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Long-wave spin excitations in the perfect s-d model are studied. The Hamil-
tonian of the model includes, apart from usually treated spin-electron pro-
cesses, the Heisenberg exchange interaction of atomic spins and the Cou-
lomb interaction of conductive electrons. Hartree-Fock and Tyablikov ap-
proximations are used for closing the hierarchy of equations of motion for
the double-time Green functions. The equation for the magnon excitations
spectrum in this approximation is obtained.
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1. Introduction

The properties of metals and semiconductors which include atoms of transi-
tion or rear-earth elements are investigated within different microscopic models
capacities. The s− d model occupies an important place among them. This model
takes into account the presence of the subsystem of magnetic moments localized
on atoms of transition elements and the subsystem of band electrons. These sub-
systems are connected with the exchange interaction.

Theoretical investigations of the s−d model focus on the collective spin excita-
tions, named magnons. This is caused by the following reasons. Firstly, the magnon
excitations (especially long-wave excitations can be directly explored by tests with
scattering neutrons). The comparison of the spectra obtained both theoretically
and experimentally makes it possible to conclude whether the model describes the
real system efficiently. Comparing the spectra helps one to estimate the value of
microscopic parameters.

Secondly, at a low temperature the primary contribution of the exchange spin
interaction to thermodynamic characteristics of magnetic systems is given by long-
wave magnon excitations. The magnon excitations provide an essential contribu-
tion to electrical resistance of magnetic metals within a wide temperature region
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[2-7]. In the formation of electron-electron interactions with the use of magnetic
subsystems the spin-wave excitations play an important role [8]. This is an un-
avoidable circumstance when the superconduction of fuses of rear-earth metals
and transition elements are studied. We would like to note that an effective nu-
cleus spin interaction is formed with collective electron excitations of electron shells
[9]. Therefore, information about the type of magnon excitations is important for
the purpose of a nuclear magnetic resonance.

This brief view of the phenomena and processes connected with magnons, shows
great importance of magnon analyses. The calculation of spin excitations in the
s−d model is not new, but essential success was achieved just for two limited cases:
narrow and wide conductive bands. We can assume the relation x =| I | S/W to
be the quantity criteria. Here I is the parameter of the spin-electron exchange
interaction, S is the value of the localized atomic spin (1/2 6 S 6 ∞), W is the
width of the conductive band.

The first investigations of spin waves in the s − d model concerned the sys-
tems with a wide conduction band (magnetic metals) and parameter x≪ 1. If we
describe the electron subsystem of metal within the free electron approximation,
the relation | I | S/EF is a small parameter. Here EF is the Fermy energy. It
is shown in [10] that it is possible to obtain an equation for the spin-wave spec-
trum by passing to the Bose representation of spin operators and splitting the
equation of motion for double-time temperature Green functions. The spectrum
of magnon excitations consists of two branches of optical and acoustic type. This
result was confirmed later by using a diagram method for the Matsubara-Green
function [11]. It is demonstrated in [12] that the form of spectra of a spin wave
in degenerated semi-conductors is similar to the spin-wave spectrum of band fer-
romagnetic. This work explores two extreme cases: low density of current barriers
and a half-completed conduction band. Elementary excitations in an anisotropic
magnetic semiconductor were studied in [13]. The low density spectrum of Fermi-
and Bose-type excitations was calculated. The existence of two branches of exci-
tations was demonstrated. The contribution of these branches to low temperature
magnetization for different types of anisotropy was analyzed.

Papers [14-18] are dedicated to magnon excitations spectra for the narrow-
band magnetic semiconductors. In paper [14] the existence of an acoustic and op-
tical branches was demonstrated by using an approximation similar to the random
phases approximation. The hierarchy of equations for the calculation of magnetiza-
tion and critical temperature was obtained in the approximation of the molecular
field. An equation for the magnon Green function was obtained in the second
approximation with respect to the parameter of s − d exchange interaction. The
results are presented in [16-18].

A number of tasks were considered in [19-21] by applying the Hartree-Fock
approximation. Among them were magnetization, a spin-wave spectrum, magnon-
phonon interaction, the elementary magnetic excitations life-time and others. In
this approximation we have found that magnetization achieves its maximum value
when W = 0 (W is the conduction band width). When the conduction band width

146



Long-wave spin excitations

increases, the magnetization and the critical temperature decrease.

