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We develop a theory for dielectric, piezoelectric, and elastic properties of
partially deuterated (quenched disorder) crystals of Rochelle salt with tak-
ing into account the piezoelectric coupling. Results of numerical calcula-
tions are presented for a completely deuterated Rochelle salt and com-
pared with available experimental data. Isotopic effect is explored within
the mean crystal approximation, as well as within the developed theory
using different trial sets of the fitting parameters. Theory predictions are
given for the temperature and composition dependences of the calculated
characteristics for partially deuterated crystals.
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1. Introduction

Rochelle salt (double sodium-potassium tartrate NaKC4H4O6 · 4H2O) has two
Curie points. The ferroelectric phase exists in a rather narrow temperature interval
from TC1 = 255 K to TC2 = 297 K (TC1 = 251 K, TC2 = 308 K in deuterated crys-
tals dRs). Spontaneous polarization is directed along the a axis; it is accompanied
by a spontaneous shear strain ε4. Crystal structure is monoclinic C2

2(P21) in the
ferroelectric phase and orthorhombic D3

2(P212121) in the paraelectric phases.

According to the classical concepts, based on structural data of Frazer et al. [1],
the phase transitions in Rochelle salt are pure order-disorder ones. The ferroelec-
tric polarization used to be attributed to rotation of hydroxyl groups of tartrate
complexes OH5 between two equilibrium positions (see [2]). The actual situation is
far more complicated, and the mechanism of the phase transitions in Rochelle salt
remains rather obscure. More recent neutron scattering data indicate that the OH5

hydroxyl groups do not perform any orientational motion and therefore play little
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role in the phase transition, at least in deuterated Rochelle salt [3,4]. Furthermore,
experimental facts suggest that the phase transitions in Rochelle salt are displacive
[5,6] ones or of mixed order-disorder and displacive type [7,8]. According to X-ray
scattering experiments [9], spontaneous polarization in Rochelle salt is created by
cooperative displacements of tartrate molecules and water molecules in a frame of
K and Na ions. Recently Hlinka, Petzelt et al. [10], based on their X-ray diffraction
data, proposed that it is the order-disorder motion of OH9 and OH10 groups, cou-
pled with the displacive vibrations of OH8 groups that is responsible for the phase
transitions in Rochelle salt, as well as for the spontaneous polarization. So far it has
not been definitively established the motion of which atoms is the order-disorder
one.

The most successful microscopic model for Rochelle salt was proposed by Mitsui
in [11]. It is based on the assumption that ordering structure elements move in
asymmetric double well potentials. The dipoles form two co-penetrating sublattices,
with the local potentials which are the mirror reflections of each other. Therefore,
even though the dipoles in each sublattice are always ordered (non-zero sublattice
polarization), there may be no total polarization at certain temperatures. Later
[12,13] the model was reformulated in terms of pseudospin operators; the model itself
and its modifications were used for a description of Rs, dRs, RbHSO4, NH4HSO4 and
other crystals. It should be mentioned here that crystals of RbHSO4 undergo a single
second order phase transition into the ferroelectric phase, whereas in NH4HSO4 the
ferroelectric phase exists in a narrow temperature interval but, in contrast to the
situation with Rs, the lower phase transition is of the first order.

Thermodynamic characteristics of the Mitsui model within the mean field ap-
proximation (MFA) were calculated in [13–15]. Tunneling of ordering structure ele-
ments was taken into account in [14,15]. Relaxation phenomena in the crystals de-
scribed by the Mitsui model were explored within the stochastic Glauber model [16]
in [17] and Bloch equation method in [18]. Within the MFA the relaxation times for
Rs and dRs were calculated. It should be noted that in the mentioned papers only
one or very few physical characteristics of Rs and dRs were fitted to experimental da-
ta, whereas the other characteristics were not considered. Naturally, such a method
cannot prove the adequacy of the Mitsui model to Rochelle salt crystals, since it is
quite simple to get a good fit to experiment, when only selected characteristics are
calculated, and a sufficient number of the free parameters is invoked.

Ferroelectric crystals RbHSO4 and NH4HSO4 within the Mitsui model were stud-
ied in [19–21]. In these crystals the phase transitions are associated with ordering
of sulphate groups (see [19]). Thermodynamic characteristics were calculated with-
in the MFA and two-particle appoximation and compared with experimental data.
Overall a fair description of the data was obtained for RbHSO4. As for NH4HSO4,
in [21] it was shown that within the MFA for the Mitsui model it is impossible to
describe the low-temperature phase transition in it. At the same time in [20] the
temperature curve of spontaneous polarization in NH4HSO4 was described, assuming
that certain interaction parameters are temperature dependent.

Possibility to describe several systems with different numbers of phase transitions
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within a Mitsui model indicates an importance of exploring the phase diagram of the
model. One of the first approximate phase diagrams was presented in [14]; tunneling
was not taken into account. A more precise phase diagram with zero tunneling was
constructed in [22]. Regions with three phase transitions were shown to exist. In
[22] a Mitsui model with tunneling was considered as well. Within the MFA it was
shown that with non-zero tunneling there are such values of the model parameters
when the system undergoes a low temperature first order transition and a high
temperature second order transition, with the ferroelectric phase in between, as
observed in NH4HSO4. The most thorough analysis of the phase diagram of the
Mitsui model was obtained in [23] within the MFA both with and without tunneling.

A more consistent attempt to describe the Rs, dRs and RbHSO4 crystals within
the Mitsui model was undertaken in [24–26]. The free energy, spontaneous polar-
ization, entropy, specific heat, static and dynamic dielectric permittivity (the latter
within the stochastic Glauber model) of the Mitsui model were calculated. For the
first time there have been found such values of the theory parameters which provid-
ed a more or less satisfactory description of several characteristics of Rs, dRs, and
RbHSO4. The remaining contradictions between theory and experiment and doubts
in reliability of some experimental data for Rs, dRs, and RbHSO4 were approached
in [27,28], where the fundamental dielectric dispersion in Rs, dRs, RbHSO4, and
RbH0.3D0.7SO4 was thoroughly examined, both theoretically and experimentally,
and the description of the experiment was much improved, especially for RbHSO4.
Recently a new approach to the fitting procedure for RbHSO4 type crystals was ap-
plied [22]. This approach was developed in [29–31] for the description of the KH2PO4

family ferroelectrics. It was shown that at choosing the values of the theory param-
eters it is crucial to obtain a good fit to the experimental data for the contribu-
tion of the ordering subsystem to the specific heat. Following this method, for the
RbHSO4 and RbH0.3D0.7SO4 a good description of all calculated characteristics was
obtained [22].

