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The system of bose liquid + impurity is considered. The energy spectrum,
as well as effective mass of impurity is calculated. For the case of an 3He
atom in superfluid 4He numerical calculations are performed.
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1. Introduction

A couple of the most interesting questions are to be mentioned within the prob-
lem of determining the impurity energy spectrum in superfluid 4He, namely, the
calculation of the impurity effective mass M ∗ and revealing the spectrum charac-
ter in the region of wave vectors corresponding to the reverse interatom distance.
Within the framework of the thermodynamic approach the effective mass of 3He
was originally determined on the basis of experimental data for heat capacity and
the spin diffusion coefficient by J.Bardeen, G.Baym, D.Pines [2]. They found the
value M∗/M = 2.34 for the impurity effective mass and the isolated atom M mass
ratio in the case of the liquid 4He equilibrium density. A microscopic theory of
the energy spectrum for 3He impurities in superfluid 4He was independently de-
veloped in [1,3–6,11]. Considering the case of a single 3He atom, T.B.Devison and
E.Feenberg [3] made use of the Brillouin-Wigner perturbation theory and calcu-
lated the impurity spectrum branch, having chosen as zero approximation wave
functions the wave functions of pure 4He and an isolated 3He atom. The authors
determined the energy of replacement, the effective mass and a relative change
of liquid bulk caused by the replacement of 4He with 3He. In order to obtain the
numerical value of M ∗, a liquid 4He structure factor calculated theoretically by dif-
ferent authors was used. For example, using the data of [7], the valueM ∗/M = 1.81
is obtained. The same problems were considered by Slyusarev and Strzhemechny
[4]; they used a trial variation function of an impure atom and the Brillouin-
Wigner perturbation theory with a long wave estimate for the matrix elements of
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“impurity” and “impurity-phonon”. An explicit expression for the impurity effec-
tive mass via the 4He structure factor, as well as the numerical value M ∗/M = 2.4
on the basis of the experimentally measured structure factor were given in that
work, too. The authors noted an essential non-square behaviour of the spectrum
in the wave vector region near 3Å−1. A similar expression for M ∗ was obtained by
Woo Tan and Massey [5]; however, by using the theoretical structure factor they
obtained M∗/M = 1.85 to be closer to the value found in [3]. The same authors in
[6] improved this result in M ∗/M = 2.37 by the evaluation of higher corrections to
the effective mass of the interaction “impurity - phonon”. In [8], a variational wave
function suitable only for the calculation of the effective mass is chosen. With the
help of this function, which takes into account the backflow arising from driving
the 3He atom in the form proposed by Feynman and Cohen for pure 4He [9], the
value M∗/M = 1.7 is obtained. We would like to mention work [10] as well, in
which the spectrum of the impurity and its dampings were investigated by means
of the dynamic structure factor for small values of the wave vector M ∗/M = 2.35,
as well as in the region of the roton minimum 4He. A “one-parameter” trial wave
function without the application of the perturbation theory of Brillouin-Wigner is
used in [11] for the calculation of the impurity branch of the spectrum. For the
effective mass two first corrections are explicitly calculated, each of which contains
one sum over a wave vector more than the previous one. Using experimental data
for the structure factor, in the case of the 3He atom the value M ∗/M = 1.73 is
obtained.

In the present work the calculation of the impurity spectrum will be carried
out on the basis of the polaron-type Hamiltonian where liquid helium + impurity
system is simulated in the approximation of one sum over a wave vector. We pro-
pose to pass in the Hamiltonian to other variables so that impurity coordinates
be dropped out, and further to develop the perturbation theory not for the inter-
action “liquid - impurity”, but for an additional “anharmonic” term which results
from such a transformation of independent variables. In the zero approximation
of the approach the result for the spectrum of the impurity of the second order
of the perturbation theory for the potential of the interaction “liquid - impurity”
is reconstituted, but without the assumption of the smallness of the “liquid - im-
purity” interaction. Numerical estimates of the effective mass of the 3He atom in
superfluid 4He on the basis of experimental values of the structural factor for liquid
4He are also made.

