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We study two-dimensional electronic gas (2DEG) in the background of the Aharonov–Bohm and constant 
magnetic fields. The problem of ambiguity of the solutions of the Schrödinger equation is investigated by intro-
ducing a finite radius of the flux tube, which then set to zero. Wave functions and spectrum of the 2DEG Hamil-
tonian are used to construct an expression for the local density of states (LDOS). We obtain that LDOS has a 
depletion near the origin of the vortex and new peaks, which can't be explained by using Landau levels theory. 

PACS: 71.10.Ca Electron gas, Fermi gas; 
73.22.Dj Single particle states; 
76.40.+b Diamagnetic and cyclotron resonances. 
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1. Introduction 

The energy dispersion 2 2( ) = / 2E k Mk =  of the quasi-
particle excitations when the homogeneous magnetic field 
B  is applied perpendicular to its two-dimensional plane 
transforms into the discrete Landau levels (LLs)  

 1= , = 0,1,2 ,
2n cE n n⎛ ⎞ω +⎜ ⎟

⎝ ⎠
= …  (1) 

observed, for example, in semiconducting geterostructures. 
Here k  is the momentum and cω  is the cyclotron fre-
quency. 

In general the inhomogeneous magnetic perturbation can 
be presented as a sum of a constant (averaged over the sys-
tem) field and field localized in some regions of the two-
dimensional system. A limiting case of the perturbation can 
be presented by the Aharonov–Bohm field which is created 
by an infinitely long and infinitesimally thin solenoid. 

The purpose of the present paper is to study the two-
dimensional electronic excitations in the field consisting of 
the Aharonov–Bohm flux and a constant background mag-
netic field. As in the previous publication [1], where we 
studied the Aharonov–Bohm flux only, our main goal is 
the investigation of the local density of states (LDOS). We 

find that demonstrated in Ref. 1 rather peculiar behavior of 
LDOS theory with Aharonov–Bohm field persists in the 
presence of the constant background field. We expect that 
this behavior can be observed in scanning tunneling spec-
troscopy measurements for different metallic thin films 
penetrated by vortices from type-II superconductor on top 
of them [2]. 

In the previous publication we considered idealized pic-
ture when the vortex is single and there is no impact from 
other Abrikosov vortices. Now the constant background 
field is supposed to mimic the impact of the other vortices 
penetrating the film. It is worth to stress that devices like this 
with a superconducting film grown on top of a semiconduct-
ing heterojunction (such as GaAs/AlGaAs) hosting a 2DEG 
have in fact been fabricated twenty years ago [3,4]. 

The paper is organized as follows. In Sec. 2 we intro-
duce the model Hamiltonian and discuss the configuration 
of the magnetic field and the regularization of the Aharo-
nov–Bohm potential used in this work. In Sec. 3 solutions 
of the Schrödinger equation are obtained. In the Sec. 4 we 
consider the general presentation for LDOS difference. In 
the Sec. 5 we begin with a simpler case of the DOS and 
return to the LDOS in Sec. 6. In Sec. 7 our final results are 
summarized. 
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We dedicate this work to the prominent Soviet and 
Ukrainian theoretical physicist Emanuil Kaner, whose 
main research and best-known achievements are asso-
ciated with the study of metals and metal systems in a 
magnetic field. 

2. Models and main notations 

The 2D nonrelativistic (Schrödinger) Hamiltonian can 
be expressed in the standard form  

 
2

2 2
1 2= ( ),

2SH D D
M

− +
=  (2) 

where = / ,j j jD ie cA∇ + =  = 1, 2j  with the vector poten-
tial ,A  Planck’s constant =  and the velocity of light c  
describes a spinless particle with a mass M  and charge 

< 0.e−  
As in the previous article to avoid the mathematical diffi-

culties related to a singular nature of the Aharonov–Bohm 
potential at the origin, we consider a regularized potential 
[5,6] which depends on the dimensional parameter R: 

 0( ) = ( ) , ( ) = ( ),
2 2

BrA r A r r R
rϕ ϕ ϕ

Φ η
+ θ −

π
A r e  (3) 

where = ( , , ),r zϕr  0Φ η  is the flux of the vortex ex-
pressed via magnetic flux quantum of the electron 

