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Unlike to superfluid 4He the superfluid 3He-A support the existence of vortices with half-quantum of circula-
tion as well as single quantum vortices. The singular single quanta vortices as well as nonsingular vortices with 
2 quanta of circulation have been revealed in rotating 3He-A. However, the half-quantum vortices in open geom-
etry always possess an extra energy due to spin-orbit coupling leading to formation of domain wall at distances 
larger than dipole length ∼10–3 cm from the vortex axis. Fortunately the same magnetic dipole–dipole interaction 
does not prevent the existence of half-quantum vortices in the polar phase of superfluid 3He recently discovered 
in peculiar porous media “nematically ordered” aerogel. Here we discuss this exotic possibility. The discoveries 
of half-quantum vortices in triplet pairing superconductor Sr2RuO4 as well in the exciton–polariton condensates 
are the other parts of the story about half-quantum vortices also described in the paper. 

PACS: 67.25.D– Superfluid phase; 
67.30.H– Superfluid phase of 3He. 
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1. Introduction 

The quantization of circulation around vortex lines in 
superfluid 4He has been pointed out first by Lars Onsager 
in his famous remark [1] at the conference on statistical 
mechanics in Florence in 1949. The states of superfluid are 
described by the order parameter which is complex func-
tion | | eiϕψ , hence the phase ϕ “may be multiple-valued, 
but its increment over any closed path must be a multiple 
of 2π , so that the wave-function will be single-valued. 
Thus the well known invariant called hydrodynamic circu-
lation is quantized; the quantum of circulation is 4/ ,...”h m
Indeed, the superfluid velocity is given by the gradient of 
phase 4= /s m∇ϕv  , hence, velocity circulation over a 
closed path γ is 

 
4
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The quantized vortices differ each other by the integer 
number of circulation quanta N. In superfluid 4He the vor-
tices with one quantum of circulation 4/h m  are usually 
created by the vessel rotation such that in equilibrium 
the total circulation around all vortices corresponds to 
the circulation of classic liquid rotating with given angular 
velocity [2]. The energy of vortex per unit length 
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is proportional to square of circulation, hence, the vortices 
with circulation quanta higher than 1 are unstable to decay 
for the vortices with one circulation quanta. Here, R is ves-
sel size and a is the coherence length which is of the order 
of the interatomic distance in liquid 4He. 

Magnetic field acts as rotation in case of charged super-
fluids, so in superconductors the quantized vortex lines 
also carry one quantum of magnetic flux 0 = / 2hc eφ  and 
fixed value of magnetic moment 0 / 4φ π  [3]. The vortices 
with multiple flux quantum are energetically unstable in 
respect to decay to the single quantized vortices. This pro-
cess can be written as sort of conservation law, for instance 
2 = 1+1, of quanta of circulation. 

The superfluid phases of 3He discovered in 1972 were 
proved to be much reacher in respect of types of stable 
defects in the order parameter distribution. For instance, in 
superfluid 3He-A there were predicted 4 type of stable vor-
tices [4] with = 0, 1/ 2, 1N ±  and the following algebra of 
addition of the circulations: 1 + 1 = 0, 1/2 + 1/2 = 1. Half-
integer vortices in 3He-A till now were not registered. On 
the contrary, half-integer flux quantization has been ob-
served in cuprate superconductors [5] where it was proved 
to be a powerful tool for probing the d-wave symmetry of 
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the superconducting gap. The discovery of vortices with 
half-quantum flux has been reported recently in mesoscop-
ic samples of spin-triplet superconductor Sr2RuO4 similar 
to superfluid 3He-A [6]. Even earlier half-quantum vortices 
have been revealed in quite different ordered media — 
an exciton–polariton condensate [7]. 