The purpose of our work is to calculate the spin wave spectrum for crystaline
s − d models. The application of the spin Green functions makes it possible to
obtain an equation for the spectrum in a long-wave region. The results obtained
for crystal systems are the generalization of the research carried out in [15-16].
In particular, we investigated the influence of the Coulomb interaction between
electrons on the spectrum and its damping.

2. Hamiltonian of a generalized s − d model

Here we explore a model which describes the connection of localized atomic
spins and the conductive electrons subsystem by exchange interaction. Atomic
coordinates R1, . . . ,RN may take on any value within the volume V ⊂ R

3 . At the
same time it is assumed that space atomic distribution is homogenous and may
be characterized by the atomic density ρ = N/V in the thermodynamic limit.

The initial model Hamiltonian in the site representation is:

Ĥ =
∑

16j6N

∑

σ

Ej,σn̂jσ − gµBh
∑

16j6N

Sz
j +

∑

16i 6=j6N

∑

σ

Tija
+
iσajσ+

+
U

2

∑

16j6N

∑

σ

n̂jσn̂j−σ +
I

2

∑

16j6N

∑

σ

(

σSz
j n̂jσ + Sσ

j a
+
j,−σajσ)

)

−

−1

2

∑

16i 6=j6N

Jij

(

Sz
i S

z
j +

1

2
(S+

i S
−
j + S−

i S
+
j )

)

. (1)

Here a+jσ(ajσ) are the creation and annihilation operators of the electrons in local-
ized s-states of the atom situated in point Rj of the volume V . The index σ takes
values σ =↑, ↓ (or σ = ±1) according to spin orientation to quantization axis OZ.

The coefficients that are diagonal with respect to site indexes

Ej,σ = Ej −
1

2
σµBh, σ = ±1 (2)

characterize the energy value of single-electron levels of the j-th atom when the
external magnetic field h is applied. µB is the Bohr magneton.

The state of the electron localized on the j-th atom may be described by the
s-type hydrogen wave function

ψj(r) =

√

1

πa3
exp

(

−| r −Rj |
a

)

. (3)

Here a - is the effective Bohr radius. The integral

Sij =

∫

V

ψ∗
i (r)ψj(r)dr, Ri 6= Rj
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is a quantitative characteristic of the overlap degree for orbits of different atoms.
The penetration integral in the 0 6 Sij 6 1 interval depends on the wave function
hybridization range. For orbital (3) the integral Sij may be expressed as

Sij =

[

1 +
| Ri −Rj |

a
+

1

3

| Ri −Rj |2
a2

]

exp

(

−| Ri −Rj |
a

)

. (4)

The narrow conduction bands yield small overlap integrals values. We can assume
the relation a/R̄0 = (4/3πρa3)1/3 to be quantitative criteria of the wave functions
overlap. Here R̄0 = (3/4πρ)1/3 means an average distance between the atoms if
their distribution in the volume V is homogenous, ρ is the atomic density.

Matrix elements of the transition between states presented by wave functions
(3) are of the following analytical form:

Tij = T0

[

1 +
| Ri −Rj |

a

]

exp

(

−| Ri −Rj |
a

)

, (5)

here T0 - is the energy of the atomic level.
Model (1) may describe the electron and magnetic properties of numerous ob-

jects like crystals, displacement alloys, amorphous compositions, magnetic metals
alloys. The atomic levels εj may take on random values (a diagonal disorder) for
structurally disordered models. Matrix elements Tij ≡ T (| Ri −Rj |), which are
integrals of electron skipping between atoms Ri and Rj, take random values, too
(a non-diagonal disorder).

The intensity of spin-spin exchange interaction is described by the parameter
Jij ≡ J(| Ri −Rj). It is assumed that Jij is positive for any inter-atomic distances
if | Ri −Rj |> 0. The parameter I of the spin-electron interaction may be either
positive or negative. The Coulomb integral U describes the intensity of repulsion
between electrons of the opposite spin localized on the same s- orbital. The electron
interaction is assumed to be short-range, similarly to the Stoner model.