0 = /hc eΦ  with [0,1).η∈  The value = 1/ 2η  corres-
ponds to the flux of the Abrikosov’s vortex. The corres-
ponding magnetic field 

 0( ) = = ( ) .
2 zB r R

R
ηΦ⎛ ⎞∇× + δ −⎜ ⎟π⎝ ⎠

B r A e  (4) 

The radius R  of the flux tube determines the region >r R  
where the regularized potential coincides with the potential 
of the problem with Aharonov–Bohm potential, while for 

<r R  it describes a particle moving in a constant magnet-
ic field. The solution of the problem is found by matching 
the solutions obtained in these regions. The limit 0R →  
can taken at the end and allows to avoid the formal com-
plications. As was shown in Ref. 6, the final answer does 
not depend on the specific form of the regularizing poten-
tial provided that the profile of the magnetic field is non-
singular at the origin. 

3. Spectrum and eigenfunctions 

In this section we consider the solutions of the 
Schrödinger equation  

 ( ) = ( )SH Eψ ψr r  (5) 

in polar coordinates = ( , )r ϕr  and using them to find the 
full and local DOS. Technically to obtain the solutions of 
Eq. (5) in the regularized potential (3) one should solve 
this equation in two regions <r R  and > .r R  Since in the 
first domain <r R  the potential is nonsingular, only a 

regular in the limit 0r →  solution of the radial differential 
equation is admissible. In the second domain >r R  the 
solution contains both regular and singular in the limit 

0r →  terms. The values of the relative weights of them 
can be found by matching radial components and their de-
rivatives at = .r R  Finally, it turns out that in the limit 

0R →  only the regular solution survives and the wave-
function takes the form 

 | |/2 /2 | |
, ,( , ) = e e ( ),im m y m

n m n m nr A y L yϕ +η − +ηψ ϕ  (6) 

which also follows from the Schrödinger equation with a 
singular vortex [7]. Here the dimensionless variable 

2 2/ (2 )y r l≡  is expressed via the magnetic length 
1/2= ( / ) ,l c eB=  ( )nL yα  is the generalized Laguerre poly-

nomial and the normalization constant ,n mA  is given by 

 2
, 2

!= .
2 ( | | 1)

n m
nA

l n mπ Γ + +η +
 (7) 

The corresponding to the wave function (6) eigenenergy is 
equal to 

 , = (2 1 | | ),
2

c
n mE n m m

ω
+ + + η + + η

=
 (8) 

where the cyclotron frequency = / ,c eB Mcω  the radial 
quantum number = 0,1,n … , and the azimuthal quantum 
number = , , 1, 0,1, , .m −∞ − ∞… …  In what follows it is 
convenient to express all energies of the problem in terms 
of the energy 0 / 2.cE ≡ ω=  

Having the wave function we can calculate the LDOS 
using the representation  

 2
, ,

,
( , , ) = | ( ) | ( ).n m n m

n m
N E B E Eψ δ −∑r r  (9) 

In contrast to the previous article [1] the presence of a con-
stant magnetic field makes all energy spectra discrete that 
demands some regularization of the δ-function in Eq. (9). 
For this purpose we introduce widening of the LLs to a 
Lorentzian shape: 

 ,
,

1 1( ) Im ,n m
n m

E E
E E i

δ − →
π − − Γ

 (10) 

where Γ  is the LLs width. Such a simple broadening of 
LLs with a constant Γ  was found to be a rather good ap-
proximation valid in not very strong magnetic fields [8]. 

To illustrate the method of calculation in Sec. 4 we de-
rive the LDOS for the simplest case ( = 0)η  of the con-
stant magnetic field without vortex 

 
S

S 0
0

1( , ) = Im .
2 c

N E iN E B
⎛ ⎞+ Γ

− ψ −⎜ ⎟π ω⎝ ⎠=
 (11) 

Here S 2
0 = / (2 )N M π=  is a free DOS of 2DEG per spin 

and unit area and we omitted r-dependence of the LDOS, 
because it is absent in the homogeneous field. One can 
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readily obtain Eq. (11) in a much simplier way [9,10] start-
ing from the usual Landau spectrum (1) which follows 
from the spectrum (8) for = 0,η  when one relabels 

