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A model for the description of materials with narrow energy bands is pro-
posed. It is shown that in narrow-band materials an electron-hole symmetry
is absent in contrast to the Hubbard model. In this paper a metal-insulator
transition is studied. The obtained results are compared with the experi-
mental data for narrow-band materials. Some specific narrow-band effects
are discussed.
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1. Introduction

1. The fact that the amasing properties of narrow-band systems (for example,
oxides, sulphides and selenides of transition metals) are caused by the electron-
electron interactions is generally accepted nowadays. But in spite of the great
number of papers concerning this problem, it is still an actual task for condensed
matter physics to develop a consistent theory of narrow-band systems. During the
last years a range of problems were connected with corellations, and the necessity
of an investigation of narrow-band systems has greatly increased because of the
discovery of high-Tc superconductors.

The arising problems can be divided into three groups: 1) construction of the
narrow-band systems models by using adequate Hamiltonians; 2) elaboration of the
effective mathematical methods to study the model Hamiltonians; 3) construction
of a consistent theory of correlation effects and explanation of the peculiarities of
physical properties in narrow-band systems.

Problems 1 and 2 were considered and partially solved by S.Schubin and
S.Wonsowsky in their famous theory of the polar model [1]. In that theory the po-
lar model Hamiltonian and its “configurational” representation was proposed. The
polar model proves to be very meaningful owing to the euristic value of the “config-
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urational” description idea (basical for the model treatment of 3d-compounds [2].)
Within the framework of the polar model a criterion of the metal-insulator tran-
sition (MIT) was formulated for the first time; explanation of the fractional atom
momentum in transition 3d-metals and a hypothesis of the possibility of charge or-
dering were proposed; a possibility of the existence of gapless semiconductors and
a superexchange interaction were predicted. The commonly used Hubbard model
is a partial case of the polar model [3].

However, it was proved that a direct use of the polar model (in the traditional
form [1]) for the solution of the above mentioned problems was not effective in
many cases.

Firstly, transition from the second quantization Hamiltonian in terms of elec-
tron operators to its representation in terms of Schubin-Wonsowsky operators is
realized by the substitution of some combinations of electron operators by the
combinations of Shubin-Wonsowsky operators with the same action on the wave
function. Such transition is bulky and difficult even for s-band (see, for exam-
ple, [4]).

Secondly, approximations underlying the mathematical treatment of the polar
model are uncontrollable (first of all, the postulation of the Bose-type commutation
rules for current excitation operators).

2. The polar model theory was developed in two ways. The first is connected
with developing the methods of effective mathematical treatment of the initial
polar model Hamiltonian in the electron representation. The fundamental results
in this way belong to N.Bogolyubov [5]. He proposed the effective Hamiltonian
method which took into account the high energy electron states with the help of a
special form of the perturbation theory. This method is one of the most consistent
approaches to study the exchange interactions in magnetic insulators [6]. The use
of the configurational representation of the polar model (polar and homeopolar
states) proved to be helpful for the interpretation of the obtained results and
control of the performed calculations (sometimes very bulky).

The second way is based on the immediate use of configurational representa-
tions. This approach is effective for the investigation of the peculiarities of narrow-
band systems, insulators and semiconductors, on the one hand, and metals and
materials in which MIT is caused by external influences, on the other one.

An important achievement in this way was obtained in the works of researchers
of the Lviv branch in the theory of solids. Among them were the pioneer works [7-
9] by A.Yu.Glauberman, V.V.Vladimirov and I.V.Stasyuk. In this way important
problems of the polar model of non-metallic crystals (the problem of the construc-
tion of model Hamiltonians in terms of the site elementary excitations and the
problem of commutation rules for the site elementary excitations operators) were
solved.

3. A wide use of the configurational forms of model Hamiltonians in considering
physical properties of narrow-band materials is connected with the paper by J.Hub-
bard [10] in which Xkl

i -operators were introduced and papers [11,12] where the
relations between the electron and transition operators were first established and
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an effective form of the perturbation theory was proposed. It has been shown
that the proper identification of the Schubin-Wonsowsky operators and transition
operators (the Hubbard operators) leads to formal equivalence of the traditional
form of the polar model and its modern representations in terms of transition
operators. It was also shown that

Xkl
i = α+

ikαil,

where α+

ik, αil are Schubin-Wonsowsky operators of creation and destruction of |k〉
and |l〉 states, respectively, on i-site.

An expediency of using Xkl
i - or α+

iναiµ- representation is determined by the
requirements of the considered problem. In calculations employing the diagram-
matic Green functions technique or the perturbation theory it is convenient to
use Xkl

i -representation of the Hamiltonian [13], whereas in problems using the ap-
proximate second quantization method (e.g. to study MIT using the mean-field
approximation (MFA) in the generalized Hartree-Fock approximation [14]) α+

iναiµ-
representation is more convenient. The b-c-representation (see Sect. 2) can also be
useful.