3. Equation of motion for the Green’s function of the s − d

model

Let us determine the electron spin operators by the relations:

mz
j =

1

2

∑

σ=±1

σn̂jσ ≡ 1

2
(n̂j↑ − nj↓), (6)

m+
j = a+j↑aj↓, m−

j = a+j↓aj↑. (7)

The operator mz
j means the spin polarization operator of the atom situated in

point Rj . In their turn, operators m±
j describe the process of reorientation to the

quantum axis. The commutation relations for operators (7) are the following:

[mz
i , m

σ
j ] = σmσ

i δij , [mσ
i , m

σ
′

j ] = 2σmz
i δijδσ,−σ

′ , σ, σ′ = ±1. (8)
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The algebra for operators mz
j , m±

j is similar to the algebra for operators Sz
j , S±

j

of localized atomic spins.
It is necessary to calculate the matrix of double-time temperature Green func-

tions in a frequency representation to be able to describe spin excitations in model
(1)

K̂ij (ω) ≡
[ 〈〈S+

i |S−
j 〉〉ω 〈〈m+

i |S−
j 〉〉ω

〈〈S+
i |m−

j 〉〉ω 〈〈m+
i |m−

j 〉〉ω

]

. (9)

The components of matrix K̂ij (ω) are related to double-time retarded Green func-
tions by the Fourier transformation:

K̂ij (ω) =
1

2π

∫ ∞

−∞

d(t− t′)Kij (t− t′) exp[iω(t− t′)]. (10)

The double-time retarted Green function is by definition:

K̂ (t− t′) ≡ 〈〈Âi(t)|B̂j(t
′)〉〉ω = −iΘ(t− t′)〈[Âi(t), B̂j(t

′)]−〉. (11)

Here Âi(t) � B̂j(t
′) denote the corresponding operators from a set of spin operators

on which function (9) is defined. The operators depend on time via the Heisenberg
representation. Symbol 〈(. . .)〉 means thermodynamic averaging over the Gibbs
distribution with the Hamiltonian (6).

The Fourier components (10) of Green functions (11) correspond to the follow-
ing equations of motion:

ω〈〈Âi|B̂j〉〉ω =
1

2π
〈[Âi, B̂j ]−〉+ 〈〈[Âi, Ĥ]−|B̂j〉〉ω. (12)

The correlator 〈B̂j(t
′)Âi(t)〉 is obtained from the spectral theorem

〈B̂j(t
′)Âi(t)〉 = i lim

ǫ→0

∫ ∞

−∞

〈〈Âi|B̂j〉〉ω+iε − 〈〈Âi|B̂j〉〉ω−iε

eβω − 1
e−iω(t−t′)dω, (13)

where β = (kBT )
−1 - is the reciprocal temperature in energy units.

For the spin Green function (9) we obtain the following system of equations of
motion :

(ω − gµBh+ Imi)〈〈S+
i |S−

j 〉〉ω =
1

2π
2Miδij + IMi〈〈m+

i |S−
j 〉〉ω+

+
∑

16n6N

Jin

(

Mn〈〈S+
i |S−

j 〉〉ω −Mi〈〈S+
n |S−

j 〉〉ω
)

, (14)

(ω − µBh+ IMi)〈〈m+
i |m−

j 〉〉ω =
1

2π
2miδij + Imi〈〈S+

i |m−
j 〉〉ω+

+
∑

16n6N

Tin

(

Q↑
in,j(ω)−Q↑

ni,j(ω)
)

, (15)
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(ω − gµBh+ Imi)〈〈S+
i |m−

j 〉〉ω = IMi〈〈m+
i |m−

j 〉〉ω+

+
∑

16n6N

Jin

(

Mn〈〈S+
i |m−

j 〉〉ω −Mi〈〈S+
n |m−

j 〉〉ω
)

, (16)

(ω − µBh+ IMi)〈〈m+
i |S−

j 〉〉ω = Imi〈〈S+
i |S−

j 〉〉ω+

+
∑

16n6N

Tin

(

P ↑
in,j(ω)− P ↑

ni,j(ω)
)

. (17)

In this equation we use the following notation Mi = 〈Sz
i 〉, mi = 〈mz

i 〉. The quan-
tities Mi and mi are the average thermodynamic values of magnetization of a
localized spin and the electron-spin polarization of an atom at Rj ∈ V respec-
tively. We designate the three-center spin-electron Green functions by P σ

ni,j(ω) and
Qσ

ni,j(ω):

P σ
in,j(ω) = 〈〈a+iσan,−σ|S−

j 〉〉ω, σ =↑, ↓, (18)