However, for Rs some qualitative discrepancies between theory and experiment
persisted. Thus, it was impossible to simultaneously fit the data for the spontaneous
polarization and static dielectric susceptibility; the temperature curves of polariza-
tion relaxation time and dynamic dielectric permittivity in the vicinity of the phase
transitions in Rs and dRs were qualitatively different from the experimental ones.
Method of fitting to the specific heat is useless here, because the specific heat pecu-
liarities at the Curie points in Rs crystals are very small, and no reliable experimental
data exist.

It should be noted (see also [32–34]) that the physical characteristics of Rs,
RbHSO4, and NH4HSO4 can be essentially influenced by tunneling of the ordering
structure units [14,15,17,35] and by their interaction with phonons [36–38]. Let us
note that in [17,35] the isotopic effect in Rs1−xdRsx was attributed to the changes in
tunneling only. In [38] a generalized pseudospin-phonon model of a partially deuter-
ated order-disorder type ferroelectrics with asymmetric double-well potential was
proposed and studied. Using a decoupling procedure for the Green’s functions, within
which the pseudospin-phonon interaction can be taken into account more consistent-
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ly than within the random phase approximation, the Green’s functions, longitudinal
dielectric susceptibility, and coupled pseudospin-phonon vibrations of Rs1−xdRsx

and N(H1−xDx)4H1−xDxSO4 ferroelectrics were calculated. Thermodynamic char-
acteristics of the systems were calculated within the mean field appoximation. No
numerical analysis of the results obtained in [38] was performed.

The origin of the remaining qualitative discrepancies between theory and exper-
iment for Rs and dRs was still unclear. Could it be that the MFA is a too poor ap-
proximation? The presence of chain fragments of ordering structure elements most
likely indicated the necessity of using a better approximation than the MFA. In
[39,40] a model of two chains of Ising spins moving in an asymmetric double well
potential was proposed; an interaction between the chains is taken into account
within the MFA, whereas the interactions between nearest neighbors within the
chains are taken into account exactly. In [41] the approach was further improved
by exact accounting for the interactions between the pair of chains. These improve-
ments were shown to “deform” the phase diagram (see [14,21]); temperature curve
of polarization at different values of the model parameters was explored.

Thus, the task to calculate the physical characteristics of the Mitsui model with-
in the two-particle cluster approximation appeared quite natural. It was fulfulled
in [42], where an original approach to the description of thermodynamic and dy-
namic characteristics of mixed order-disorder type ferroelectrics with asymmetric
double-well potential was proposed. Within the two-particle cluster approximation
for the short-range interactions and mean field approximation for the long-range
interactions, the thermodynamic potentials, static and dynamic Green’s functions
for annealed and quenched systems were calculated. The obtained expressions for
the thermodynamic and dynamic characteristics of Rs1−xdRsx, Rb(H1−xDx)SO4, and
N(H1−xDx)4H1−xDxSO4 crystals contained an increased number of the fitting param-
eters, which could potentially improve a description of experimental data, in particu-
lar for Rs, dRs, RbHSO4. However, this has not removed the above mentioned quali-
tative and quantitative discrepancies between theory and experiment for Rs and dRs.

This problem was recently solved by considering the piezoelectric properties of
Rs crystals. In [43–45] we modified the conventional Mitsui model for Rs by taking
into account the piezoelectric coupling between the ordering structure elements and
the shear strain ε4. It permitted us to calculate and obtain a good description of
experimental data for the elastic and piezoelectric characteristics of Rochelle salt, to
obtain dielectric permittivities of free and clamped crystals, and to properly describe
the temperature curves of relaxation times and dynamic dielectric permittivities near
the Curie points. In [45] the influence of shear stress σ4 on the physical characteristics
of Rochelle salt was studied.

In the present work we explore the temperature and composition dependences of
thermodynamic, dielectric, elastic, and piezoelectric characteristics of the Rs1−xdRsx

crystals. A disordered Mitsui model is considered with taking into account the piezo-
electric coupling between the ordering structure units and shear strain ε4. Calcula-
tions for the deuterated Rs within the model modified by piezoelectric effects have
been also presented for the first time.
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2. Thermodynamics of the system

Let us consider the behavior of a disordered (partially deuterated) piezoelectric
Rochelle salt crystal. So far it is unclear which structure elements of Rochelle salt
lattice play the role of ordering units in a phase transition. However, since there is a
certain (though rather weak) isotopic effect for the transition temperatures in these
crystals, we may assume that the order-disorder motion in the system somehow
involves the motion of hydrogens (protons or deuterons). We suppose that in mixed
(partially deuterated) crystals there are two interpenetrating subsystems of ordering
structure elements: one is associated with protons and the other with deuterons.

Calculations are performed within the Mitsui model with taking into account
the piezoelectric coupling. Then, we should introduce different constants for pair
interactions between the structure ordering units: 1) when both units are associated
with protons; 2) with deuterons; 3) when one unit is associated with a proton, while
the other with a deuteron. The model Hamiltonian then reads

H =
N

2
vcE0

44 ε
2
4 −Nve0

14E1 −
N

2
vχε0

11E
2
1 −

1

2

∑

qfα

q′f ′β

Rqq′(
αβ

ff ′
)Sz

qf(α)Sz
q′f ′(β)

−
∑

qfα

[∆fα − (µαE1 − 2ψ4αε4)]S
z
qf (α). (2.1)

Three first terms in (2.1) correspond to that part of elastic, piezoelectric, and elec-
tric energies, which is attributed to the heavy ions lattice and independent of the
arrangement of the ordering units (cE0

44 , e014, χ
ε0
11 are the “seed” elastic constant, co-

efficient of piezoelectric stress, and dielectric susceptibility, respectively); v is the
unit cell volume. The lattice strain ε4 and the “seed” constants are assumed to be
composition dependent and averaged over the crystal.

The fourth term describes a direct interaction between the ordering structure
units; Rqq′

(

αβ

11

)

= Rqq′

(

αβ

22

)

= Jqq′(αβ) and Rqq′

(

αβ

12

)

= Rqq′

(

αβ

21

)

= Kqq′(αβ) are
the potentials of interaction between the ordering units belonging to the same and
to different sublattices, respectively; indices f, f ′ = 1, 2 number the sublattices,
whereas α, β = p, d correspond to subsystems of ordering units associated with
protons (p) and deuterons (d). The fifth term is the energy associated with the
assymetry of the potential profile (∆1α = −∆2α = ∆α). The sixth and seventh
terms are the interaction of the ordering structure elements with external electric
field and internal field created by the piezoelectric coupling [43], µα is the effective
electric moment per unit cell.

The operator of the internal degrees of freedom Sz
qf(α) by which the state of the

ordering structure elements is described can be written in the following form

Sz
qf(α) = Xαα

qf S
z
qf ,

where

Xpp
qf =

(

1 0
0 0

)

, Xdd
qf =

(

0 0
0 1

)

, Xpp
qf +Xdd

qf = 1
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are the Hubbard operatores, obeying the following permutation relations
[

Xαβ
qf X

α′β′

q′f ′

]

=
[

Xαβ′

qf δβα′ −Xα′β
qf δβ′α

]

δff ′δqq′ .