4. The representations of the model narrow-band Hamiltonians in terms of
Xkl

i -, b-c- or α+

iναiµ-operators are helpful for understanding the physics of the cor-
relation effects in narrow energy bands and explanation of the physical properties
of narrow-band materials. These representations are convenient from the point of
view of the mathematical treatment of models.

Below a consistent form of the polar model of narrow-band materials is pro-
posed and the consequences of this model are considered.

2. The Hamiltonian

Hamiltonian of the system of s-electrons in the Wannier representation is writ-
ten as

H = −µ
∑

iσ

a+iσaiσ +
∑′

ijσ
t(ij)a+iσajσ + (2.1)

+
1

2

∑

ijkl

σ,σ′

J(ijkl)a+iσajσ′alσ′akσ,

where a+iσ, aiσ are creation and destruction operators of an electron on site i,
σ =↑, ↓, µ is a chemical potential, niσ = a+iσaiσ,

t(ij) =

∫

φ∗(r−Ri)
∑

n

V (r−Rn)φ(r−Rj)dr, (2.2)

J(ijkl) =

∫ ∫

φ∗(r−Ri)φ(r−Rk)
e2

|r− r
′|
× (2.3)

×φ∗(r
′

−Rj)φ(r
′

−Rl)drdr
′

,
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are the matrix elements which describe the hoppings of electrons between the
nearest-neighbour sites of the lattice due to the electron-ion (V (r − Ri) is the
potential energy of an electron interacting with an ion at i-site) and electron-
electron interactions. The prime at the second sum in equation (2.1) signifies that
i 6= j.

Narrow energy bands allow one to simplify Hamiltonian (2.1). Here wave func-
tions are close to atomic 3d-functions (their overlapping decreases quickly with
the increase of the inter-atomic spacing), so matrix elements t(ij) and J(ijkl) can
be estimated from the degree of overlapping. Thus, quantities J(iiii) and J(ikik)
will be of the zero order, J(iiij), J(ijkj) – of the first order (as t(ij)), J(ijkl) at
i 6= k, j 6= l – of the second order (immediate estimation of J(ijkl) is given in
paper [3]). In accordance with this we limit ourselves to considering in Hamilto-
nian (2.1) the matrix elements J(iiii) = U , J(ijij) = V (ij) (� and j are nearest
neighbours), J(iiij) = T (ij), J(ijkj) (k 6= i, k 6= j), J(ijji) = J(ij); taking into
account the quantity of the second order J(ij) is, in principle, necessary to describe
ferromagnetism in this model in the Mott-Hubbard insulator state. Then,

H = − µ
∑

iσ

a+iσaiσ + (2.4)

+
∑′

ijσ
a+iσ(t(ij) +

∑

k

J(ikjk)nk)ajσ + U
∑

i

ni↑ni↓ +

+
1

2

∑′

ijσσ
′
J(ij)a+iσa

+

jσ′aiσ′ajσ +
1

2

∑′

ijσσ′
V (ij)niσnjσ′ ,

where ni = ni↑ + ni↓.
In Hamiltonian (2.1) we rewrite the sum

∑′
ijσk J(ikjk)a

+

iσnkajσ in the form

∑

ijσ

′ ∑

k 6=i

k 6=j

J(ikjk)a+iσnkajσ +
∑

ijσ

′ (

J(iiij)a+iσajσniσ̄ + h.c.
)

(2.5)

(σ̄ denotes spin projection which is opposite to σ). We suppose (as in papers [14,
15]) that

∑

ijσ

′ ∑

k 6=i

k 6=j

J(ikjk)a+iσnkajσ = n
∑

k 6=i

k 6=j

J(ikjk)
∑

ijσ

′

a+iσajσ

with n = 〈ni↑+ni↓〉 (sites i and j are nearest neighbours). It should be noted that
this supposition is exact in the homeopolar limit (ni = 1).

Thus, Hamiltonian (2.4) takes the following form

H = − µ
∑

iσ

a+iσaiσ +
∑′

ijσ
tij(n)a

+

iσajσ + (2.6)

+
∑′

ijσ

(

T (ij)a+iσajσniσ̄ + h.c.
)

+ U
∑

i

ni↑ni↓ +

+
1

2

∑′

ijσσ′
J(ij)a+iσa

+

jσ′aiσ′ajσ +
1

2

∑′

ijσσ′
V (ij)niσnjσ′ ,

128



A modified form of the polar model of crystals

where

tij(n) = t(ij) + n
∑

k 6=i

k 6=j

J(ikjk) (2.7)

is an effective hopping integral between the nearest neighbours.

Neglecting all the matrix elements in (2.6) except for t(ij) and J(iiii) we obtain
the Hubbard Hamiltonian.