(| | ) / 2 .n m m n+ + →  Here the relabeled n  corresponds to 
the LL index rather than the radial quantum number. Nev-
ertheless, in Sec. 4 we proceeded from Eq. (8) to illustrate 
how deal with the spectrum which is also dependent on the 
azimuthal quantum number .m  As seen in Fig. 1,a on the 
dashed curve, Eq. (11) contains usual magnetic oscillations 
which result in the de Haas–van Alphen effect. One can 
extract them analytically using the relation 

 1( ) = ( ) cot( ).z z z
z

ψ − ψ + + π π  (12) 

In a similar fashion we obtain in Sec. 4 the expression for 
the LDOS perturbation, S S( , , ) = ( , , )N E B N E Bη ηΔ −r r

S
0 ( , )N E− r  induced by the vortex 

S ( )
2

0

sin( , , ) = Im e e
( )

zMN E B d
∞

− δ+β −β
η

⎡πη
⎢Δ − β ×

π ⎢π ⎣
∫r

=
  

coth( ) ( )
cosh /sinh( )

2( ) ( )
e ee .
1 e 1 e

y
yd

∞− δ+β −η δ+β+ω
− ω δ+β

− δ+β − δ+β+ω
−∞

⎤
⎥ω
⎥− + ⎦

∫  (13) 

Here S( , , )N E Bη r  is the LDOS in the presence of the 
constant field and vortex and S

0 ( , , )N E Br  is the LDOS in 
the constant magnetic field without vortex (the argument r  
is present to distinguish the LDOS from the DOS). This 
expression has to be calculated for > 0z  with the analytic 
continuation 0( ) /z E i E→ − + Γ  dome at the end of the 
calculation. The representation (13) for the LDOS is our 
starting point for the analysis of the LDOS and DOS. 

4. Preliminary calculation of the local density of states 

Setting = 0η  in Eq. (6) one obtains the solution of the 
Schrödinger equation for = constB  without vortex. Subs-
tituting this solution in the LDOS definition (9) and taking 
into account the widening of the LLs (10) we represent the 
LDOS as a double sum 

| | 2
S 2 | |
0 ,

, 0=0 =

e [ ( )]1( , , ) = Im ,
y m

m n
n m

n mn m

L y
N E B A y

E E z

−∞ ∞

−∞π +∑ ∑r  (14) 

where in the denominator we introduced the dimensionless 
variable 0= ( ) /z E i E− + Γ  with the characteristic energy 

0E  defined below Eq. (8). To calculate the sum in Eq. (14) 
it is convenient to represent its last factor as an exponent 

(2 | | 1)
( )(2 | | 1)

, 0 0 0

e 1= e e .
n m m

n m m z

n m
d

E E z E

∞−δ + + +
− β+δ + + + −ββ

+ ∫  (15) 

Here we also introduced the regularizing exponential factor 
with > 0δ  which makes the sum convergent and which will 
be set to 0  at the end. Then the LDOS acquires the form 

 S ( ) | |
0 2 2

=0
( , , ) = Im e e ez y m

m

MN E B d y
∞ ∞

− δ+β −β −

−∞

⎡
⎢ β ×
⎢π ⎣

∑∫r
=

  

 
2( )

( )(| | ) | | 2

=0

!ee [ ( )] .
( | | 1)

n
m m m

n
n

n L y
n m

− β+δ∞
− β+δ + ⎤

× ⎥
Γ + + ⎥⎦

∑  (16) 

We operate with the representation (16) in the following 
way. First we consider its analytic continuation for > 0z  
and perform the calculation. Then to obtain the LDOS we 
return to the imaginary values 0( ) /z E i E→ − + Γ  and eva-
luate the imaginary part. Using Eq. (10.12.20) from [11] 

 1 /2

=0

! ( ) ( ) = (1 ) ( )
( 1)

n
n n

n

n L x L y z z xyz
n

∞
α α − −α− ×

Γ + α +∑   

 exp 2 , | | < 1,
1 1

xyzx yz I z
z zα

⎛ ⎞+⎛ ⎞× − ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 (17) 

where Iα  is modified Bessel function, we find the sum 
over n  in Eq. (16) 

