOCTEN, Lie € nepLue NoBiLOMIIEHHS NPO
TEPMIYHUIA PO3NOAIN eNeKTPOHHOI 3MiHW eHeprii, nepeaaHoi Mosiekysi.

Knio4oBi cnoBa: es1ekTpoHHa CTPYKTypa, PO3AISIEeHHS eHeprii, BoaHeBuii 38’30k, ab initio MoHTe Kapso

PACS: 02.70.Uu, 31.15.Ar, 31.15.Ne, 33.15.Fm, 34.20.Cf, 71.15.-m
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