Transition from the general form of Hamiltonian (2.6) to the Hubbard Hamil-
tonian, i.e. taking into account only the intra-atomic Coulomb repulsion, is usually
argued by the smallness of quantities J(iiij), J(ikjk), J(ijji) and J(ijij) in com-
parison with J(iiii). However, taking into account these matrix elements can be of
principal importance from the points of view of both the construction of the corre-
lation effects theory in materials with narrow energy bands and the interpretation
of physical properties of these materials [13, 15-17].

The neglecting of the inter-atomic exchange interaction is justified by the small-
ness of J(ij) in comparison with U and hopping integral t(ij), on the one hand, and
a possibility of the ferromagnetic ordering stabilization in the narrow energy band
(NEB) in consequence of the “translational” mechanism of the exchange, on the
other hand. Without the consideration of a possibility of ferromagnetism realiza-
tion in the one-band Hubbard model it should be noted that in NEB a contribution
of the translational part of energy in the total system energy can be smaller than
the contribution of energy of the inter-atomic exchange interaction (in spite of the
fact that |t(ij)| ≫ J(ij)). Really, in a partially filled NEB (for U ≫ |t(ij)|) the
contribution of the translational part of the ground state energy is ∼ nδw (δ is a
degree of deviation from half-filling, n is the average number of electrons on the
site, 2w is the bandwidth) [16], and the contribution of the exchange interaction
into the ground state energy is ∼ zn2J (J is an exchange integral between the
nearest neighbours, z is the number of the nearest neighbours to the site). It is
clear, that in the NEB close to half-filling (δ → 0) the contribution of energy of the
inter-atomic exchange interaction in the total system energy will be the biggest.
In particular, in non-doped Mott-Hubbard ferromagnets the magnetic ordering is
stabilized by the inter-atomic exchange interaction only.

Taking into account the inter-atomic Coulomb interaction is of principal im-
portance to understand the character of the charge ordering in materials with
NEB.

Finally, the neglecting of the correlated hopping (2.5) is justified by the es-
timation of matrix elements [3]. However, matrix elements J(ikjk) are hopping
integrals. Thus, taking into account (2.5) leads to renormalization of the transla-
tional processes describing the band part of Hamiltonian (2.6). Here t(ij), T (ij),
J(ikjk) are quantities of the same order.

If the direct exchange interaction and the inter-atomic Coulomb repulsion can
be taken into account by the respective renormalization of the chemical potential
(when ferromagnetic and charge orderings are absent), then Hamiltonian (2.6)
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takes the form

H = − µ
∑

iσ

niσ +
∑′

ijσ
tij(n)a

+

iσajσ + (2.8)

+
∑′

ijσ

(

T (ij)a+iσajσniσ̄ + h.c.
)

+ U
∑

i

ni↑ni↓.

As it has been noted, the peculiarity of the model of a material with NEB
described by Hamiltonian (2.8) takes into account (as most important) the inter-
site hoppings of electrons which are caused by the electron-electron interaction and
inter-atomic Coulomb and exchange interactions. In this connection the following
fact should be noted. Formally, the correlated hopping had been introduced in
some papers begining from the pioneer work by S.Schubin and S.Wonsowsky [1];
the possible renormalization of the “band” hopping in the consequence of taking
into account the correlated hopping was noted in papers [5,18,19]. For the first
time, the important role of the correlated hopping in NEB, when the approach was
used to obtain splitting into Hubbard subbands, was pointed out in paper [20]. In
that work, in particular, it was shown that NEB had an electron-hole asymmetry
and essentially renormalized bandwidths connected with the hopping in “hole and
doublon subbands”. This approach has been developed in papers [21, 22], where it
was shown that some properties of the narrow-band materials can be interpreted
using the idea of correlated hopping and are caused by the electron-hole asymmetry
in NEB.

The fact that taking into account the correlated hopping is of principal necessity
was also pointed out in papers [23]. In the recent years models with correlated
hopping have been studied intensively [24–28].

3. Partial cases of the polar model

3.1. Weak intra-atomic interaction

To simplify the consideration we use model Hamiltonian (2.8). If the intra-
atomic Coulomb interaction is weak (U < |tij(n)|), then we can take into account
the electron-electron interaction in the Hartree-Fock approximation:

ni↑ni↓ = n↑ni↓ + n↓ni↑, (3.1)

a+iσniσ̄ajσ = nσ̄a
+

iσajσ + 〈a+iσajσ〉niσ̄,

where the average values 〈niσ〉 = nσ are independent of site number (we suppose
that distributions of the electron charge and magnetic momentum are homoge-
nous). Taking into account (3.1) we can write Hamiltonian (2.8) in the following
form:

H =
∑′

ijσ
ǫσ(ij)a

+

iσajσ, (3.2)

where

ǫσ(ij) = −µ+ βσ + nσ̄U + tij(nσ); (3.3)
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βσ =
2

N

∑

ij

T (ij)〈a+iσ̄ajσ̄〉, (3.4)

tij(nσ) = tij(n) + 2nσ̄T (ij). (3.5)

The dependences of the effective hopping integral on the electron concentration
and magnetization, and the presence of a spin-dependent displasement of the band
center are the essential distinctions of the single-particle energy spectrum in the
model described by Hamiltonian (3.2) from the spectrum in the Hubbard model
for a weak interaction. The use of (3.2) allows one, in particular, to explain the
peculiarities of the dependence of the binding energy on the atomic number in
transition metals and also essentially modifies the theory of ferromagnetism in a
collective electron model.