Here we discuss the new possibility of half-quantum 
vortices realization that appeared with stabilization of polar 
phase of superfluid 3He in so-called “nematically ordered” 
aerogel [8]. With this purpose in chapter 2 we introduce 
the notion of half-quantum vortices in superfluid 3He-A. 
The advantages of realization of such type vortices in the 
superfluid polar state will be described in the following 
chapter. The story about discovery of half-quantum flux 
states in Sr2RuO4 is the subject of the chapter 4. We con-
clude by mention of other even more exotic possibilities of 
half-vortices realization in a supersolid and in particular in 
Fulde–Ferrel–Larkin–Ovchinnikov superconducting state. 

2. Vortices in superfluid 3He-A 

The matrix of order parameter of superfluid 3He-A 

 = ( ) / 2A
i iiA V iα α ′ ′′∆ ∆ + ∆  (3) 

is given [9] by the product of its spin and orbital parts. The 
unit spin vector V is situated in the plane perpendicular to 
the direction of spin up-up |↑↑〉  and down-down |↓↓〉  
spins of the Cooper pairs. The vectorial product =′ ′′×Δ Δ l 
of orthogonal unit vectors ,′ ′′Δ Δ  determines the direction 
of the Cooper pairs orbital momentum l. The superfluid 
velocity in such a liquid is determined by 

 
3

= .
2s i iv

m
′ ′′∆ ∇∆

  (4) 

The velocity circulation is given by 

 
3

= .
2

hN
m

Γ  (5) 

The half-quantum vortices are admissible because a change 
of sign of orbital part of the order parameter acquired over 
any closed path in the liquid corresponding to half-quan-
tum vortex can be compensated by the change of sign of 
the spin part of the order parameter, so that the whole order 
parameter will be single-valued. These vortices in the su-
perflow field are simultaneously disclinations in the mag-
netic anisotropy field V with half-integer Frank index, 
analogous to the disclinations in nematic liquid crystals. 

More visual picture of half-quantum vortices can be gi-
ven assuming that all vectors change their directions leav-
ing in ( , )x y  plane: ˆ ˆ= cos sinV x yα α αφ− φ, =i ii′ ′′∆ + ∆

ˆ ˆ= ( ) ei
iix iy ϕ+ . Then the A-phase order parameter is writ-

ten as ˆ ˆ= ( ) / 2A A
i i iA x iyα αΨ + , where 

 1 2= (e | e | ) / 2,i iA ϕ ϕ
α α αΨ ∆ ↑↑〉 + ↓↓〉  (6) 

ˆ ˆ| = ( ) / 2x iyα α α↑↑〉 + , ˆ ˆ| = ( ) / 2x iyα α α↓↓〉 − , 1 = ,ϕ ϕ+ φ  
2 =ϕ ϕ−φ . Thus, the order parameter of superfluid A 

phase is presented as the sum of the order parameters of 
spin up-up and spin down-down superfluids. The single 
quantum vortex corresponds to the order parameter distri-
bution such that the phase increment of the orbital part of 
the order parameter over a closed path is = 2∆ϕ π . Here, 
the both condensates with up-up and down-down spins 
acquires the same phase increment 1 2= = 2∆ϕ ∆ϕ π, 
whereas the spin part of the order parameter is homogene-
ous = constV . On the opposite, the half-quantum vortex is 
characterized by the increments = ,∆ϕ ±π  =∆φ ±π. In 
two-condensates language this corresponds to the single 
quantum vortex either only in spin up-up 1 = 2 ,∆ϕ ± π

2 = 0∆ϕ , or only in spin down-down condensate that is 
2 = 2 ,∆ϕ ± π  1 = 0∆ϕ . 
The gradient energy in superfluid 3He is [9] 
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It is easy to check that the energy corresponding to the 
combined defect consisting of half-quantum vortex in the 
orbital part of the order parameter and the disclination in 
the vector V field is twicely smaller than the gradient ener-
gy of single quantum vortex. More generally, for super-
fliud phases with order parameter consisting of product 
orbital and spin vectors (3) the energy of a defect is pro-
portional to sum of squares of winding numbers of orbital 
and spin vector fields along a closed path around defect 
axis. For an half-quantum vortex it is 

 2 2 2
1 2 3= [(1/ 2) (1/ 2) ] | | (2 ) ln =RK K K∇ + π ∆ + +

ξ
   

 2
1 2 3= | | (2 ) ln ,

2
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∆ + +
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whereas for a single quantum vortex it is 

 2
1 2 3= | | (2 ) ln .RK K K∇ π ∆ + +

ξ
   

Thus, the half-quantum vortices looks as energetically more 
profitable. 