Hereafter, the thermodynamic and dynamic characteristics of the considered
ferroelectric systems will be calculated within the mean field approximation. After
an identity transformation of the quasispin operators

Sz
qf (α) =

〈

Sz
qf(α)

〉

+
[

Sz
qf(α) −

〈

Sz
qf(α)

〉]

≡
1

2
η̄f(α) + ∆Sz

qf(α),

the initial Hamiltonian (2.1) can be presented as

Ĥ = U + Ĥ ′ + Ĥ0 (2.2)

where

U =
1

8

∑

q,f,α

q′f ′β

Rqq′

(

αβ

ff ′

)

η̄f (α)η̄f ′(β) +
N

2
vcE0

44 ε
2
4 −Nve0

14ε4E1 −
N

2
vχε0

11E
2
1 ,

Ĥ ′ = −
1

2

∑

q,f,α

q′f ′β

Rqq′

(

αβ

ff ′

)

∆Sz
qf(α)∆Sz

q′f ′(β),

Ĥ0 = −
∑

qfα

ε̄f(α)Sz
qf(α),

and ε̄f(α) is the local field acting on the quasispins associated with protons (p) or
deuterons (d) in the fth sublattice

ε̄1(p) =
1

2

∑

β

J0(pβ)η̄1(β) +
1

2

∑

β

K0(pβ)η̄2(β) + ∆p − 2ψ4pε4 + µpE1,

ε̄1(d) =
1

2

∑

α

J0(αd)η̄1(α) +
1

2

∑

α

K0(αd)η̄2(α) + ∆d − 2ψ4dε4 + µdE1,

ε̄2(p) =
1

2

∑

β

J0(pβ)η̄2(β) +
1

2

∑

β

K0(pβ)η̄1(β) − ∆p − 2ψ4pε4 + µpE1,

ε̄2(d) =
1

2

∑

α

J0(αd)η̄2(α) +
1

2

∑

α

K0(αd)η̄1(α) − ∆d − 2ψ4dε4 + µdE1 . (2.3)

In further calculations the term Ĥ ′ in the Hamiltonian will be neglected.
To obtain the observable quantities, we should perform both thermodynami-

cal and configurational (over sort configurations) averagings. We consider a case
of quenched disorder, when distribution of quasispins associated with protons or
deuterons over the lattice is fixed and temperature independent. Therefore, the
thermodynamical averaging refers to the spin degrees of freedom only. For instance,
for the single-particle distribution function one has

η̄f (α) =

〈

SpSz
qf(α)e−βĤ0

Sp e−βĤ0

〉

x

= 〈Xαα
qf tanh

1

2
βε̄f(α)〉x = xα tanh

1

2
βε̄f(α) (2.4)
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(xα is the concentration of the α – component).
Let us introduce new variables ξ̄(α) and σ̄(α):

ξ̄(p) =
1

2
[η̄1(p) + η̄2(p)] , ξ̄(d) =

1

2
[η̄1(d) + η̄2(d)] ,

σ̄(p) =
1

2
[η̄1(p) − η̄2(p)] , σ̄(d) =

1

2
[η̄1(d) − η̄2(d)] . (2.5)

Then the system (2.4) can be presented as

ξ̄(p) =
1

2
xp

{

tanh
1

2
[γ1 + δ1] + tanh

1

2
[γ1 − δ1]

}

= xp

sinh γ1

cosh γ1 + cosh δ1
,

ξ̄(d) =
1

2
xd

{

tanh
1

2
[γ2 + δ2] + tanh

1

2
[γ2 − δ2]

}

= xd

sinh γ2

cosh γ2 + cosh δ2
,

σ̄(p) =
1

2
xp

{

tanh
1

2
[γ1 + δ1] − tanh

1

2
[γ1 − δ1]

}

= xp

sinh δ1
cosh γ1 + cosh δ1

,

σ̄(d) =
1

2
xd

{

tanh
1

2
[γ2 + δ2] − tanh

1

2
[γ2 − δ2]

}

= xd

sinh δ2
cosh γ2 + cosh δ2

, (2.6)

where

γ1 =
R̃+(pp)

2T
ξ̄(p) +

R̃+(pd)

2T
ξ̄(d) −

2

T
ψ̃4pε4 +

µpE1

kT
,

δ1 = −
R̃−(pp)

2T
σ̄(p) −

R̃−(pd)

2T
σ̄(d) +

∆̃p

T
,

γ2 =
R̃+(pd)

2T
ξ̄(p) +

R̃+(dd)

2T
ξ̄(d) −

2

T
ψ̃4dε4 +

µdE1

kT
,

δ2 = −
R̃−(pd)

2T
σ̄(p) −

R̃−(dd)

2T
σ̄(d) +

∆̃d

T
,

and

R̃±(αβ) =
1

kB

[K0(αβ) ± J0(αβ)].

To calculate piezoelectric, elastic, dielectric characteristics of the mixed Rochelle
salt crystals we shall use the thermodynamic potential (calculated per one pair of
quasispins)

g1E(4) =
G1E(4)

NkB
=

= −v̄σ4ε4 +
1

2
v̄cE0

44 ε
2
4 − v̄e0

14ε4E1 −
1

2
v̄χε0

11E
2
1

+
1

4

(

R̃+(pp)x2
pξ

2(p) + R̃+(dd)x2
dξ

2(d) − R̃−(pp)x2
pσ

2(p) − R̃−(dd)x2
dσ

2(d)
)

+
1

2
R̃+(pd)xpxdξ(p)ξ(d)−

1

2
R̃−(pd)xpxdσ(p)σ(d) − 2(xp + xd)T ln 2

− Txp ln

(

cosh
γ1 + δ1

2
cosh

γ1 − δ1
2

)

− Txd ln

(

cosh
γ2 + δ2

2
cosh

γ2 − δ2
2

)

,

(2.7)
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(v̄ = v
kB

). From the conditions:

1

v̄

(

∂g1E

∂ε4

)

E1,σ4

= 0,
1

v̄

(

∂g1E

∂E1

)

σ4

= −P1

we obtain that

σ4 = cE0
44 ε4 − e014E1 + xp

ψ̃4p

v̄
2ξ(p) + xd

ψ̃4d

v̄
2ξ(d), (2.8)

P1 = e014ε4 + χε0
11E1 +

µp

v
xpξ(p) +

µd

v
xdξ(d). (2.9)

Using expressions (2.6) and (2.9), let us calculate the static dielectric susceptibil-
ity of mixed Rochell salt type crystal along its a-axis for the case of a mechanically
clamped system