3.2. Strong intra-atomic interaction

For typical narrow-band materials the conditions of a strong U ≫ t(ij) or
moderate U ∼ t(ij) intra-atomic Coulomb repulsion are satisfied. In this case the
Hamiltonian (2.6) using the “configurational ideology” of the polar model proposed
in [12] can be written in the form suitable for mathematical treatment. Let us
rewtrite Hamiltonian (2.6) in “configurational” representations [11,12]. Transition
to α-operators is given by the formulae:

a+iσ = α+

iσαi0 − ησα
+

i2αiσ̄, aiσ = α+

i0αiσ − ησα
+

iσ̄αi2,

where ησ = +1 when σ =↑, ησ = −1 when σ =↓, site i cannot be occupied by
electron (|0〉), singly occupied (|σ〉) or doubly occupied (|2〉). Transition to X-
operators is given by the formulae:

a+iσ = Xσ0
i − ησX

2σ̄
i , aiσ = X0σ

i − ησX
σ̄2
i , (3.6)

where Xkl
i are operators of the transition from state |l〉 to state |k〉 on site i, 1

The Hamiltonian can be written as:

H = H0 +H1 +H ′
1 +Hex, (3.7)

where

H0 = −µ
∑

i

(

X↑
i +X↓

i + 2X2

i

)

+ U
∑

i

X2

i + (3.8)

+
1

2

∑

ij

V (ij)
(

1−X0

i +X2

i

) (

1−X0

j +X2

j

)

,

1In papers [11,12] the notations of the site transition-operators Bi

kl
were introduced. In this

paper we use modern notations Xkl

i
and more convenient notations of state |ik〉.
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H1 =
∑′

ijσ
tij(n)X

σ0
i X0σ

j +
∑

ijσ

t̃ij(n)X
2σ
i Xσ2

j , (3.9)

H ′
1 =

∑′

ijσ

(

t′ij(n)
(

X↓0
i X↑2

j −X↑0
i X↓2

j

)

+ h.c.
)

, (3.10)

Hex = −
1

2

∑

ijσ

′

J(ij)
((

Xσ
i +X2

i

) (

Xσ
j +X2

j

)

+Xσσ̄
i Xσσ̄

j

)

; (3.11)

Xk
i is the operator of the number of |k〉-states on site i,

t̃ij(n) = tij(n) + 2T (ij), (3.12)

t′ij(n) = tij(n) + T (ij). (3.13)

Figure 1. The typical quasiparticle densi-
ties of states (a): the Hubbard model; (b),
(c): the model with the electron-hole asym-
metry ((b) – Mott-Hubbard insulator; (c)
– Mott-Hubbard metal); (d): unperturbed
band density of states ρ0; U , U1, U2 are the
distances between the centers of bands.

The expedience of configura-
tional representation is proved by
the fact that within it the intra-
atomic interaction takes a diagonal
form. Besides the effects of intra-
atomic Coulomb interactions, the
correlated electron translations are
described by Hamiltonians H1 and
H ′

1.
H1 describes the transitions

from |jσ〉-configurations to |i0〉-
configurations and from |j ↑↓〉- con-
figurations to |jσ〉-configurations at
neighbour sites, which forms σ − 0–
subband (“hole” subband) and 2 −
σ–subband (“doublon”subband), re-
spectively, (which are analogues to
the “lower” and “upper” Hubbard
subbands).

H ′
1 describes transitions between

σ − 0- and ↑↓ −σ-subbands (the
processes of the pair creation and
destruction of holes and doublons).
These processes are “translational”
in distinction from the “activation-
al” processes described by H1.

If we neglect the inter-atomic
Coulomb and exchange interac-
tions in Hamiltonian (3.7), then
the Hamiltonian takes the operator
structure equivalent to the Hubbard
Hamiltonian one. However, in this
model the hopping integrals in σ−0–
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and ↑↓ −σ–subbands and “interbands” hopping integrals are concentration de-
pendent and different from the Hubbard model (see figure 1). Properties of this
“asymmetrical Hubbard model” can be essentially different.