The singular single quanta vortices as well as nonsingu-
lar vortices with 2 quanta of circulation have been revealed 
in rotating 3 He-A  (for review see [10]) but half-quantum 
vortices were not. The reason for this is the spin-orbital 
interaction caused by magnetic dipole interaction of Heli-
um nucleus. In a superfluid phase with triplet pairing the 
density of SO coupling energy is [9] 

 
2
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35 | |

D
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that in case of A phase with order parameter (3) is 

 21= ( ) .
5 3

A D
so

gF  − 
 

Vl  (9) 

Hence, at distances larger than dipole length 310 cm−
  

from the vortex axis the spin-orbital coupling suppress the 
inhomogeneity in the spin part of the order parameter dis-
tribution: vector V tends to be parallel or antiparallel to the 
direction of the Cooper pairs orbital momentum. At these 
distances a disclination transforms in the domain wall 
(a planar soliton) possessing energy proportional to its sur-
face [4,11,12]. The neutralization of the dipole energy can 
be reached in the parallel plate geometry where Helium 
fills the space between the parallel plates with distance 
smaller then dipole length under magnetic field >> 25 GH  
applied parallel to the normal to the plates. This case 
the half-quantum vortices can energetically compete with 
N = 1 vortices. However, even in this case the rotation of a 
“parallel plate” vessel with 3He-A will create lattice of 
half-quantum vortices which at the same time presents 
two-dimensional plasma of 1/ 2±  disclinations in the spin 
part of the order parameter with fulfilled condition of the 
“electroneutrality” [10]. The half-quantum vortices in su-
perfluid 3He-A  till now have not been revealed. 

3. Vortices in superfluid polar phase of 3He 
in “nematically ordered” aerogel 

Filling by liquid 3He an aerogel porous media allows to 
study influence of impurities on superfluid states with non-
trivial pairing [13,14]. There was found that both known in 
bulk liquid A and B superfluid phases of 3He also exist in 
aerogel [15]. The new chapter in the investigations was 
opened when there was recognized that anisotropy of aero-
gel can influence superfluid 3He NMR properties. This way 
several states of 3He-A with orbital and spin disordering 
have been discovered (see [16] and references therein). 
The following experimental investigations has been per-
formed on 3He confined in a new type of aerogel consist-
ing of Al2O3·H2O strands with a characteristic diameter 

50  nm  and a chatacteristic separation of 200  nm.  The 
strands are oriented along nearly the same direction (say 
along ẑ  axis) at macroscopic distance   3–5 mm that al-
lows to call this aerogel as “nematically ordered” one. For 
liquid 3He in this type aerogel there were obtained indica-
tions that at low pressures the pure polar phase may exist 
in some range of temperatures just below critical tempe-
rature [8]. 

The pairing states of superfluid 3He in a random medi-
um with global uniaxial anisotropy have been investigated 
by Aoyama and Ikeda [17]. The corresponding second or-
der in the order parameter GL free energy density consists 
of isotropic part common for all the superfluid phases with 
p-pairing and the anisotropic part 

(2)(2) (2)
0= = ( ( )) ,a c i i ij i jiF F F T T x A A A Aα α α α+ α − + η   (10) 

where the media uniaxial anisotropy with anisotropy axis 
parallel to ẑ  direction is given by the traceless tensor 
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The B-phase state = eB i
i iA R ϕ