χε
11(0) =

(

∂P1

∂E1

)

ε4

= χε0
11 +

µp

v
xp

(

∂ξ(p)

∂E1

)

ε4

+
µd

v
xd

(

∂ξ(d)

∂E1

)

ε4

=

= χε0
11 +

1

2T∆4

{

v̄
µ2

p

v2
xp(a0∆p1 + c0∆p3) + v̄

µ2
d

v2
xd(b0∆d2 + d0∆d4)

− v̄
µpµd

v2
xp(b0∆p2 + d0∆p4) − v̄

µpµd

v2
xd(a0∆d1 + c0∆d3)

}

. (2.10)

The notations used here are given in Appendix.
Similarly, for the coefficient of the piezoelectric stress we get

e14 =

(

∂P1

∂ε4

)

E1

= e014 +
µp

v

(

∂ξ(p)

∂ε4

)

E1

+
µd

v

(

∂ξ(d)

∂ε4

)

E1

=

= e014 −
1

T∆4

{ µp

v
ψ̃4pxp(a0∆p1 + c0∆p3) −

µd

v
ψ̃4pxd(a0∆d1 + c0∆d3)

+
µd

v
ψ̃4dxd(b0∆d2 + d0∆d4) −

µp

v
ψ̃4dxp(b0∆p2 + d0∆p4)

}

.

And from (2.8) and (2.6) we obtain an expression for the elastic constant of the
system at a constant electric field

cE44 =

(

∂σ4

∂ε4

)

E1

=

= cE0
44 +

4

v̄T∆4

{

ψ̃2
4pxp(a0∆p1 + c0∆p3) + ψ̃2

4dxd(b0∆d2 + d0∆d4)

− ψ̃4pψ̃4dxp(b0∆p2 + d0∆p4) − ψ̃4pψ̃4dxd(a0∆d1 + c0∆d3)
}

. (2.11)

The other piezoelectric (h14, d14, g14), dielectric (χσ
11) and elastic (cP44, s

E
44) character-

istics of disordered Rochelle salt type crystal can be obtained from the above found
quantities, using known thermodynamic relations.

To find the specific heat of the system we use the free energy equal to

f(4) = g1E(4) + v̄P1E1 + v̄σ4ε4. (2.12)
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Respectively, molar entropy of the crystal associated with its quasispin subsystem
is as follows:

S4 = −
R

2

(

∂f(4)

∂T

)

P1ε4

=

= R

{

(xp + xd) ln 2 +
xp

2
ln

(

cosh
1

2
(γ1 + δ1) cosh

1

2
(γ1 − δ1)

)

+
xd

2
ln

(

cosh
1

2
(γ2 + δ2) cosh

1

2
(γ2 − δ2)

)

−
xpγ1 sinh γ1 + xpδ1 sinh δ1

2(cosh γ1 + cosh δ1)
−
xdγ2 sinh γ2 + xdδ2 sinh δ2

2(cosh γ2 + cosh δ2)

}

,

where R is the gas constant. Molar specific heat of the quasispin subsystem is ob-
tained by numerical differentiation of entropy

∆Cσ
4 = T

(

dS4

dT

)

σ

. (2.13)

3. Relaxation dynamics in partially deuterated Rs

Dynamic dielectric characteristics of mixed ferroelectrics with the asymmetric
double well potential will be considered within the Glauber model [16]. Similarly to
[42,43] we obtain a system of equations for the single particle distribution functions
of quasispins

− ϕ
d

d t
ξ̄(p) = ξ̄(p) −

1

2
xp

[

tanh
1

2
(γ1 + δ1) + tanh

1

2
(γ1 − δ1)

]

,

− ϕ
d

d t
ξ̄(d) = ξ̄(d) −

1

2
xd

[

tanh
1

2
(γ2 + δ2) + tanh

1

2
(γ2 − δ2)

]

,

− ϕ
d

d t
σ̄(p) = σ̄(p) −

1

2
xp

[

tanh
1

2
(γ1 + δ1) − tanh

1

2
(γ1 − δ1)

]

,

− ϕ
d

d t
σ̄(d) = σ̄(d) −

1

2
xd

[

tanh
1

2
(γ2 + δ2) − tanh

1

2
(γ2 − δ2)

]

. (3.1)

The general form of the system (3.1) is quite complicated. Hereafter we shall restrict
our consideration to the small deviations from equilibrium. Then ξ̄(α), σ̄(α) and the
electric field E1 can be presented as sums of two terms each

ξ̄(α) = ξ̄0(α) + ξ̄t(α),

σ̄(α) = σ̄0(α) + σ̄t(α),

E1 = E10 + E1t. (3.2)

In the case of these small deviations, the expressions tanh(γi ± δi)/2 can be
expanded in ξ̄t(α), σ̄t(α), Et up to the linear terms in a quite wide temperature
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range. We obtain then systems of equations for the equilibrium functions (coinciding
with (2.6)) and for the time-dependent parts

− ϕ
d

d t
ξ̄t(p) = a10ξ̄t(p) + a20ξ̄t(d) + a30σ̄t(p) + a40σ̄t(d) − a00

µpEt

2kT
,

− ϕ
d

d t
ξ̄t(d) = b10ξ̄t(p) + b20ξ̄t(d) + b30σ̄t(p) + b40σ̄t(d) − b00

µdEt

2kT
,

− ϕ
d

d t
σ̄t(p) = c10ξ̄t(p) + c20ξ̄t(d) + c30σ̄t(p) + c40σ̄t(d) − c00

µpEt

2kT
,

− ϕ
d

d t
σ̄t(d) = d10ξ̄t(p) + d20ξ̄t(d) + d30σ̄t(p) + d40σ̄t(d) − d00

µdEt

2kT
, (3.3)

the quantities used here ai0, bi0, ci0, di0 (i = 0 − 3) are obtained from the given
in Appendix ai, bi, ci, di (i = 0 − 3) by changing ξ(p) → ξ0(p), ξ(d) → ξ0(d),
σ(p) → σ0(d), σ(d) → σ0(d).

In the case Et = 0 the system of equations (3.3) can be reduced to a single
differential equation for ξ̄t(p):

d(4) ξ̄t(p)

d t4
+
n1

ϕ

d(3) ξ̄t(p)

d t3
+
n2

ϕ2

d(2) ξ̄t(p)

d t2
+
n3

ϕ3

d ξ̄t(p)

d t
+
n4

ϕ4
ξ̄t(p) = 0. (3.4)

Here

n1 = a10 + b20 + c30 + d40

n2 =

∣
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∣

∣
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∣
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∣

∣
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∣
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∣

∣

∣

∣

∣

∣

.