Qσ
in,j(ω) = 〈〈a+iσan,−σ|m−

j 〉〉ω, σ =↑, ↓ . (19)

The following approximations for higher-order Green functions are used to close
the equation hierarchy:

〈〈mz
iS

+
i |B̂j〉〉ω ≃ mi〈〈S+

i |B̂j〉〉ω,
〈〈Sz

nS
+
i |B̂j〉〉ω ≃Mn〈〈S+

i |B̂j〉〉ω,
〈〈Sz

im
+
i |B̂j〉〉ω ≃Mi〈〈m+

i |B̂j〉〉ω,
〈〈Sz

i S
+
n |B̂j〉〉ω ≃ Mi〈〈S+

n |B̂j〉〉ω. (20)

Writing B̂j we mean the operator S−
j or m−

j . The approximation of type (20) is
known as the Tyablikov decoupling in the Heisenberg magnetic theory. The char-
acteristic feature of this approximation is that factorization of higher-order Green
functions is done for non-coinciding site indices (Ri 6= Rn) of spin operators.
The Tyablikov approximation yields wrong results for coinciding site indices. The
physical meaning and the region of validity of this approximation are thoroughly
discussed in [5]. We note that in relations (20) approximation is made for simi-
lar operator site indices. But these operators belong to different subsystems and
commute with each other, so this approximation is equivalent to the Tyablikov
decoupling procedure.

The equation for the three-center Green functions (18) is

(ω − Zσ
in)P

σ
in,j(ω) =

∑

16l6N

(

TnlP
σ
il,j(ω)− TliP

σ
ln,j(ω)

)

+

+
1

2
Iδσ,↑

(

f ↑
in〈〈S+

n |S−
j 〉〉ω − f ↓

in〈〈S+
i |S−

j 〉〉ω
)

+

+
1

2
Iδσ,↓

(

f ↓
in〈〈S+

n |S−
j 〉〉ω − f ↑

in〈〈S+
i |S−

j 〉〉ω
)

−
−mUδin〈〈a+iσai,−σ|S−

j 〉〉ω, (21)
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and the equation for function (19) is

(ω − Zσ
in)Q

σ
in,j(ω) =

1

2π

(

δnjf
σ
in − δijf

−σ
in

)

+

+
∑

16l6N

(

TnlQ
σ
il,j(ω)− TliQ

σ
ln,j(ω)

)

+

+
1

2
Iδσ,↑

(

f ↑
in〈〈S+

n |m−
j 〉〉ω − f ↓

in〈〈S+
i |m−

j 〉〉ω
)

+

+
1

2
Iδσ,↓

(

f ↓
in〈〈S+

n |m−
j 〉〉ω − f ↑

in〈〈S+
i |m−

j 〉〉ω
)

−
−mUδin〈〈a+iσai,−σ|m−

j 〉〉ω. (22)

Here

Zσ
in = En − Ei + σµBh+ U(1− δin)[〈n̂nσ〉 − 〈n̂i,−σ〉]−

1

2
Iσ(Mn +Mi), (23)

and the correlation function

fσ
in = 〈a+iσanσ〉, σ =↑, ↓ . (24)

We apply the Hartree-Fock approximation and the decoupling for higher-order
Green functions similar to (20) to close the equation hierarchy (21)-(22).

On the basis of the obtained equation one immediately gets an equation for
the Green functions 〈〈S+

i |S−
j 〉〉ω and 〈〈m+

i |m−
j 〉〉ω, that yield a spin excitation spec-

trum. After some algebraic transformation one obtains the following equation for
function 〈〈S+

i |S−
j 〉〉ω:

(

ω − gµBh+ Imi
ω − µBh

ω − µBh+ IMi

)

〈〈S+
i |S−

j 〉〉ω = 2Mi
δij
2π

+

+
IMi

ω − µBh+ IMi

∑

16n6N

Tin

[

P ↑
in,j(ω)− P ↑

ni,j(ω)
]

+

+
∑

16n6N

Jin

[

Mn〈〈S+
i |S−

j 〉〉ω −Mi〈〈S+
n |S−

j 〉〉ω
]

, (25)

and for function 〈〈m+
i |m−

j 〉〉ω
(

ω − µBh+ IMi
ω − gµBh

ω − gµBh+ Imi

)