3.3. Generalized t − J model

Configurational representation is especially useful in the investigation of the
narrow-band system in which the condition U ≫ t(ij) is satisfied. In this case the
system can be both a Mott-Hubbard insulator at n = 1 and a doped Mott-Hubbard
insulator at n 6= 1. Then the general Hamiltonian, using a suitable form of the
perturbation theory [12] and generalizing the Bogolyubov perturbation theory [5]
for metallic systems can be written in the form of the effective Hamiltonian which
is convenient for mathematical treatment. Thus, the transition to the well-known
t − J model occurs (see review [29] and also papers [12, 16] where the modern
form of the t−J-model was formulated for the first time). Let us use the approach
proposed in [12] for the generalized narrow-band Hamiltonian (3.7). Let us perform
the canonical transformation

H̃ = esHe−s, (3.14)

where

S =
∑

ij

(

L(ij)
(

X↑0
i X↓2

j −X↓0
j X↑2

i

)

− h.c.
)

. (3.15)

If we limit ourselves to the quantities of the second order of a small parameter
in equation (3.14) (S is of the first order), then

H̃ = H0 +H1 +H ′
1 + [SH0] +

+ [SH1] + [SH ′
1] +

1

2
[S[SH0]] . (3.16)

We use the condition of elimination of “activational” processes

H ′
1 + [SH0] = 0. (3.17)

Taking into account the inter-atomic Coulomb interaction in the mean-field ap-
proximation we obtain

L(ij) = t′ij(n)/∆, (3.18)

where

∆ = U − V + zV
(

〈X0

i 〉+ 〈X2

i 〉
)

(3.19)

is the activation energy of the hole-doublon pair (V is the strentgh of the Coulomb
repulsion between the nearest neighbours).
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The components of commutator [S;H1] have an operator structure similar to
the one of H ′, but with “hopping integrals” of the second order; in the consid-
ered approximation they do not contribute to H̃. Thus, for the case when σ-0-
and ↑↓-σ-subbands are separated by the energy gap and t′ij(n) ≪ ∆ the initial
Hamiltonian (2.6) has the form:

H̃ = H0 +
∑′

ij
tij(n)X

σ0
i X0σ

j +

+
∑′

ijσ
t̃ij(n)X

2σ
i Xσ2

j +Hex + H̃ex + H̃t, (3.20)

where

H̃ex = −
1

2

∑′

ijσ
J̃(ij)(Xσ

i X
σ̄
j −

− Xσσ̄
i X σ̄σ

j −X2

i X
0

j ), (3.21)

H̃t = −
1

2

∑′

ijkσ
J(ijk)

(

Xσ0
i X σ̄

j X
0σ
k −Xσ0

i X σ̄σ
j X0σ̄

k

)

(3.22)

−
1

2

∑′

ijkσ
J(ijk)

(

X2σ
i Xσσ̄

j X σ̄2
k −X2σ

i X σ̄
j X

σ2
k

)

.

Here

J̃(ij) = 2t′ij(n)t
′
ij(n)/∆ (3.23)

is an integral of the indirect exchange (through polar states),

J(ijk) = 2t′ij(n)t
′
jk(n)/∆ (3.24)

is an integral of the indirect charge transfer in σ-0- and ↑↓-σ-subbands; in sum
(3.22) sites i and k are the nearest neighbours to j.

Elimination of the processes of the paired creation and destruction of holes
and doublons (in the first order over hopping integral t′ij(n)) leads to the appear-

ance of two terms H̃ex and H̃t in EH (3.20). H̃ex describes the indirect exchange
interaction (superexchange), H̃t describes the indirect hopping of electrons (sup-
perhopping). EH (3.20) generalizes the EH obtained in [12] for the Hubbard model.
The distinctions of EH (3.20) from the forms of t− J-models ([30, 31]) are caused
firstly by the concentration-dependence of the hopping integrals in σ-0- and 2−σ-
subbands, secondly, by the difference of the noted hopping integrals (the absence
of the electron-hole symmetry), secondly, and, thirdly, by the unusual form of
the superexchange and superhopping integrals (the presence of the concentration-
dependence in hopping integrals, formula (3.19) for ∆).

In a modified in this way t − J-model, in particular, the conditions of the
realization of high-Tc are more favourable than in the similar Spalek model [32].
The enumerated peculiarities of the model EH are useful for the interpretation of
the physical properties of narrow-band materials.
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3.4. “ b − c ”-representation

We give here another form of the Hamiltonian representation which is useful to
study a metal-insulator transition problem. For simplicity we consider the Hubbard
Hamiltonian. Let us introduce operators

b+iσ = a+iσ(1− niσ̄), c+iσ = a+iσniσ̄. (3.25)

One can see that

a+iσ = b+iσ + c+iσ, aiσ = biσ + ciσ. (3.26)

The Hubbard Hamiltonian in this “b-c” representation has the form:

H = H0 +H1 +H ′
1, (3.27)

with

H0 = −µ
∑

iσ

(

b+iσbiσ + c+iσciσ
)

+
U

2

∑

iσ

c+iσciσ, (3.28)

H1 = t
∑′

ijσ

(

b+iσbjσ + c+iσcjσ
)

, (3.29)

H ′
1 = t

∑′

ijσ
(b+iσcjσ + h.c.), (3.30)

where t ≡ tij . From the operator structures of the latter Hamiltonians one can
see that H1 describes the translational hopping forming “b”- and “c”-bands and
H ′

1 describes the “inter-band” hopping. Here one can see a formal analogy be-
tween the model described by Hamitontan (3.7) and the “two-configuration” Irkhin
model [33].