A general solution of (3.4) can be written as

ξ̄t(p) =

4
∑

i=1

Ci exp(−
t

τi
), (3.5)

where Ci are constant coefficients, and τi are the relaxation times

τ−i
ϕ

= −
1

q̃
; (3.6)

q̃ = ϕq are roots of the characteristic equation

q4 +
n1

ϕ
q3 +

n2

ϕ2
q2 +

n3

ϕ3
q +

n4

ϕ4
= 0. (3.7)
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Dynamic dielectric susceptibility is defined as

χ11(ω) =
µp

v

d ξ̄t(p)

dE1t

+
µd

v

d ξ̄t(d)

dE1t

. (3.8)

Let us solve the non-uniform system of equations (3.3) with respect to ξ̄t(p) and
ξ̄t(d). Substituting these solutions into (3.8) and taking into account relations (3.6)
and (3.7), we obtain the dynamic susceptibility

χ11(ω) = χ0
11 +

(iω)3n
(1)
0 + (iω)2n

(2)
0 + iωn

(3)
0 + n

(4)
0

vkBT

4
∏

j=1

τj
(1 + iωτ−j )

, (3.9)

where

ϕn
(1)
0 = µ2

pa00 + µ2
db00 ,

ϕ2n
(2)
0 = µ2

p(b20a00 + c30a00 + d40a00 − a30c00)

+ µ2
d(a10b00 + c30b00 + d40b00 − b40d00)

− µpµd(b10a00 + a20b00 + b30c00 − a40d00),

ϕ3n
(3)
0 = µ2

p [(b20c30 − b30c20 + b20d40 − b40d20 + c30d40 − c40d30) a00

+ (a20b30 − a30b20 − a30d40 + a40d30) c00]

+ µ2
d [(a10c30 − a30c10 + a10d40 − a40d10 + c30d40 − c40d30) b00

+ (b30c40 − b40c30 − a10b40 + a40b10) d00]

− µpµd[(b10c30 − b30c10 + b10d40 − b40d10)a00

+ (a20c30 − a30c20 + a20d40 − a40d20)b00

+ (a10b30 − a30b10 + b30d40 − b40d30)c00

− (a20b40 − a40b20 + a30c40 − a40c30)d00],

ϕ4n
(4)
0 = µ2

p
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 .

Expression (3.9) can be presented as a sum of simple fractions

χ11(ω) =
χ1

1 + iωτ1
+

χ2

1 + iωτ2
+

χ3

1 + iωτ3
+

χ4

1 + iωτ4
, (3.10)
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whereas the system of equations for χi reads











n11 n12 n13 n14

n21 n22 n23 n24

n31 n32 n33 n34

n41 n42 n43 n44





















χ1

χ2

χ3

χ4











=











n1

n2

n3

n4











, (3.11)

where the following notations are used

n11 = τ2τ3τ4, n12 = τ1τ3τ4,
n13 = τ1τ2τ4, n14 = τ1τ2τ3,
n21 = τ2τ3 + τ2τ4 + τ3τ4, n22 = τ1τ3 + τ1τ4 + τ3τ4,
n23 = τ1τ2 + τ1τ4 + τ2τ4, n24 = τ1τ2 + τ1τ3 + τ2τ3,
n31 = τ2 + τ3 + τ4, n32 = τ1 + τ3 + τ4,
n33 = τ1 + τ2 + τ3, n34 = τ1 + τ3 + τ2,
n41 = 1, n42 = 1, n43 = 1, n44 = 1, (3.12)

n1 =
1

vakT
τ1τ2τ3τ4n

(1)
0 , n2 =

1

vakT
τ1τ2τ3τ4n

(2)
0 ,

n3 =
1

vakT
τ1τ2τ3τ4n

(3)
0 , n4 =

1

vakT
τ1τ2τ3τ4n

(4)
0 .

Dielectric permittivity then is equal to

ε11(ω) = 1 + 4πχ(ω) = ε′11(ω) − iε′′11(ω), (3.13)

where

ε′11(ω) = ε∞ +
4

∑

i=1

4πχi

1 + (ωτi)2
,

ε′′11(ω) =

4
∑

i=1

4πχiωτi
1 + (ωτi)2

,

(3.14)

and ε∞ = 1+4πχ∞ is the high-frequency contribution to the dielectric permittivity.

4. Numerical analysis

Within the above proposed theory we can calculate the physical characteristics of
mixed Rochelle salt crystals with any deuteration level. The theory parameters that
have to be set include the parameters for the limiting cases of pure and completely
deuterated crystals (J0(αα), K0(αα), ∆α, ψ4α, µ1α, ϕα, cE0

44α, χε0
11 e

0
14) as well as the

parameters relevant to partially deuterated systems (J0(pd), K0(pd)). The case of a
pure crystal has been considered in [43]. In this paper we shall perform calculations
for a completely deuterated Rochelle salt and later will attempt to describe the
partially deuterated systems.
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4.1. Completely deuterated Rochelle salt

First, let us consider the case of a completely deuterated Rochelle salt (xp =
0, xd = 1). Fitting procedure for a pure Rochelle salt is described in detail in [43].
Here we follow the same procedure.

For the unit cell volume (per two quasispins) we use the same values as for
undeuterated Rs

v = 0.5219[1 + 0.00013(T − 190)] · 10−21cm3.

Following the method proposed in [43], in order to describe the dielectric, piezo-
electric, and relaxational characteristics of Rs – second order derivatives of thermo-
dynamic potential, we need to determine the values of the effective dipole moment
µ1p by fitting to the values of dynamic permittivity εε

11(Tc1) and εε
11(Tc2) (data of

[46] are used). It yields µ1d as a function slightly decreasing with temperature

µ1d = [2.1 + 0.0066(308− T )] × 10−18esu · cm.

It provides a good fit to the mentioned second derivatives of thermodynamic po-
tential, but a rather poor description of the data for spontaneous polarization (see
below). For µ1p(T ) of pure Rs in [43] we used

µ1p = [2.52 + 0.0066(297 − T )] × 10−18esu · cm.

Table 1 contains the used values of the parameters J , K, ∆, ψ4 for pure [43]
and completely deuterated Rochelle salt crystals as well as the “seed” quantities,
obtained by fitting the theory to experimental data. Results of the fitting for deuter-
ated Rochelle salt are discussed below.