〈〈m+
i |m−

j 〉〉ω = 2mi
δij
2π

+

+
I2mi

ω − gµBh+ Imi

∑

16n6N

Jin

[

MiMn

ω − gµBh+ Imi
〈〈m+

i |m−
j 〉〉ω−

− MiMn

ω − gµBh+ Imn
〈〈m+

n |m−
j 〉〉ω

]

+
∑

16n6N

Tin

[

Q↑
in,j(ω)−Q↑

ni,j(ω)
]

(26)

respectively. The calculation of the Green functions with the help of the obtained
equations demands the definition of the structure disorder.
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It is apparent that the written equations are not sufficient for a self-consistent
calculation of the spin-wave spectrum. Particularly, we need to calculate the one-
electron Green function

Gij,σ(ω) = 〈〈aiσ|a+jσ〉〉ω = −iΘ(t − t′)〈[aiσ(t), ajσ(t′)]+〉.

to calculate correlators fσ
i,n and 〈n̂iσ〉. If the decoupling similar to the mentioned

one is applied, the equation for the one-electron Green function may be written in
the next form:

(ω −Πiσ)Gij,σ(ω) =
1

2π
δij +

∑

16n6N

TinGin,σ(ω), (27)

Here the value

Πiσ = Ei −
σµBh

2
+ U〈n̂i,−σ〉+

1

2
σIMi (28)

characterizes the energy of the electron localized on the i-th atom. Now equations
(14)-(17), (21)-(22) and (27) form a closed hierarchy.

4. Equations for the magnon excitations spectrum

For the crystalline structure of the initial s -d model one has Mi = M , mi =
m, and 〈n̂iσ〉 = nσ for all sites of the lattice. These relations hold due to the
translational symmetry of the crystal structure.

It is more convenient to work with Green functions in the momentum space,
making decomposition of the spin and Fermi operators to Fourier series on the
lattice:

S±
j =

1√
N

∑

k

S±
k e

±ikRj ,

a±jσ =
1√
N

∑

k

a±kσe
∓ikRj , (29)

Here operator a−jσ ≡ ajσ. The wave vector k takes its values within the first Bril-
louin zone. The inverse to (29) Fourier transformation reads:

S±
k =

1√
N

∑

16j6N

S±
j e

∓ikRj ,

a±kσ =
1√
N

∑

16j6N

a±jσe
±ikRj . (30)

Then, equation (25) in the momentum representation takes the form:

(

ω − gµBh+
Im(ω − µBh)

ω − µBh+ IM
−M(J0 − Jk)

)

〈〈S+
k |S−

q 〉〉ω =
δk,q
2π

2M+
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+
IM

ω − µBh+ IM

1√
N

∑

p

tp

(

〈〈a+p−k,↑ap,↓|S−
q 〉〉ω − 〈〈a+p,↑ap+k,↓|S−

q 〉〉ω
)

. (31)

and equation (26) can be written as

(

ω − µBh+
IM(ω − gµBh)

ω − gµBh+ Im
− I2M2m(J0 − Jk)

(ω − gµBh+ Im)2

)

〈〈m+
k |m−

q 〉〉ω =
δk,q
2π

2m+

+
1√
N

∑

p

tp

(

〈〈a+p−k,↑ap,↓|m−
q 〉〉ω − 〈〈a+p,↑ap+k,↓|m−

q 〉〉ω
)

. (32)

Here the Fourier coefficients of exchange interaction and the matrix element of the
hopping integral have the form:

Jk =
1

N

∑

16i,j6N

Jije
−ik(Ri−Rj),

tk =
1

N

∑

16i,j6N

Tije
−ik(Ri−Rj). (33)

The inverse to relation (33) Fourier transformation reads:

Jin =
1

N

∑

k

Jke
ik(Ri−Rn),

Tin =
1

N

∑

k

tke
ik(Ri−Rn). (34)

4.1. Calculation of the function 〈〈S+

k |S−

q
〉〉

ω

The diagonal matrix elements of the Green function 〈〈S+
k |S−

q 〉〉ω are also con-

nected with site functions 〈〈S+
i |S−

j 〉〉ω via the Fourier transformation

〈〈S+
i |S−

j 〉〉ω =
1

N

∑

k

〈〈S+
k |S−

k 〉〉ωeık(Ri−Rj),

〈〈S+
k |S−

k 〉〉ω =
1

N

∑

1≤i,j≤N

〈〈S+
i |S−

j 〉〉ωe
−ık(Ri−Rj). (35)