Fig. 1. The normalized full LDOS S S
0( , , ) /N r E B Nη  as a function

of E  in the units of cω= . (a) For = 0η  (no vortex and LDOS is
r-independent, dashed curve) and = 1/ 2η  for =r l  (solid
curve). (b) Both lines for = 1 / 2,η  = 0.5r l  (solid curve) and

= 5r l  (dashed curve). In all cases the width = 0.05 .cΓ ω=  

E/��
c
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coth( )

S ( )
0 2 2 2( )

0

e( , , ) = Im e e
1 e

y
zMN E B d

∞ − δ+β
− δ+β −β

− δ+β

⎡
⎢ β ×
⎢π −⎣
∫r

=
  

 ( )
| |

=
e

sinh( )
m

m
m

yI
∞

− δ+β

−∞

⎤⎛ ⎞
× ⎥⎜ ⎟δ +β⎝ ⎠⎥⎦
∑ . (18) 

The remaining summation over m  in Eq. (18) can be done 
using the property of the modified Bessel function 

( ) = ( ),m mI x I x−  and that its generating function is [11] 

 
=

( ) = exp [ 1/ ] .
2

m
m

m

xz I x z z
∞

−∞

⎛ ⎞+⎜ ⎟
⎝ ⎠

∑  (19) 

We obtain 

 
( )

S
0 2 2( )

0

e e( , ) = Im .
( ) 1 e

zMN E B d
∞ − δ+β −β

− δ+β

⎡ ⎤
⎢ ⎥β
⎢ ⎥π −⎣ ⎦
∫=

 (20) 

Notice that from the last expression one can explicitly ob-
serve that it does not depend on ,y  i.e., in a constant mag-
netic field the LDOS is position independent. Introducing a 
new variable = 2( )x δ +β  we can rewrite the last expres-
sion as follows  

 
( 1)/2

S
0 2

2

e e( , ) = Im e
2( ) 1 e

x x z
z

x
MN E B dx

∞ − − +
δ

−
δ

⎡ −
⎢− −
⎢π −⎣

∫=
  

 
2

ee .
1 e

x
z

xdx
∞ −

δ
−

δ

⎤
⎥−
⎥− ⎦

∫  (21) 

In the limit 0δ →  the second term of Eq. (21) remains 
real irrespectively the value of ,z  while the first term gives 
the integral representation of the digamma function [12] 

 
0

e e( ) = , Re > 0,
1 e

t tz

tz dt z
∞ − −

−
−

ψ −γ +
−∫  (22) 

and the final expression for the LDOS is given by Eq. (11). 
Now we generalize these results for the case when the 

vortex is present. Repeating the steps that led us from 
Eq. (14) to Eq. (18) we obtain 

 
coth( )

S ( )
0 2 2 2( )

0

e( , , ) = Im e e
1 e

y
zMN E B d

∞ − δ+β
− δ+β −β

− δ+β

⎡
⎢ β ×
⎢π −⎣
∫r

=
  

 ( )( )
| |

=
e .

sinh( )
m

m
m

yI
∞

− δ+β +η
+η

−∞

⎤⎛ ⎞
× ⎥⎜ ⎟δ +β⎝ ⎠⎥⎦
∑  (23) 

Using the method described in Ref. 13 we obtained the 
formula which allows to find the sum over m  in Eq. (23) 

( )( ) coth( )
| |

=

sine = e
sinh( )

m y
m

m

yI
∞

− δ+β +η δ+β
+η

−∞

⎛ ⎞ πη
− ×⎜ ⎟δ +β π⎝ ⎠

∑
 

 
( )

cosh /sinh( )
( )

ee .
1 e

yd
∞ −η δ+β+ω

− ω δ+β
− δ+β+ω

−∞

× ω
+∫  (24) 

The first term on the r.h.s. of the last equation corresponds 
to the LDOS without the vortex which was considered 
above, so that we can concentrate on the second term. 
Substituting it in Eq. (23) we arrive at Eq. (13) for 

S( , , )N E BηΔ r . 