Theoretical dependences of spontaneous polarization P1 and spontaneous strain
ε4 of dRs are given in figure 4.1. As one can see, the maximal theoretical value of

240 260 280 300
0.0

0.1

0.2

0.3

0.4
P1 (µC/cm

2
)

T (K)

 

 

240 260 280 300
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T (K)
 

 

ε4

Figure 4.1. Temperature dependences of spontaneous polarization P1 and spon-
taneous strain of dRs at σ4 = 0; � – [47], 4 – ε4 = P1(χ

σ
11 − χε

11)/(χ
σ
11χ

ε
11h14),

where data for P1 are taken from [47], for χσ
11 – from [47], χε

11 – from [46], h14 –
from [48].
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Table 4.1. Theory parameters for pure [43] and completely deuterated crystals
of Rochelle salt

Tc1 , Tc2 , J̃0 , K̃0 , ∆̃ , ψ4 , cE0
44 , e014 ,

K K K K K K dyn/cm2 esu/cm2

Rs 255 297 797.36 1468.83 737.33 –760 12.8 × 1010 1.d0 × 104

dRs 251 308 806.633 1499.532 751.861 –600 10.5 × 1010 0.15 × 104

P1 is by ∼ 50 % lower than the experimental one. So far we have no solution to
this problem; it could be, however, that there is an error in the rather outdated
experimental data. Further meausurements here are thus definitely needed.

240 260 280 300
0.0

0.1

0.2

0.3

-1

T (K)

χ11

 

 

Figure 4.2. Temperature dependence on inverse static dielectric permittivity of
free and clamped crystals of dRs. Experimental points are taken from: � – [47]
(900 Hz), • – [51], � are recalculated from the obtained in [46] Cole-Cole curves,
5 – [48].

In figure 4.2 we showed the temperature dependences of inverse static dielectric
susceptibilities of free kσ

11 = (χσ
11)

−1 and clamped kε
11 = (χε

11)
−1 crystals of deuterated

Rochelle salt. As one can see, the experimental data for kε
11(T ) of [48] and [46]

disagree. Experimental values of dielectric permittivity in the lower paraelectric
phase should be also verified, since below 240 K the values of εσ

11 [47] become smaller
than εε

11 obtained from the data of [46]. We get a satisfactory quantitative description
of experimental data for kσ

11 of [47] and for kε
11 of [46] both in paraelectric phases

and in the ferroelectric phase except for its middle part, where the calculated inverse
susceptibilities are smaller than the experimental values.

In figure 4.3 the temperature curves of elastic constants at constant field cE
44 and

at constant polarization cP44 of deuterated Rochelle salt are depicted. The elastic
constant cE44 is essentially temperature dependent, vanishing with the same rate at
both Curie points. Theoretical results for cE44 are in a good agreement with the data
obtained from the formula cE44 = (χε

11h14)
2/(χσ

11 − χε
11). The calculated cP44 is almost
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Figure 4.3. Temperature dependence of elastic constants at constant field cE
44:

4 – cE
44 = ((χε

11h14)
2)/(χσ

11 − χε
11) and constant polarization cP

44: 4 – cP
44 =

(χσ
11χ

ε
11h

2
14)/(χ

σ
11 − χε

11) of deuterated Rochelle salt crystal. Points for χσ
11 are

taken from [47], for χε
11 from [46], for h14 from [48].
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Figure 4.4. Temperature dependences of piezoelectric characteristics of deuter-
ated Rochelle salt. Experimental points are taken from: 5 – [48], ♦ – [49], 4 –
d14 = (χσ

11 − χε
11)/(χ

ε
11h14), e14 = χε

11h14, g14 = (χσ
11 − χε

11)/(χ
σ
11χ

ε
11h14), values

of χσ
11 taken from [47], χε

11 from [46], h14 from [48].
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temperature independent in all phases and accords with the data obtain from the
relation cP44 = χσ

11χ
ε
11h

2
14/(χ

σ
11 − χε

11).
Figure 4.4 contains theoretical temperature dependences of piezoelectric charac-

teristics of dRs. The obtained curve for d14(T ) well agrees with the data of [48,49]
as well as with recalculated via the given in caption formula in the entire explored
temperature range, except for the low-temperature paraelectric phase.
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Figure 4.5. Temperature dependence of ∆Cσ for deuterated Rochelle salt.

The temperature dependence of the contribution from the ordering units to the
specific heat ∆Cσ of deuterated Rochelle salt is given in figure 4.5. The theory
predicts two positive anomalies of specific heat at both Curie points.

Let us now consider the dielectric relaxation in crystals of dRs. Figure 4.6 con-
tains the calculated temperature dependences of inverse relaxation times τ−1

1 and
τ−1
2 , as well as the values of τ−1

1 obtained in [46] from experimental data for ε∗11(ν, T ).
The latter points are well described by the proposed theory. Peculiar to the tempe-
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Figure 4.6. Temperature dependence of inverse relaxation times (τ1)
−1 and

(τ2)
−1: � – [46].
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rature curve of τ−1
1 (T ) is the presence of two finite minima at the transition points.

Let us note that any theory for Rochelle salt crystals which does not take into
account the piezoelectric effects yields zero values of τ−1

1 (T ) at these points and,
thereby, incorrect temperature dependence of dynamic permittivity in their vicinity.
The values of τ2 are three orders smaller than those of τ1.
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Figure 4.7. Temperature dependences of real and imaginary parts of dynamic
dielectric permittivity ε∗11 of deuterated Rochelle salt crystal at different frequen-
cies ν (GHz): � – 0.6; ◦ – 2.8; 4 – 4.29; 5 – 9.3; ♦ – 24.0. Experimental points
are taken from [46].
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Figure 4.8. Temperature dependences of real and imaginary parts of dynamic
dielectric permittivity ε∗11 of deuterated Rochelle salt crystal at different frequen-
cies ν (GHz): � – 102; • – 141; N – 180. Experimental points are taken from
[50].

Temperature dependences of real and imaginary parts of dynamic dielectric per-
mittivity for deuterated Rochelle salt at different frequencies are presented in figu-
re 4.7. Overall, a good description of experimental data [46] is obtained, except for
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ε′11 at 0.06, 1.5, and 2.8 GHz in the middle part of the ferroelectric phase as well as
for ε′′11 at ν = 9.3 GHz at all temperatures studied.

Dynamic permittivity of deuterated Rochelle salt at very high frequencies in the
ferroelectric and lower paraelectric phases along with the experimental points of
[50] are shown in figure 4.8. As one can see, at these frequencies the theory only
qualitatively reproduces the temperature curves for ε′11 and ε′′11 ε′′11(T ).

Figure 4.9 contains the frequency dependences of dynamic permittivity at differ-
ent temperatures. As one can see, the agreement between the theory and experiment
[46] is particularly good in the upper paraelectric phase.
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Figure 4.9. Frequency dependences of real and imaginary parts of dynamic dielec-
tric permittivity ε∗11 of deuterated Rochelle salt crystal at different temperatures
(K): a – 308(1), 298(2); b – 263(1), 298(2); c – 251(1), 243(2). Experimental
points are taken from [46].
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Figure 4.10. Temperature dependences of piezoelectric, dielectric, and elastic
characteristics of pure (solid line, solid symbols), partially (x = 0.5, dashed line)
and completely deuterated (dotted line, open symbols) Rochelle salt. Theory:
mean crystal approximation; experimental points are: P1: �, � – [47],
ε4: � – [55], • – [49], � – ε4 = P1(χ
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44: � – [54], � – cP

44 =
(

χσ
11χ

ε
11h

2
14

)

/(χσ
11 − χε

11);
e14: � – [53], � – e14 = χε

11h14;
d14: � – [53], N – [57], � – d14 = (χσ

11 − χε
11)/(χ

ε
11h14),

h14: � – [54], � – [48];
g14: � – [53], � – g14 = (χσ

11 − χε
11)/(χ

σ
11χ

ε
11h14).