2. Notations

The object of our study is a model of the system “superfluid 4He + impurity”,
based on the following Hamiltonian:

H =
P 2

2M
+HHe4 +Hint. (1)

The first term in (1) represents a kinetic energy of the impurity atom (practically,
it is the 3He atom), the mass of which we have denoted as M . We take the Hamil-
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tonian of superfluid helium in the approximation of noninteracting elementary
perturbations

HHe4 = E0 +
∑

q 6=0

Eqb
†
qbq

with the Bogolubov spectrum Eq and energy of the ground state E0 [12] :

E0 =
N(N − 1)

2V
ν0 −

1

4

∑

q 6=0

h̄2q2

2m
(αq − 1)2 ,

Eq =
h̄2q2

2m
αq, αq =

√√√√1 +
2N

V
νq

/
h̄2q2

2m
,

where letters N and V denote the number of particles of the liquid and the volume
of the system, respectively, m is the mass of atom 4He and νq is the Fourie-image of
the pair potential of the inter-particle interaction in superfluid 4He. The operators
of the creation-anihilation of elementary excitations b†q, bq satisfy the commutative
relations of Bose:

[
bq, b

†
k

]
= δ (q − k) .

The part of the Hamiltonian (1) which corresponds to the interaction between a
liquid and impurity, is expressed in the following form:

Hint =
N

V
w0 +

√
N

V

∑

q 6=0

wq√
αq

eiqR
(
b†−q + bq

)
.

Here R is a coordinate of the impurity, wq is the Fourie-image of the potential of
the interaction between the 4He atom and the impurity atom.

3. Calculation of the impurity spectrum

In order to treat the problem it is convenient to pass from (1) to the unitary
equivalent Hamiltonian H∗

H∗ = UHU † (2)

with the help of the transformation

U = exp


i
∑

q 6=0

(qR) b†qbq


 , U † = U−1 . (3)

U means the ”translation” of the 4He atoms radius-vectors r1, ..., rN by (−R), that
is a passage from variables (r1, ..., rN ,R) to (r1 −R, ..., rN −R,R). The explicit
expression for H∗ is as follows:

H∗ = EB
0 +

N

V
w0 +

1

2M


P −

∑

q 6=0

h̄qb†qbq




2

+
∑

q 6=0

Eqb
†
qbq +

√
N

V

∑

q 6=0

wq√
αq

(
b†q + bq

)
.

(4)
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Transformation (3) enables us to omit the impurity coordinates, but, instead of
that, results in the emergence of anharmonic terms.

The operator of impulse P of the impurity now can be considered as a c-number
and one can identify the spectrum of the impurity by the energy of the ground
state which corresponds to H∗.

The HamiltonianH∗, as well as input H, cannot be diagonalized exactly, there-
fore, for further calculations we use the theory of perturbations. It is natural next
to divide H∗ into the problem which supposes an exact solution:

H0
∗ =

N

V
w0 +E0 +

P 2

2M
+
∑

q 6=0

{(
Eq +

h̄2q2

2M
− h̄

M
qP

)
b†qbq +

√
N

V

wq√
αq

(
b†q + bq

)}

(5)
and into the perturbation

H int
∗ =

h̄2

2M

∑

q
1
6=0

∑

q
2
6=0

(q1q2) b
†
q
1
b†q

2
bq

1
bq

2
,

(a normal ordering of the operators of the creation-anihilation is suggested). But,
by using an arbitrariness of this separation, we introduce additional parameter
φ(q), with the help of which we try to improve the outcome of the perturbation
theory approach to the exact solution. In other words, let us assume

H∗ = H̃0
∗ + H̃ int

∗ ,

where

H̃0
∗ = H0

∗ +
∑

q 6=0

φ (q) b†qbq,

H̃ int
∗ = H int

∗ −
∑

q 6=0

φ (q) b†qbq.