5. The density of states 

While in the constant magnetic field the LDOS is posi-
tion independent and is related to the full DOS by the 2D 
volume (area) of the system factor 2DV , this is not so in the 
presence of the vortex when the LDOS is position depen-
dent. Then the full DOS per spin projection is obtained from 
the LDOS (9) by integrating over the space coordinates 

 
2

S

0 0
( , ) = ( , , ).N E B d rdr N E B

π ∞

η ηϕ∫ ∫ r  (25) 

Substituting Eq. (13) in the definition (25) and integrat-
ing over the spatial coordinates we obtain  

 
2

S
2

0
( , ) = sin Im

2( )
MlN E B d d

∞ ∞

η
−∞

⎡
⎢Δ − πη β υ×
⎢π ⎣
∫ ∫=

  

 e e ,
cosh( / 2)cosh( / 2) 1 e

z−β −ηυ

−υ

⎤
× ⎥

υ β + δ − υ + ⎥⎦
 (26) 

where we introduced the new variable = .υ ω+β + δ  This 
double integral can be rewritten using the new variables 

2= e , = et x− β υ  as follows 

 
2

S
2

e( , ) = sin
( )

MlN E B
−δ

ηΔ − πη ×
π=

  

 
1 1

( 1)/2
2 2

0 0
Im ,

(1 ) (1 e )
z dxxdt t

x t x

∞ −η
−

− δ

⎡ ⎤
⎢ ⎥×
⎢ ⎥+ +⎣ ⎦
∫ ∫  (27) 

where the second integral can be calculated using the resi-
due theory 

1

2 2
0 (1 ) (1 e )

dxx
x t x

∞ −η

− δ
=

+ +∫  

 
2 2

2 2
1 e e= .

sin (1 e )
t t

t

− δ − ηδ η

− δ
π −η+ η −
πη −

 (28) 

Then the remaining integral is expressed via the hyper-
geometric function  
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1 2 2 2
( 1)/2

2 2 2
0

2
2 1

2
2

2 1

1 e e 1 e=
(1 e ) 1 e

1 1 3( 2 1) 1, ; ;e
1 2 2

e 1 31, ; ;e .
1 2 2 2

z t tdtt
t

z zz F
z

z zF
z

− δ − ηδ η − δη
−

− δ − δ

− δ

− δη
− δ

−η+ η − −
−

− −

⎡ + +⎛ ⎞− + η− −⎜ ⎟⎢ + ⎝ ⎠⎣
⎤+ +⎛ ⎞− + η +η ⎥⎜ ⎟+ + η ⎝ ⎠⎥⎦

∫

 (29) 

Now we use the series representation of hypergeometric 
functions in Eq. (29) 

 
2

2
2 1

e 1 31, , ,e =
2 1 2 2

z zF
z

− δη
− δ+ +⎛ ⎞+ η + η⎜ ⎟+ η+ ⎝ ⎠

  

 
2 ( )

( 1) (2 2 1)

=0 =0

e= = e e
1 2 2

n
z x n z

n n
dx

z n

∞− δ +η∞ ∞
δ + − + η+ +

δ

=
+ + η+∑ ∑ ∫   

 
( 1 2 )

( 1)
2

e= e ,
1 e

x z
z

xdx
∞ − + + η

δ +
−

δ −∫  (30) 

where the first one in Eq. (29) is recovered for = 0.η  We 
observe that the presence of finite > 0δ  makes the hyper-
geometric series well defined, but at the end of the calcula-
tion the limit 0δ→  can already be taken. Then taking into 
account the integral representation of the digamma func-
tion (22) [similarly to Eq. (21)] one can express the DOS 
(27) in the following simple form 

 
2

S
2( , ) = Im ( 2 1)

2
MlN E B zη

⎧⎪Δ + η− ×⎨
⎪π ⎩=

  

 1 1
2 2

z z ⎫⎡ + + ⎤⎛ ⎞ ⎛ ⎞× ψ + η −ψ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎭
 (31) 

which after the analytic continuation 2( ) / ( )cz E i→ − + Γ ω=  
takes the final form 

 S 1 1( , ) = Im
2c c

E iN E Bη
⎧⎛ ⎞+ Γ⎪Δ + −η ×⎨⎜ ⎟π ω ω⎪⎝ ⎠⎩= =

  