Values for P1, χ11, h14 used to calculate the points for dRs are taken from [47]
(P1, χσ

11), [46] (χε
11), [48] (h14).
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4.2. Partially deuterated crystals. Mean crystal appoximation

Let us now consider the isotopic effect in Rochelle salt crystals. First we shall
explore a pure model ([43]; the same formulas are obtained from the ones presented
in previous section by putting xp = 0 or xd = 0). We use the mean crystal ap-
proximation, attributing the isotopic effect to the monotonic changes in interaction
parameters. Thus, for a partially deuterated crystal with deuteration level x = xd

we take

J = J0(pp)(1 − xd) + J0(dd)xd, K = K0(pp)(1 − xd) +K0(dd)xd, etc, (4.15)

where the parameters for pure (pp) and completely deuterated (dd) crystals of
Rochelle salt are given in table 1.

Results of such calculations are given in figure 4.10. As one can see, the increase
of deuteration leads to the widening of the ferroelectric phase, to the increase of
the maximal values of spontaneous polarization P1 and strain ε4, and of constant of
piezoelectric strain g14 and to the decrease of static dielectric susceptibilities of free
χσ

11 and clamped χε
11 crystals in the ferroelectric phase. In the paraelectric phases

the slopes of the temperature curves for (χσ
11)

−1 and (χε
11)

−1 are almost independent
of deuteration level.

Maximal value of the elastic constant cE
44 in the ferroelectric phase is practically

the same for Rs and dRs, as well as the rate of changes in cE
44 with temperature on

approaching the Curie points. Elastic constant cP
44 with the increasing x decreases

from 13·1010 dyn/cm2 for Rs to 10·1010 dyn/cm2 for dRs.
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Figure 4.11. Temperature dependence of inverse relaxation time τ−1
1 of Rs and

dRs crystals. Experimental points are taken from � – [46], � – [12].

Experimental points for the constant of piezoelectric stress h14 for Rs and dRs
practically coincide at all temperatures, whereas the theoretical values of h14 for
dRs are somewhat smaller that for Rs. The theory predicts that on increasing the
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deuteration level, the minimal values of the coefficients of piezoelectric stress e14 and
strain d14 decrease in the ferroelectric phase; the peak values of e14 at the transition
points decrease as well.

In figure 4.11 the temperature dependences of inverse relaxation time (τ1)
−1 for

Rs and dRs are compared. Deuteration decreases with values of τ−1
1 at the transition

points and in the paraelectric phases. In the middle of the ferroelectric phase, τ−1
1

in Rs is smaller than in dRs.

4.3. Partially deuterated crystals. A general theory

Let us now consider a more general case and attempt to describe the deuteration
effects in Rochelle salt crystals within the framework of the above developed (“com-
plete”) theory. At the absence of experimental data even for transition temperatures
of partially deuterated crystals of Rochelle salt, we cannot determine the values of
J(pd) and K(pd). Therefore, we shall perform calculations at different trial values of
these parameters, in order to find out in what way the changes of these trial values
affect the calculated physical characteristics of partially deuterated system.
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Figure 4.12. Composition dependence (x = xd) of transition temperatures of
mixed Rochelle salt crystals (deuteration levels indicated) calculated within a
complete theory.

First, let us define the arithmetic mean set values of the pd-parameters as

J̃arth
0 (pd) =

J̃0(pp) + J̃0(dd)

2
, J̃arth

0 (pd) = 802.0115 K,

K̃arth
0 (pd) =

K̃0(pp) + K̃0(dd)

2
, K̃arth

0 (pd) = 1484.181 K, (4.16)

The sets of pd-parameters used in calculations are determined by a relative deviation
from the arithmetic mean set of the pd-parameters, denoted by two numbers (u, v).

u =
J̃0(pd) − J̃arth

0 (pd)

|J̃0(pp) − J̃0(dd)|
· 100%,
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v =
K̃0(pd) − K̃arth

0 (pd)

|K̃0(pp) − K̃0(dd)|
· 100%. (4.17)

Thus (−15; 2) stands for

J̃0(pd) = J̃arth
0 (pd) − 0.15 · |J̃0(pp) − J̃0(dd)| = 800.61605 K,

K̃0(pd) = K̃arth
0 (pd) + 0.02 · |K̃0(pp) − K̃0(dd)| = 1484.79504 K,

whereas (0; 0) denotes the arithmetic mean set of the parameters.
Figure 4.12 illustrates the composition dependence of transition temperatures in

mixed Rochelle salt crystals calculated within a complete theory at different sets of
parameters (u, v) given by (4.17). The arithmetic mean set (4.16) yields very weakly
non-linear dependences Tci(x). The more the parameters J̃0(pd) and K̃0(pd) deviate
from the arithmetic mean set, the more the composition dependence of transition
temperatures deviate from the linear one.
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Figure 4.13. Composition dependence (x = xd) of transition temperatures of
mixed Rochelle salt crystals (deuteration levels indicated) calculated within a
complete theory with the arithmetic (4.16) and geometric (4.18) mean sets of the
theory parameters as well as within the mean crystal approximation (4.15).

In figure 4.13 we show the composition dependence of transition temperatures in
mixed Rochelle salt crystals calculated within a complete theory with the arithmetic
(4.16) and geometric

J̃geo
0 (pd) =

√

J̃0(pp)J̃0(dd), K̃geo
0 (pd) =

√

K̃0(pp)K̃0(dd), (4.18)

mean sets of the theory parameters as well as within the mean crystal approximation
(4.15). As one can see, all these methods predict nearly the same slightly non-linear
dependences of Tci(x).

As one can see in figure 4.14, deuteration effects for the other physical charac-
teristics of Rochelle salt predicted by the complete theory qualitatively agree with
those given by the mean crystal approximation.
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Figure 4.14. Temperature dependences of the physical characteristics of mixed
Rochelle salt crystals (deuteration levels x = xd indicated). Lines: a complete
theory. Experimental points for 1/χε

11(T ) are taken from: � – [12], � – [46], O –
[48]; The rest of the points are the same as in figure 4.10.
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5. Concluding remarks

Despite the fact that Rochelle salt appears to be the first known ferroelectrics,
the mechanism of ferroelectricity in it has not been completely established. In this
section we shall analyse the major achievements and miscalculations made in the
studies of this type of crystals. It would be useful to compare the history of inves-
tigation of ferroelectric crystals with double asymmetric potential with that of the
KH2PO4 family crystals, since both types of crystals are also piezoelectric.