α α∆  is indifferent to the pre-
sence of uniaxial anisotropy (2) ( ) = 0B

a iF Aα , whereas the 
equal spin pairing states with the order parameter of the 
form =i iA V Aα α  creates the various possibilities: 

(i) A phase ˆ ˆ= ( ) / 2i i iA x iy∆ +  

 2= | | ;aF η ∆  (12) 

(ii) A phase ( )ˆ ˆˆ= ( cos sin ) / 2i i i iA z i x y∆ + α + α  

 2= | | /2aF −η ∆ ; (13) 

(iii) Polar phase ˆ= ei
i iA z ϕ∆  

 2= 2 | |aF − η ∆ . (14) 

Which phase has the highest transition temperature 
from the normal state depends on the sign of η . At nega-
tive < 0η  the highest cT  belongs to A state (i) with the 
Cooper angular momentum direction l parallel to the ani-
sotropy axis. At positive > 0η  the preference has the po-
lar state. Let us discuss now the mechanism to create the 
global anisotropy. 

According to Rainer and Vourio [18] the energy of a 
thin disk shape body immersed in 3He-A depends of orien-
tation of disk surface in respect to l vector and the mini-
mum of this energy corresponds to the parallel orientation 
of the normal to the disk surface to the l. Hence if there are 
multiple disks homogeneously distributed in space with 
somehow fixed orientation parallel each other this should 
stimulate the phase transition to the A-phase state with l 
parallel to the disks normal direction that corresponds to 
the < 0η . 

On the contrary the most profitable orientation of a ci-
gar shape object immersed in 3He-A is that the cigar axis 
perpendicular to l. The multiple cigars homogeneously 
distributed in space with axis parallel each other should 
stimulate the A-phase state with l vectors randomly di-
rected in the plane perpendicular to the cigars axis that 
corresponds to the > 0η . 

The described difference between the order parameter 
orientations takes place so long we discuss only A-phase 
state. The Rainer–Vuorio arguments extended to the other 
superfluid states show that the orientational energy of cigar 
type objects immersed in the polar phase can be even 
smaller than it is for the A phase with l perpendicular to 
the cigars axis. Hence, the cigars type objects with parallel 
axis will stimulate phase transition to the polar state. It 
means that first there will be phase transition to the polar 
state (iii) and then at lower temperature, when the fourth 
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order terms in free energy are important, one must expect 
the second order type phase transition to the distorted 
A phase ( )ˆ ˆˆ ( cos sin )i i i iA z ia x y∝ + α + α  transforming at low 
temperatures to the A phase (ii) with vectors l randomly 
distributed in (x,y) plane as it was predicted by Aoyama 
and Ikeda [17]. It is interesting that the similar phenome-
non with two subsequent phase transitions has been reveal-
ed in multi-sublattice antiferromagnet CsNiCl3 [19,20]. 
As for superfluid 3He there were already obtained indica-
tions [8] on existence of the polar state in “nematically or-
dered” aerogel. 

Substituting the order parameter of polar state 

 pol ˆ= ei
iiA V z ϕ

αα ∆  (15) 

in the expression (8) for the spin-orbital energy density 
we get 

 pol 22 1ˆ= ( ) .
5 3

D
so

gF z − 
 

V  (16) 

We see that the spin-orbit coupling settles vector V in the 
plane perpendicular to the directions of aerogel strands. 
From this observation trivially follows that along with the 
singular vortices with phase ϕ  increment over any closed 
path equal to a multiple of 2π  there are half-quantum vor-
tices with increment =∆ϕ ±π  accompanied by disclina-
tion in the field V with Frank index 1/2. According the 
argumentation applied in previous chapter to A phase the 
half-quantum vortices in polar state are more energetically 
profitable than single quantum vortices. However, unlike 
A phase where the spin-orbital coupling prevent existence 
of half-quantum vortices in rotating vessel this is not the 
case in the polar state. 