 1 1 .
2 2c c

E i E i ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞+ Γ + Γ ⎪× ψ − −ψ − + η⎢ ⎥⎬⎜ ⎟ ⎜ ⎟ω ω⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎪⎣ ⎦⎭= =
 (32) 

Since the digamma function ( )zψ  has simple poles for 
= 0, 1, 2,z − − …  it is easy to see in the clean limit 0Γ→  

the DOS difference (32) reduces to a set of δ-peaks corres-
ponding to the LLs  

 S

=0

1( , ) = ( 1 )
2c

n
N E B n E n

∞

η
⎛ ⎞⎛ ⎞Δ − + −η δ − ω + +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ =   

 
=0

1( 1) .
2c

n
n E n

∞ ⎛ ⎞⎛ ⎞+ + δ − ω + + η⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ =  (33) 

The physical meaning of (33) is that [14] on each LL 
, <0 = ( 1/ 2),n m cE nω +=  1n + − η  states disappear and 
1n +  appear at the energy , 0 = ( 1/ 2 ).n m n m cE n+ → ≥ ω + + η=  
Using the asymptotic expansion 

 2 4
1 1 1( ) = ln
2 12

z z O
z z z

⎛ ⎞
ψ − − + ⎜ ⎟

⎝ ⎠
 (34) 

one can take in Eq. (32) the limit of zero field, 0B →  and 
reproduce the Aharonov–Bohm depletion of the DOS 
[1,14,15] at the bottom of the spectrum  

S S S
2 0

1( , = 0) = ( , = 0) = (1 ) ( )
2DN E B N E B V N Eη ηΔ − − η −η δ

  (35) 

caused by an isolated vortex. Integrating Eqs. (35) and (33) 
(with an appropriate regularization) one can check that the 
total deficit of the states induced by the vortex 

 S 1( , ) = (1 )
2

dE N E B
∞

η
−∞

Δ − η −η∫  (36) 

does not depend on the strength B  of the nonsingular 
background field. 

6. The local density of states 

Although the regularization parameter δ  is important 
for the calculation of the DOS, the integrand of Eq. (13) 
remains regular even in the limit 0.δ →  Therefore we can 
take this limit and rewrite Eq. (13) as follows 

 S
2

sin( , , ) =
2( )

MN E Bη
πη

Δ − ×
ππ

r
=

  

 
0

Im , , ,E iI y z
E

⎡ ⎤⎛ ⎞+ Γ
× → − η⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 (37) 

where 

 
coth

0

e( , , ) = e
sinh

y
zI y z d

∞ − β
−βη β ×

β∫   

 
( )

cosh /sinh
( )

ee ,
1 e

yd
∞ −η ω+β

− ω β
− ω+β

−∞

× ω
+∫  (38) 

and the variable y  describes the spatial dependence. Al-
though the integrals in Eq. (38) can be evaluated numeri-
cally, this computation becomes troublesome when as 
above the analytic continuation from > 0z  to the complex 
values 0( ) /z E i E→ − + Γ  is done before the numerical 
integration. 

As in Ref. 1 we observe that it is simpler to calculate in-
tegrals with the derivative ( , , ) /dI y z dyη  representing the 
function ( , , )I y z η  in the form 

 ( , , )( , , ) = ,
y

dI Q zI y z
dQ

∞ η
η −∫  (39) 



A.O. Slobodeniuk, S.G. Sharapov, and V.M. Loktev 

1186 Low Temperature Physics/Fizika Nizkikh Temperatur, 2011, v. 37, No. 11 

where we used that ( , , ) = 0.I z∞ η  The derivative 
( , , ) /dI Q z dQη  contains two terms  

 1 2( , , ) ( , , )( , , ) = ,
dI Q z dI Q zdI Q z

dQ dQ dQ
η ηη

+  (40) 

where 

 

coth
( )1

2
0

cosh /sinh ( 1)

coth
( 1)2

2
0

cosh /sinh

1 e= e
2 sinh

e e ,

1 e= e
2 sinh

e e .