The right-hand side of equation (31) includes the function 〈〈a+k,↑ap,↓|S−
q 〉〉ω , that is

a Fourier transform of the Green function P σ
in,j(ω). For this function, on the basis

of (21), one easily obtains the equation:

〈〈a+k,↑ap,↓|S−
q 〉〉ω=

I

2
√
N

f ↑
k − f ↓

p

Λ(ω)− tp + tk
〈〈S+

p−k|S−
q 〉〉ω −

2Um

Λ(ω)− tp − tk
M↑(k,p; q|ω).

(36)
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Here

fσ
k =

1

N

∑

16i,j6N

fσ
ije

−ik(Ri−Rj) (37)

is the distribution function of electrons in the momentum space.
The last term in the right-hand side of equation (36) contains the function

M↑(k,p; q|ω) ≡M↑(p− k; q|ω) = 1

N

∑

g

〈〈a+g+k,↑ag+p,↓|S−
q 〉〉ω, (38)

that satisfies the following integral equation:

M↑(k,p; q|ω) = 1

2
√
N
A(k,p|ω)〈〈S+

p−k|S−
q 〉〉ω−

−2Um

N

∑

g

1

Λ(ω)− tg+p + tg+k

M↑(g + k, g + p; q|ω). (39)

Here coefficients

A(k,p|ω) ≡ A(p− k|ω) = 1

N

∑

g

f ↑
g+k − f ↓

g+p

Λ(ω)− tg+p + tg+k

(40)

and Λ(ω) = ω − µBh+ IM − 2Um.
Thus, equations (31, (36) and (39) form a closed set of equations. From these

equations one can find the spin Green function 〈〈S+
k |S−

q 〉〉ω. Let us make the sim-
plest approximation in equation (39) by neglecting the integral term. In this ap-
proximation

M↑(p− k; q|ω) ≃ 1

2
√
N
A(p− k|ω)〈〈S+

p−k|S−
q 〉〉ω. (41)

Neglecting the integral term in (39) is justified if U/W ≪ 1, where W - is the
width of Stoner subbands. Such criteria agree with the condition of validity of the
Hartree-Fock approximation. After some algebraic transformation one obtains the
final result for the Green function:

〈〈S+
k |S−

q 〉〉ω =
ω − µBh+ IM

R(k;ω)

M

π
δk,q. (42)

Here the denominator is defined as

R(k, ω) = [ω − gµBh−M(J0 − Jk)] [ω − µBh+ IM ] + Im(ω − µBh)−

−I
2M

2N

∑

p

(tp+k − tp)(f
↑
p − f ↓

p+k)

ω −E0
p+k,↓ + E0

p,↑

+

+I2MUmχ+−
0 (k|ω) 1

N

∑

p

tp+k − tp
ω − E0

p+k,↓ +E0
p,↑

, (43)
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In equation (43) the function

χ+−
0 (k|ω) = 1

N

∑

p

f ↑
p − f ↓

p+k

ω − E0
p+k,↓ + E0

p,↑

(44)

is well known from the electron gas theory. In its terms, in particular, one can
express the generalized transverse susceptibility of electron subsystems in metals
[1–4]. The spectrum E0

p,σ of band electrons is given below.

4.2. Calculation of the function 〈〈m+

k |m
−

q
〉〉

ω

For the function 〈〈a+k,↑ap,↓|m−
q 〉〉ω, which is included in equation (32), we get

the equation

[Λ(ω)− tp + tk]〈〈a+k,↑ap,↓|m−
q 〉〉ω =

δp−k,q

2π
√
N
(f ↑

k − f ↓
p )+

+
I

2
√
N
(f ↑

k − f ↓
p )〈〈S+

p−k|m−
q 〉〉ω − 2UmN↑(k,p; q|ω). (45)

Here the Green function

N↑(k,p; q|ω) ≡ N↑(p− k; q|ω) = 1

N

∑

g

〈〈a+g+k,↑ag+p,↓|m−
q 〉〉ω. (46)