Thus, rotation of vessel filled by the superfluid polar 
phase of 3He in “nematically ordered” aerogel with angular 
velocity larger than the lower critical one must be accom-
panied by creation of half-quantum vortices as the most 
energetically profitable objects imitating rotation of the 
polar state superfluid component. 

4. Vortices in superconducting strontium ruthenate 

Sr2RuO4 is nonconventional superconductor pos-
sessing many unusual properties (for review see [21,22]). 
Common believe based on the absence of the Knight shift 
changes [23] below the critical temperature is that here we 
deal with superconductivity with triplet pairing. The mate-
rial crystal structure is tetragonal with the point group 
symmetry 4hD . This case the order parameter for super-
conducting states with triplet pairing are related either to 
one-dimensional representation or two-dimensional repre-
sentation of the point group [24]. For example, the order 
parameter for 1uA  representation is ˆ ˆˆ= | | ei

i i zA k z k ϕ
α α∆  

and for uE  representation is ˆ ˆ ˆˆ= | | ( )ei
i i x yA k z k ik ϕ

α α∆ + . 
In both cases the direction of spin vector ˆ= zV  fixed by 
spin-orbital coupling is pinned to the tetragonal axis. If the 
spin part of the order parameter is fixed the only stable 
order parameter defects are the single flux quantum Abri-

kosov vortices. At the same time if one creates condition 
allowing vector V free rotation like in superfluid phases of 
3He one can expect the existence of half-quantum flux 
vortices. As we remember the energy of half-quantum vor-
tices accompanied by disclination in the V field is smaller 
than the energy of single quantum vortex, but it is true only 
at the scale of distances from the vortex axis not exceeding 
the spin-orbital length. At larger scales the increment of 
spin-orbital energy due to vector V inhomogeneity will be 
larger than the gain in gradient energy of half-quantum 
vortex in comparison with gradient energy of single quan-
tum vortex with ˆ|| zV . The spin-orbital length can be esti-
mated in following manner. 

The configuration ˆ|| zV  means that the Cooper pair 
spins lie in the basal plane. Hence, below cT  the magnetic 
susceptibility for the magnetic field oriented in basal plane 
should coincide with the susceptibility in the normal state 
and must decrease for the field direction along the c axis [24]. 
In practice it keeps the normal state value independently of 
field direction. There was found that the Knight shift is not 
changed for ĉH   for fields larger than 200 G [23]. It 
means this field is already enough to rotate the Cooper pair 
spin system to be parallel or antiparallel to the field direc-
tion. In other words the 200 G field is enough to overcome 
the spin-orbital coupling. The comparison of correspond-
ing paramagnetic energy with gradient energy of inho-
mogenious vector V distribution allows estimate the spin-
orbital coherence length 50 μm . So, to register the flux 
changes corresponding to half-quantum vortices one must 
work with mesoscopic size samples. 

The authors of Science Report [6] have used cantilever 
magnetometry to measure the magnetic moment of mi-
crometer-sized annual sample of strontium ruthenate pre-
pared such that ab crystal plane is parallel to the plane of 
ring (xy plane). The usual expression for the superfluid 
current density 

 
2

04 = ,
2c
φπλ

∇ϕ−
π

j A   

where 2 2= / 4 smc n eλ π  is the London penetration depth 
and 0 = / 2hc eφ  is the flux quantum, leads to the fluxoid 
quantization which is the phase increment over a closed 
pass around the ring 

 
2

0
4= = .jds N

c
πλ

Φ Φ φ


   (17) 

Here = dΦ A s


  is the magnetic flux. Then making use 
the expression for the ring magnetic moment 

 3= ( ) / 2d c×∫ r r jµ   

one can write the ring magnetic moment for the magnetic 
field directed in ẑ  direction that is perpendicular to the ring 
plane 
 = .z z M zN Hµ ∆µ + χ  (18) 
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Below the lower critical field 1 = 8 GcH  the magnetic 
moment is the linear function of the external field with the 
negative slope corresponding to the Meissner susceptibility 

Mχ . At each fields 8 G, 16 G, 24 G ... as well at corre-
sponding negative values of external field which are the 
multiples of the lower critical field there were revealed the 
magnetic moment jumps equal to 14= 4.4 10z

−∆µ ⋅  emu 
demonstrating penetration of single quantum vortices in-
side the ring. 