In support of such a step it is also possible to mention the argument that no small
parameter of the natural origin exists in the input Hamiltonian H.

We further develop the usual perturbation theory for the energy of the ground
state H∗ :

E = E(0) + E(1) +E(2) + ...

In the zero approximation the system under consideration is a set of harmonic
oscillators in the inhomogeneous external field, therefore, without the assumption
of the smallness of the liquid - impurity interaction, we obtain

E(0) = E0 +
N

V
w0 +

P 2

2M
− N

V 2

∑

q 6=0

w2
q

αq

(
Eq +

h̄2q2

2M
− h̄

M
(qP ) + φ (q)

) .
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The first and the second corrections to E(0) have the following form:

E(1) = − N

V 2

∑

q 6=0

φ (q)
w2

q

αq

(
Eq +

h̄2q2

2M
− h̄

M
(qP ) + φ (q)

)2 +

+
h̄2

2M



N

V 2

∑

q 6=0

q
w2

q

αq

(
Eq +

h̄2q2

2M
− h̄

M
(qP ) + φ (q)

)2




2

,

E(2) = − N

V 2

∑

q 6=0

w2
q

αq

(
Eq +

h̄2q2

2M
− h̄

M
(qP ) + φ (q)

)3 ×

×


φ (q)− h̄2

M

N

V 2

∑

k 6=0

(qk)
w2

k

αk

(
Ek +

h̄2k2

2M
− h̄

M
(kP ) + φ (k)

)2




2

+

+
N2

V 4

∑

q 6=0

(
h̄2q2

2M

)2
w4

q

α2
q

(
Eq +

h̄2q2

2M
− h̄

M
(qP ) + φ (q)

)5 −

−N2

V 4

∑

q
1
6=0

∑

q
2
6=0

(
h̄2

M
(q1q2)

)2
w2

q1

αq1

(
Eq1 +

h̄2q12

2M
− h̄

M
(q1P ) + φ (q1)

)2 ×

×
w2

q2

αq2

(
Eq2 +

h̄2q22

2M
− h̄

M
(q2P ) + φ (q2)

)2 ×

× 1

Eq1 +
h̄2q12

2M
− h̄

M
(q1P ) + φ (q1) + Eq2 +

h̄2q22

2M
− h̄

M
(q2P ) + φ (q2)

.

In order to fix arbitrary function φ(q) it is possible to use a demand for the
minimization of energy as a functional of φ(q), but we did not manage to solve the
equations appearing in such an approach. We propose to require the vanishing of
the first correction to E(0), that is to determine φ(q) from the condition E(1) = 0.
Explicitly we have the equation :

− N

V 2

∑

q 6=0

φ (q)
w2

q

αq

(
Eq +

h̄2q2

2M
− h̄

M
(qP ) + φ (q)

)2 +

+
h̄2

2M



N

V 2

∑

q 6=0

q
w2

q

αq

(
Eq +

h̄2q2

2M
− h̄

M
(qP ) + φ (q)

)2




2

= 0.

The equation will be satisfied identically if one puts

φ(q) =
h̄

M
(qx)

and imposes on the vector x the condition:

x =
h̄

2

N

V 2

∑

q 6=0

q
w2

q

αq

(
Eq +

h̄2q2

2M
− h̄

M
(q,P − x)

)2 . (6)
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At P = 0 we hereof find x = 0. For small P let us assume that x = λP , then,
expanding the right-hand side (6) in the powers of P we obtain the following
relation for the definition of λ:

λ = (1− λ)
σ1

2
+ o(P 2) .

Here for the sake of simplicity we introduce

σ1 =
4

3

N

V 2

∑

q 6=0

w2
q
h̄2q2

2M

αq

(
Eq +

h̄2q2

2M

)3 .