4. Single-particle energy spectrum. Metal–insulator tran sition

Beyond the frameworks of the approximations considered in Sect. 3 the region
of parameters, at which a width of the unperturbed band 2z|t(ij)| and a strength of
the Coulomb repulsion are close to each other, is preserved. From general physical
considerations we have to expect a metal-insulator transition (we mean n = 1)
in this region. Although a great number of papers are devoted to solving the
energy gap problem, the question of the correct description of the metal-insulator
transition remains in the focus of researchers (see, for example, [34,35]).

The most essential defect of the approximation “Hubbard-I” is the inability to
describe the metal-insulator transition (MIT) because of the presence of an energy
gap in the spectrum at all values of U/w > 0. Other approximations are free from
this defect, but have their own defects [34,35].

In this paper a new approach to the calculation of the single-particle energy
spectrum of narrow-band materials which leads to the correct description of the
metal-insulator transition is proposed. This approach is based on a variant of
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the approximate second quantized representation [36] method in the generalized
Hartree-Fock approximation (GHFA) [37].

We start from Hamiltonian (3.27) in the “b − c”-representation (3.25). Let
us suppose that any kind of electron ordering is absent (in this case the inter-
atomic interaction taken into account in the mean-field approximation leads to
the chemical potential renormalization). Let us introduce the Green function:

Gσ
ps(E) = 〈〈apσ|a

+

sσ〉〉. (4.1)

The single-particle Green function which is written in b-c-operators as

G↑
ps(E) = 〈〈bp↑|b

+

s↑〉〉+ 〈〈bp↑|c
+

s↑〉〉+ 〈〈cp↑|b
+

s↑〉〉+ 〈〈cp↑|c
+

s↑〉〉 (4.2)

is given by equation

(E + µ)〈〈bp↑|b
+

s↑〉〉 =
δps
2π

〈1− np↓〉+ 〈〈[bp↑, H1]−|b
+

s↑〉〉

+〈〈[bp↑, H
′
1]−|b

+

s↑〉〉, (4.3)

with [A,B]− = AB − BA. We suppose in equation (4.3) that

[bp↑, H1]− =
∑

j

ǫ(pj)bj↑, [bp↑, H
′
1]− =

∑

j

ǫ1(pj)cj↑, (4.4)

where ǫ(pj) and ǫ1(pj) are non-operator expressions. It gives a closed system of
equations for Green functions 〈〈bp↑|b

+

s↑〉〉 and 〈〈cp↑|c
+

s↑〉〉. After anticommutation of

the both sides of the first formula in (4.4) with b+k↑, we have

ǫ(pk)〈1− nk↓〉 = t〈1− np↓〉〈1− nk↓〉+ tb+p↓bp↑b
+

k↑bk↓

−δpkt
∑

j

b+k↑bj↑ + δpkt
∑

j

c+j↑ck↑ + tbp↓cp↑c
+

k↑b
+

k↓. (4.5)

The usual method of determining ǫ(pk) consists in the averaging of expression
(4.5). In this way approximations [3,30,38] were obtained; the defects of these ap-
proximations are known (see, for example, [39]). Here another approach is proposed
(see also [36]).

In (4.5) we write

b+k↑ = α+

k↑αk0, bk↑ = α+

k0αk↑,

c+k↓ = −α+

k↓αk0, ck↓ = −α+

k0αk↓,

where α+

ik is a creation operator of |k〉-state on i-site and αil is an annihilation
operator of |l〉-state (analogues to the Schubin-Wonsowsky opperators). Let us
substitute α-operators by c-numbers in equation (4.5)

α+

iσ = αiσ =

(

1− 2d

2

)1/2

, α+

i0 = αi0 = α+

i2 = αi2 = d1/2 (4.6)
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(a non-magnetic case, electron concentration on site n = 1); d is the concentration
of the polar states (holes or doublons). From equation (4.5), after transition to k-
representation we obtain ǫ(k) = (1−2d)t(k). Similarly, we find that ǫ1(k) = 2dt(k).
An analogous procedure is also realized in the equations for other Green functions
in (4.2).

Finally, in k-representation the single-particle Green function is

Gk(E) =
1

2π

(

Ak

E − E1(k)
+

Bk

E − E2(k)

)

, (4.7)

Ak =
1

2
−

2dt(k)
√

U2 + (4dt(k))2
, Bk =

1

2
+

2dt(k)
√

U2 + (4dt(k))2
, (4.8)

E1,2(k) = (1− 2d)t(k)∓
1

2

√

U2 + (4dt(k))2. (4.9)

The single-particle Green function (4.7) gives exact atomic and band limits: if
U = 0, then d = 1/4 and Gk(E) gets the band form, if t(k) → 0, we obtain an
exact atomic limit.