Let us use an approximation similar to the one used when we calculated functions
〈〈S+

k |S−
q 〉〉ω, then we obtain an expression for the Green function 〈〈a+k,↑ap,↓|m−

q 〉〉ω

〈〈a+k,↑ap,↓|m−
q 〉〉ω =

δp−k,q

2π
√
N

f ↑
k − f ↓

p − 2UmA(p − k|ω)
ω − µBh+ IM − 2Um− tp + tk

+

+
I

2
√
N

f ↑
k − f ↓

p − 2UmA(p− k|ω)
ω − µBh+ IM − 2Um− tp + tk

〈〈S+
p−k|m−

q 〉〉ω. (47)

The function A(p − k|ω) is defined by equation (40). From equation (16) in the
momentum space we obtain

〈〈S+
k |m−

q 〉〉ω =
IM

ω − gµBh+ Im−M(J0 − Jk)
〈〈m+

k |m−
q 〉〉ω. (48)

Now from equation (32) let us obtain the final expression for the Green function

〈〈m+
k |m−

q 〉〉ω =
δk,q
2π

2m+ F (k|ω)
ω − µBh+G(k|ω) . (49)

Here we use the notations

F (k|ω) = 1

N

∑

p

(tp − tp−k)
(

f ↑
p−k − f ↓

p − 2UmA(k|ω)
)

ω − µBh+ IM − 2Um− tp + tp−k

, (50)
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and function G(k|ω) in the Green function denominator is

G(k|ω) = IM(ω − gµBh)

ω − gµBh+ Im
− mI2M2(J0 − Jk)

(ω − gµBh+ Im)2
−

−I
2M

2

F (k|ω)
ω − gµBh+ Im−M(J0 − Jk)

. (51)

Equation (50) can be rewritten as

F (k|ω) = − 1

N

∑

p

(f ↑
p − f ↓

p+k) + (ω +∆0)χ
+−
0 (k, ω)−

−2Umχ+−
0 (k, ω)

[

1

N

∑

p

ω +∆0

ω − E0
p+k,↓ + E0

p,↑

− 1

]

. (52)

Here the spectrum of band electrons is expressed by

E0
k,σ = tk +

Un

2
+
σ

2
(IM − µBh− 2Um), σ = ±1. (53)

From the last relation we can conclude that the electron band spectrum consists
of two subbands which correspond to spin-polarized states of electrons. This is a
well-known fact in the theory of s−d models of metal magnetism [1,2], [10,11]. The
Stoner gap that characterizes a shift of one subband with respect to the others is
given by the formula

∆ = IM − 2Um− µBh, (54)

and ∆0 = IM − 2Um is the Stoner gap in the absence of the external magnetic
field.

In formula (53) the term Un/2 (n – is the number of band electrons per one
atom of metal) describes the shift of electron energy of both Stoner subbands to
the Hartree-Fock energy.

4.3. Spectrum

The Green functions poles determine the energy of magnon excitations in the
system. From the requirement R(k, ω) = 0, when h ≡ 0, we find an equation for
the spin excitation spectrum:

[ω −M(J0 − Jk)] [ω + IM ] + Imω+

+
I2M

2

[

1

N

∑

p

(f ↑
p − f ↓

p+k)− (ω +∆0)χ
+−
0 (k, ω)

]

+

+I2UMmχ+−
0 (k, ω)

[

1

N

∑

p

ω +∆0

ω −E0
p+k,↓ +E0

p,↑

− 1

]

= 0. (55)
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Relation (55) is a rather complicated transcendent equation with respect to ω.
However, while solving it one must take into account the assumptions made while
calculating the Green functions. In particular, equation (55) is valid in the long-
range limit k → 0, which pertains to the Tyablikov-like decoupling.

For the wave vector k = 0 the solution of equation (55) consists of two roots:

ω+
0 ≡ ω+(k = 0) = 0; ω−

0 ≡ ω−(k = 0) = −I(m+M). (56)

Thus, for small wave vector values there are two branches of spin excitation: one is
of an “optical” and the other of an “acoustic” type. The dispersion of the acoustic
branch in the long-wave region is determined from the transcendental equation

ω+ =
M2

m+M
(J0−Jk)−

IM

2(m+M)

[

1

N

∑

p

(f ↑
p − f ↓

p+k)− (ω+ +∆0)χ
+−
0 (k, ω+)

]

−

−IMUm

m+M
χ+−
0 (k, ω)