Hence, within the accuracy of the square and higher powers of the impulse of the
impurity, we have

λ =
σ1

2 + σ1

.

The usual theory of perturbations for H int
∗ corresponds to the value λ = 0.

4. Effective mass of the impurity

The spectrum obtained above is in the region of small impulses and looks like

E(P ) = ε0 +
P 2

2M∗
,

where M∗ is the so-called effective mass of the impurity atom, and the constant
independent of the impulse equals

ε0 = E0 +
N

V
w0 −

N

V 2

∑

q 6=0

w2
q

αq

(
Eq +

h̄2q2

2M

) +

+
N2

V 4

∑

q 6=0

(
h̄2q2

2M

)2
w4

q

α2
q

(
Eq +

h̄2q2

2M

)5 − N2

V 4

∑

q
1
6=0

∑

q
2
6=0

(
h̄2

M
(q1q2)

)2

×

×
w2

q1

αq1

(
Eq1 +

h̄2q2
1

2M

)2

w2
q2

αq2

(
Eq2 +

h̄2q2
2

2M

)2

1(
Eq1 +

h̄2q2
1

2M
+ Eq2 +

h̄2q2
2

2M

) .

The outcome of our calculations is the following expression for M ∗:

M

M∗
= 1− σ1 + σ2

1 − σ3
1 − σ2 + 2λ

(
σ3
1 + σ2

)
− λ2

(
σ2
1 + σ3

1 + σ2

)
, (7)

where one more notation is introduced

σ2 =
(
4

3

N

V 2

)2 ∑

q
1
6=0

∑

q
2
6=0

h̄2q2
1

2M

h̄2q2
2

2M
w2

q1
w2

q2

αq1αq2

(
Eq1 +

h̄2q2
1

2M

)2 (
Eq2 +

h̄2q2
2

2M

)2 ×
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× 1(
Eq1 +

h̄2q2
1

2M
+Eq2 +

h̄2q2
2

2M

)





h̄2q21
2M




3
(
Eq1 +

h̄2q2
1

2M

)2+

+
2(

Eq1 +
h̄2q2

1

2M

)(
Eq1 +

h̄2q2
1

2M
+Eq2 +

h̄2q2
2

2M

)+

+
1

(
Eq1 +

h̄2q2
1

2M
+Eq2 +

h̄2q2
2

2M

)2


+

h̄2q22
2M




3
(
Eq2 +

h̄2q2
2

2M

)2+

+
2(

Eq2 +
h̄2q2

2

2M

)(
Eq1 +

h̄2q2
1

2M
+Eq2 +

h̄2q2
2

2M

)+

+
1

(
Eq1 +

h̄2q2
1

2M
+Eq2 +

h̄2q2
2

2M

)2







.

5. Numerical calculations

We provide numerical computations of the effective mass of the 3He impurity
in 4He at T = 0 K. We assume that the potentials of interatomic interactions
3He−4 He and 4He−4 He are identical, that is νq = wq, and further we express νq
through the 4He structure factor with the help of relations [1]:

Sq =
1

αq

.

For the evaluations we have made use of measurements Sq [13] up to the point
T = 0 K by means of equalities [1]:

Sq(T = 0) = Sq(T ) tanh
[
Eq

2T

]
.

The density of 4He is considered to be equal to ρ4He = 0.02185Å
−3
. The following

values are obtained:
σ1 = 0.416, σ2 = 0.222. (8)

And, accordingly, M∗/M = 1.82. The usual theory of perturbations (λ = 0) gives
M∗/M = 2.15.
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Ефективна маса домішки в надплинному 4 He
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Отримано 9 червня 1998 р.

Розглядається система “бозе-рідина + домішка”. Розраховано енер-

гетичний спектр домішки та її ефективну масу. Проведено числові ро-

зрахунки для випадку атома 3He в рідкому 4He .

Ключові слова: надплинний гелій, домішки, ефективна маса
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