The crucial observation was obtained by application 
of field both in ẑ  and x̂  directions. This case each jump 
in z-component of magnetic moment starts to split at in-
creasing x̂  direction field component in two jumps of 
twicely smaller heights 14= (1/ 2) 4.4 10z

−∆µ ⋅ ⋅  emu. So, 
the experiment demonstrates the appearance of half flux 
quantum vortices. 

It is natural to ask why these vortices do not appear in 
the absence of xH  field component. The plausible reason 
is that the applied field in ẑ  direction does not exceed 
50 G, which is probably smaller than necessary to over-
come the spin-orbit coupling and settle vector V in the 
basal plane of crystal. On the contrary the measurements 
with xH  field component were performed up to lower 
critical field of ring in x̂  direction which is of the order of 

250 G.  The jumps splitting were distinguishable starting 
the fields 80xH ≈  G that was enough to create an inho-
mogeneous distribution ˆˆ= cos sinz yα + αV  with angle α 
increment equal to ±π  along a closed path around the ring. 
The confirmation of the vector V nonhomogeneity follows 
from calculation of magnetic moment 

 3= ( ) / 2
2x s x

e d c
mc

µ ×∫ r r j  (19) 

created by the spin current 

 = .s sn ∇αj   (20) 

The estimation yields 1610x
−µ ≈  emu that corresponds to 

the measured value and points out that vector V is indeed 
nonhomogeneously distributed around the ring. 

5. Conclusion 

Each ordered media is characterized by particular type 
of coherence that can be probed through the properties 
directly reflecting the symmetry and topology of ordering 
such as the Josephson effect and quantized vortices. After 
discussion of several instructive examples one can say that 
the situation when the order parameter of some ordered 
media consists of product of two parameters opens the pos-
sibility of existence of combined defects. Each part of such 
defect corresponds to the nonhomogeneous stable distribu-
tion of its part of the total order parameter. In some partic-
ular cases like in polar state of superfluid 3He in “nemati-
cally ordered” aerogel or in mesoscopic superconducting 
rings of strontium rhuthenate these combined defects con-

sist of half-quantum vortex and a disclination with the 
Frank index 1/2 in the spin part of order parameter. 

The half-quantum vortices have also been observed in 
exciton–polariton condensate [7]. The order parameter of 
this ordered media 

 = | | eiϕ
λ ψΨ e   

is given by the product of condensate wave function and 
the vector of light polarization. Along with the ordinary 
vortices with phase increment along a closed path a multi-
ple of 2π  the ordering like this obviously allows the com-
bined defects consisting of half-quantum vortex and discli-
nation with the Frank index 1/2 in the field of polarization 
vector ( )λe r . 

Finally, it is worth to mention not yet discovered half-
quantum vortices in such ordered media as charge density 
waves, spin density waves, super solids, and Fulde–Ferrel–
Larkin–Ovchinnikov superconducting state. For instance, 
in case of 2D periodic ordering in ( , )x y  plane all of these 
“quantum crystal” orderings can be characterized by the 
order parameter of the form 

 = cos ( ) e .iA ϕΨ ρ+ φk   

Then it is clear that the space increment of each phase φ or 
ϕ along a closed path can be multiple of 2π  as well the 
multiple of ±π . In the latter case the half-quantum vortex 
in the field ( )ϕ r  should be accompanied by a half-quan-
tum vortex in the field ( ).φ r  More interesting possibilities 
one can find in the paper by O. Dimitrova and M.V. Fei-
gel'man [25]. 
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