The energy gap (difference of energies between the bottom of the upper and
the top of the lower Hubbard bands)

∆E = −2w(1− 2d) +
√

U2 + (4dw)2, (4.10)

(w = z|t|, z is the number of the nearest neighbours to a site).
The difference of equations (4.7), (4.9)–(4.10) from the earlier obtained results

(see, for example, [34,35,40]) is the dependence of polar states on concentration
(and thus on temperature).

At T = 0 the concentration of polar states is

d =

(

1

4
+

U

32dw
ln(1− 4d)

)

θ(2w − U), (4.11)

Figure 2. The dependence of the en-
ergy gap with ∆Eon parameter U/(2ω) in
the considered approximation (lower curve)
and in the Hubbard-I approximation (up-
per curve).

(θ(x) = 1 if x > 0 and θ(x) = 0 if
x < 0). ∆E 6 0 when the condition
2w > U is satisfied (in agreement
with general physical ideas [40]). In
figure 2 the dependence of the en-
ergy gap width on the ratio U/2w is
shown.

At T 6= 0 and given w, U , the
gap vanishes at c < c0, where

c0 =
1− (U/2w)2

4
(2w > U);

(4.12)
if c > c0, the insulating state is
realized. Thus, the proposed ap-
proach allows one to describe a
melal-insulator transition.
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5. Specific narrow-band effects

5.1. Absence of electron-hole asymmetry in NEB

Let us consider the narrow-band system in which the electron concentration
n < 1 and the energy subbands σ-0 and ↑↓-σ are separated by gap ∆E. Thus, at
temperature kT ≪ ∆E we can limit ourselves to the consideration of the lower
σ − 0-subband. The state of such a system (doped Mott-Hubbard insulator –
DMHI) will be described by EH (3.20) in which we put the tems coresponding to
the hopping of | ↑↓〉-states equal to zero.

Figure 3. The dependences of binding en-
ergy in the considered narrow-band model
on filling of the s-band; U/W0 = 0.8; 1
– τ1 = τ2 = 0; 2 – τ1 = τ2 = 0.1; 3 –
τ1 = τ2 = 0.25.

Now, let us suppose that NEB
is in the DMHI state with n > 1.
In the Hubbard model the physi-
cal properties of the DMHI system
are equivalent both to n < 1 and
to n > 1 when condition 〈X0

i 〉 =
〈X2

i 〉 is satisfied. This peculiarity of
the Hubbard model (doublon-hole or
electron- hole symmetry) is the re-
sult of the hopping integrals equal-
ity in σ − 0- and ↑↓-σ-subbands. In
the proposed model the hopping in-
tegrals in both subbands tij(n) and
t̃ij(n) can be esentially different. Be-
sides, at the transition of the system
from the DMHI state with n < 1
to the DMHI state with n > 1 the
bandwidth has a jump equal to 2zT (ij) (and it continues to decrease with the
increase of n in the consequence of taking into account the correlated hopping; see
figure 3). So the properties of the narrow-band system with a strong intra-atomic
interaction can be very different for the cases of n < 1 and n > 1 in consequence
of the essential difference between subband widths (doublon-hole or electron-hole
asymmetry).

This non-equivalence will be shown, in particular, in the dependence of con-
ductivity on the degree of subband filling. In paper [22] it was shown that for
the DMHI the conductivity at n < 1 is σ ∼ cnw/(2 − n), and for n > 1 it is
σ̃ ∼ dw̃(2 − n)/n, (c = 〈X0

i 〉, d = 〈X2
i 〉). In the region of the electron concentra-

tion, for which ∂σ/∂n > 0(n < 1) and ∂σ̃/∂n > 0(n > 1), we have a conductivity
of n-type, and for ∂σ/∂n < 0 and ∂σ̃/∂n < 0 it is of p-type. One can see that the
n−p-type of conductivity of the narrow-band system in the DMHI state is changed
three times with the change of electron concentration from 0 to 2: in the region of
the first and second maximums (if we neglect the correlated hopping, then n1 ≃ 0, 6
and n2 ≃ 1, 4) and at n = 1. In the region of a certain conductivity type the ex-
pressions for the calculation of conductivity can be written in the Drude-Lorentz
form with the effective mass depending on the electron concentration [22].
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The non-equivalence of the cases of n < 1 and n > 1 in the concentration-
dependence of σ(n) is confirmed experimentally. In paper [41] it was shown that in
metalooxides with less than a half-filled 3d-shell (Mn2O) the conductivity is much
higher than in compounds with a half or more than a half-filled 3d-shell (MnO,
NiO).

5.2. Application of the model for the consideration of some p roperties of
narrow-band materials

Let us brieflyly consider the possibility of application of the obtained results
for the explanation of some narrow-band system properties.