[

1

N

∑

p

ω+ +∆0

ω+ − Ep+k,↓ +E0
p,↑

− 1

]

, (57)

and for the optical branch-from the following equation:

ω− = −I(m+M) +
mM

m+M
(J0 − Jk)+

+
IM

2(m+M)

[

1

N

∑

p

(f ↑
p − f ↓

p+k)− (ω− +∆0)χ
+−
0 (k, ω−)

]

+

+
IMUm

m+M
χ+−
0 (k, ω−)

[

1

N

∑

p

ω− +∆0

ω− − Ep+k,↓ + E0
p,↑

− 1

]

. (58)

When we have an identity to zero of the following values Jk ≡ 0 and U ≡ 0,
which indicates the absence of direct spin-spin and Coulomb interactions, it is
possible to receive a dispersing equation for an ordinary s− d-model.

ω+ = − IM

2(m+M)

1

N

∑

p

(tp+k − tp)(f
↑
p − f ↓

p+k)

ω+ −E0
p+k,↓ + E0

p,↑

, (59)

ω− = −I(m+M) +
IM

2(m+M)

1

N

∑

p

(tp+k − tp)(f
↑
p − f ↓

p+k)

ω− − E0
p+k,↓ +E0

p,↑

(60)

The following equations (59-60) have a different functional form in comparison
with equation [17] because in calculations of the spectrum another approximation
was used.

For the small values of wave vector k the magnon dispression law is quadratic:

ω+(k) = ω+
0 +

M

m+M
D1k

2 − 1

2

M

m+M

D+
2

ω+
0 +∆0

k2,
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ω−(k) = ω−
0 +

M

m+M
D1k

2 +
1

2

M

m+M

D−
2

ω−
0 +∆0

k2, (61)

where D1 is the spin stifness constant, taking into account only a direct spin-spin
interaction. The quantities

D±
2 =

1

N

∑

q

[

1

2
(f ↑

q + f ↓
q )q

2(∇)2tq +
1

ω±
0 +∆0

(f ↑
q − f ↓

q )(q∇tq)
2

]

(62)

determine the correction to magnon masses conditioned by spin-electron interac-
tions.

The equation for the spectrum of spin waves can also be derived from the pole
of the Green function 〈〈m+

k |m−
q 〉〉ω. From formula (49) the equation follows:

(ω + IM) [ω + Im−M(J0 − Jk)]−
I2M

2
F (k|ω) = 0 (63)

From this equation, under the long-wave boundary condition, dispersing ratio of
the acoustic and optical branches identical to expressions (57)-(58) are obtained.

Conclusions

The Hartree-Fock and Tyablikov approximations are used for closing the equa-
tions of motion for the Green functions, and equations for the spectrum of spin
waves of the s − d model are obtained. In the long-wave region there are two
branches of magnon excitations. So the spectrum structure of s−d spin-wave exci-
tations is known and described in papers [1, 15-16]. The physical nature of the two
branches of the spectrum indicates, that the s−d model is in some sense equivalent
to two-sublattice ferromagnetic. The equations obtained for partial cases yield the
results like in the papers mentioned above.

Equations (57)-(58) are correct for both the ferromagnetic type of spin-electron
interaction (J < 0) and for the antiferromagnetic one (J > 0). But in the second
case it is necessary to redefine the expression for full magnetization by replacing
M + m with M − |m| and the electron spin polarization m with −|m| in the
equations.
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Довгохвильвi спінові збудження кристалічних s − d

моделей

Ю.Рудавський, Г.Понеділок, Л.Дорош

Державний університет “Львівська політехніка”

290646 м. Львів–13, вул. С.Бандери, 12

Отримано 6 червня 1998 р.

Досліджуються довгохвильові спінові збудження в кристалічній s−d

моделі. В гамільтоніані моделі крім стандартних спін–електронних

процесів враховано також обмінні гейзенбергівські взаємодії локалі-

зованих атомних спінів та кулонівські взаємодії між електронами про-

відності. Використовується розщеплення типу Хартрі-Фока і Тябліко-

ва для замикання ланцюжка рівнянь руху двочасових температурних

функцій Гріна. Отримано рівняння для спектру магнонних збуджень.

Ключові слова: магнон, намагніченість, закон дисперсії

PACS: 75.30.Ds, 75.50.K
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