The most prominent peculiarity of the study of the KH2PO4 family ferroelectrics
is a close connection between theory and experiment. Ferroelectricity in KH2PO4

was discovered in 1938, and already in 1941 the first microscopic theory (Slater mod-
el) of the phase transition in it was proposed. Despite certain doubts in its validity,
the most important results for these crystals were obtained in the framework of the
proton ordering model (see [58]), yielding within a cluster approximation a good
description of experimental data for thermodynamic and dynamic characteristics.
of the deuterated members of the family. Later, a microscopic theory of deformed
deuterated crystals of this type was developed [63], within which a proper description
of pressure and electric field effects on their physical characteristics was obtained
[59–62]. Essential point in the theoretical studies was a development of the well-
grounded fitting procedure; especially we would like to mention the papers [29–31],
where it was shown that in the fitting it is important to have reliable experimental
data for the specific heat of the crystals. In our recents works [64,65] we modified
the proton ordering model in order to take into account the contributions of piezo-
electric coupling, which allowed us to improve the theory and properly describe the
experimental data for the elastic, piezoelectric, and dielectric characteristics of the
crystals.

There was no such a close connection between theory and experiment in the in-
vestigation of the Rochelle salt type ferroelectrics. Due to complexity of the crystal
structure of Rochelle salt, there is no much data about the microscopic mechanism
of the phase transitions in it. Neither there has been much theoretical effort after the
Mitsui model was proposed. The existing theoretical works were either incomplete
(only one or very few characteristics were calculated, which does not permit to test
the adequacy of the used model) or contradictory in a sense that, for instance, it
was impossible to simultaneously obtain a good description of spontaneous polar-
ization and static dielectric permittivity. Qualitatively incorrect were the calculated
temperature curves of relaxation times and dynamic dielectric permittivity in the
microwave region near the Curie points. Such a situation was to a great extent due
to the fact that strong piezoelectric coupling in Rochelle salt was not taken into ac-
count and, in fact, the models corresponded to a mechanically free crystal, whereas
at microwave frequencies a crystal is effectively clamped (theories of the KH2PO4

type crystals which do not take into account the piezoelectric effect, yield at least
qualitatively correct results due to the first order phase transition in the crystals).

It was fruitful to use an experience obtained in the study of the KH2PO4 family
crystals. Because of a much simpler crystal structure and more detailed experimental
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structural data, the microscopic Hamiltonian with taking into account the piezoelec-
tric coupling for these crystals could be and was derived ab initio [63]. Performing
analogous calculations for the Rochelle salt type crystals, we came to a model which
allowed us to obtain elastic and piezoelectric characteristics of the crystals, calculate
dielectric characteristics of free and clamped crystals, and get a qualitatively (and
quantitatively) correct system dynamics near the Curie points [43,44].

An essential insight into the problem of the phase transitions mechanisms in
Rochelle salt type crystals can be obtained by investigation of the disordered (par-
tially deuterated) crystals, as it was for the partially deuterated crystals of the
KH2PO4 family, where the essential role in obtaining a proper description of exper-
imental data was played by taking into account the tunneling effects. Availability
of extensive experimental data for these crystals for several deuteration levels was
strongly helpful. Experimental measurements of the deuteration effects on the physi-
cal characteristics of the Rochelle salt type crystals have not been performed yet and
are therefore necessary. They would help to elucidate the role played by hydrogen
bonds subsystem in the phase transitions in the crystals. In the this work we present
the results of theoretical calculations for the partially deuterated Rochelle salt crys-
tals, performed within the mean crystal approximation and within the consistent
general theory of the disordered system. Due to the absence of any experimental
data for mixed Rochelle salt crystals, we were unable to determine the values of
certain fitting parameters and present results obtained with several trial values of
those parameters. Verification of the theory predictions is thus strongly required.
The obtained theoretical results can possibly be further improved by considering
the tunneling effects, electrostriction coupling, as well as by using approximations
higher than the mean field appoximation.
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a0 = 1 − ξ2(p) − σ2(p), c0 = −2ξ(p)σ(p),

b0 = 1 − ξ2(d) − σ2(d), d0 = −2ξ(d)σ(d),

a1 = 1 −
1

4T
R̃+(pp)xp[1 − ξ2(p) − σ2(p)], c1 =
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4T
R̃+(pp)xp2ξ(p)σ(p)],

b1 = −
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1

4T
R̃+(pd)xp2ξ(d)σ(d)],

a2 = −
1

4T
R̃+(pd)xd[1 − ξ2(p) − σ2(p)], c2 =

1

4T
R̃+(pd)xd2ξ(p)σ(p)],
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a3 = −
1

4T
R̃−(pp)xp2ξ(p)σ(p)], c3 = 1 +

1
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R̃−(pp)xp[1 − ξ2(p) − σ2(p)],

b3 = −
1

4T
R̃−(pd)xp2ξ(d)σ(d)], d3 =

1

4T
R̃−(pd)xp[1 − ξ2(p) − σ2(p)],

a4 = −
1

4T
R̃−(pd)xd2ξ(p)σ(p)], c4 =

1
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R̃−(pd)xd[1 − ξ2(p) − σ2(p)],

b4 = −
1

4T
R̃−(dd)xd2ξ(d)σ(d)], d4 = 1 +

1

4T
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Ізотопічний ефект у частково дейтерованих

п’єзоелектричних кристалах сегнетової солі

Р.Р.Левицький 1 , І.Р.Зачек 2 , А.П.Моїна 1 , А.Я.Андрусик 1

1 Інститут фізики конденсованих систем, 79011, Львів, вул.
Свєнціцького,1

2 Національний університет “Львівська політехніка”, 79013, Львів, вул.
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Отримано 4 лютого 2004 р.

Запропоновано теорію діелектричних, п’єзоелектричних і пружних

властивостей частково дейтерованих (нерівноважний безлад з пов-
ним сортовим хаосом) кристалів сегнетової солі з врахуванням п’є-
зоелектричних взаємодій. Представлені результати числових роз-
рахунків для повністю дейтерованої сегнетової солі порівнюються

з наявними експериментальними даними. Ізотопічний ефект чисе-
льно досліджується в наближенні середнього кристалу та в рамках

запропонованої теорії при різних пробних значеннях параметрів мо-
делі. Наведені передбачені теорією для частково дейтерованих сис-
тем залежності розрахованих характеристик від температури та рів-
ня дейтерування.

Ключові слова: сегнетова сіль, дейтерування, п’єзоелектричний

ефект

PACS: 77.22.Gm, 77.65.Bn, 77.80.Bh
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