1. Binding energy of 3d-metals. The binding energy in our model is defined (for
the case of weak and moderate intra-atomic interactions) by the formula:

Eb = −
∑

kσ

ǫkσ〈α
+

kσαkσ〉 − νU, (5.1)

where ǫkσ is the Fourier-component of tij , ν = n2/4 for n < 1 and ν = 1−n+n2/4
for n > 1. In the approximation of the rectangular density of states the binding
energy has the form:

Eb =
1

2w(n)

[

w2(n)− t2c
]

− νU, (5.2)

with

w(n) = w0 [1− n(τ1 + τ2)] , tc = w(n)[n− 1],

Figure 4. The dependences of the normal-
ized bandwidth at transition from the hole
(n < 1) to the electron (n > 1) type of con-
ductivity in the doped Mott-Hubbard insu-
lator. 1 corresponds to the Hubbard model
(τ1 = τ2 = 0); 2 – τ1 = τ2 = 0.1; 3 –
τ1 = 0.35, τ2 = 0.25.

where τ1, τ2 are parameters of the
correlated hopping, 2w0 is the un-
perturbed bandwidth. The depen-
dence of the binding energy on the d-
electron concentration in 3d-systems
can be determined by the gener-
alization of equation (5.1) for the
case of five-equivalent d-subbands.
Figure 4 shows that the obtained
results explain the peculiarities of
the dependence of binding energy
on the atomic number: minimum for
Mn and the presence of two non-
equivalent maximums (V, So) (as a
result of taking into account the cor-
related hopping).

2. MIT under the action of exter-
nal influences. From equation (4.20)
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one can see that the energy gap in-
creases with the increase of the current carrier concentration at given U and w
(i.e. at a constant external pressure). This increase can be caused by the increase
of temperature; the condition of the metallic state realization c < c0 in this case
cannot be satisfied. The obtained temperature dependence of ∆E can explain the
observable transition in (V1−xCrx)2O3 [42] and NiS2 [43] from a paramagnetic
metal to a Mott-Hubbard insulator with the increase of temperature.

The dependence of ∆E on the polar state concentration points out to the
possibility of specific narrow-band effects giving an opportunity to control MIT
with the help of a magnetic field and photoeffect. For example, a strong magnetic
field can cause a decrease of the polar state concentration d [22] and, therefore,
MIT occurs. Otherwise, the increase of d caused by photoeffect will stimulate the
reverse metal-to-insulator transition (analogous to the temperature change).

3. Change of the n − p type of conductivity. The change of the conductiv-
ity type about half-filling noted in Sect. 4 is confirmed experimentally for some
compounds, e.g. VOx; here, within the framework of the considered model Mott-
Hubbard insulator, the state at h = 0 corresponds to the electron concentration
n = 1 (modelling half-filled t2q-band). At h > 1 in VOx the holes (V3+) appear,
whereas at x < 1 the doublons (V+) appear. In accordance with the result of
Sect. 4, experiment [40] exhibits at h ≃ 1 a transition from the p-type (at h > 1)
to n-type conductivity (at x < 1). The analogous change of the conductivity type
is also observed in CoxFe3−xO3 [44].

4. Concentration dependence of the activation energy. In consequence of the
concentration dependence of the parameters which determine the quasiparticle
energy spectrum in σ-0 and ↑↓-σ-subbands, the activation energy has a jump at
n = 1 at the transition of the system from the state with n < 1 to the state with n >
1. In this case both the increase and decrease of the activation energy are possible
depending on the mutual arrangement of the σ-0 and ↑↓-σ-subbands relatively to
other bands. This jump of the activation energy is confirmed experimentally for
MnxFe3−xO4 [44] and SoxFe3−xO4 [41].
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Модифiкована форма полярної моделi кристалiв

Л.Дiдух

Тернопiльський державний технiчний унiверситет iменi I. Пулюя,

кафедpа фiзики, 282001 м. Тернопiль, вул. Руська, 56

Отримано 22 травня 1998 р.

Запропонована модель вузькозонного матерiалу, особливiстю якої є

врахування корельованого переносу електронiв (зумовленого елек-

трон-електронною взаємодiєю). У данiй моделi має мiсце елек-

тронно-дiркова асиметрiя (на противагу електронно-дiрковiй симе-

трiї, яка характерна для моделi Хаббарда). Для випадкiв слабких та

сильних внутрiшньоатомних взаємодiй гамiльтонiан моделi предста-

влений у формi ефективного гамiльтонiана, який узагальнює вiдомi

форми ефективних гамiльтонiанiв. Дослiджений перехiд метал-дiе-

лектрик. Розглянуто застосування запропонованої моделi до пояс-

нення особливостей фiзичних властивостей систем з вузькими зона-

ми провiдностi.

Ключові слова: вузькi зони провiдностi, модельний гамiльтонiан,

корельований перенос, електрон-дiркова асиметрiя

PACS: 71.28.+d, 71.27.+a, 71.10.Fd, 71.30.+h
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