Q
z

Q

Q
z

Q

dI
d

dQ

d

dI
d

dQ

d

∞ − β
−β +η

∞
− ω β − η− ω

−∞
∞ − β

−β +η−

∞
− ω β −ηω

−∞

− β ×
β

× ω

− β ×
β

× ω

∫

∫

∫

∫

 (41) 

Using the integral representation of the MacDonald func-
tion ( )K xν  (Ref. 11) 

 cosh1( ) = e ,
2

x xK x dx
∞

− ω−ν
ν

−∞
∫  (42) 

we obtain 

coth
( )1

12
0

e= e ( / sinh ),
sinh

Q
zdI

d K Q
dQ

∞ − β
−β +η

−η− β β
β∫  (43) 

and  

coth
( 1)2

2
0

e= e ( / sinh ).
sinh

Q
zdI

d K Q
dQ

∞ − β
−β +η−

η− β β
β∫  (44) 

Now introducing a new variable t  via 2e = / (1 )t t− β +  
we get 

 ( )/2 ( )/2 21

0
= 2e (1 ) eQ z z QtdI

dt t t
dQ

∞
− +η − +η −− + ×∫   

 1 (2 (1 )),K Q t t−η× +  (45) 

and 

 ( 1)/2 ( 1)/2 22

0
= 2e (1 ) eQ z z QtdI

dt t t
dQ

∞
− +η− − +η− −− + ×∫   

 (2 (1 )).K Q t tη× +  (46) 

To integrate over t  in Eqs. (45) and (46), we use the 
integral (2.16.10.2) from Ref. 16 

 

1
2

0

/2

1/2 , /2 1/2 , /2

2 2

e ( ) =
( )

1 e
2 2
( / 2) ( / 2),

= ,
Re ( ) > 0, |arg | < , 2 Re > |Re |,

px

pz

xdx K c x xz
x z

cz
W z W z

z p p c
p c z

∞ ρ−
−

νρ

−ρ ν + −ρ ν −

±

+
+

ν ν⎛ ⎞ ⎛ ⎞= Γ ρ+ Γ ρ− ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

×

± −

+ π ρ ν

∫

 (47) 

where , ( )W zλ μ  is the Whittaker function. To adapt 
Eq. (47) to the form of Eqs. (45) and (46), we have to set 

= 1,z  differentiate the result over p  and then take the 
limit .p c→  This gives 

0
e ( ( 1)) =

( 1)
cxxdx K c x x

x

∞ ρ
−

νρ
+

+∫  

 /2
1/2 , /2

1 e ,
2 2 2 2

c cG −ρ ν
ν ν⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − Γ ρ+ Γ ρ−⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (48) 

where the function , ( )G Qλ μ  is defined as follows: 

 2
, , , ,

1 1( ) = ( ) ( ) ( )
2

G Q W Q W Q W Q
Q Qλ μ λ μ λ μ λ μ′+ +   

 2
, , ,( ) ( ) ( ).W Q W Q W Qλ μ λ μ λ μ′′ ′+ −  (49) 

Accordingly, we obtain that  

1
(1 )/2,(1 )/2

1 2 1= ( )
2 2 z

dI z z G Q
dQ − −η −η

+ + η−⎛ ⎞ ⎛ ⎞Γ Γ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (50) 

and  

2
(2 )/2, /2

1 2 1= ( ).
2 2 z

dI z z G Q
dQ − −η η

− + η−⎛ ⎞ ⎛ ⎞Γ Γ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (51) 

Now using the differential equation  

 
2

, ,2
1 1/ 4( ) ( ) = 0
4

W z W z
z z

λ μ λ μ
⎛ ⎞λ −μ′′ + − + +⎜ ⎟⎜ ⎟
⎝ ⎠

 (52) 

and the recursion formula 

2
2

, , 1,
1( ) = ( ) ( )

2 2
d zz W z W z W z
dz λ μ λ μ λ− μ

⎡ ⎤⎛ ⎞ ⎛ ⎞λ − − ⎢μ − λ − ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

  (53) 

for the Whittaker function [17] one can transform , ( )G Qλ μ  
to the form  
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2 2
2

, ,2
( 1 / 2)( ) = ( )G Q W Q
Q

λ μ λ μ
μ + λ −

−

2 2 2
2

1,2
[ ( 1/ 2) ] ( )W Q

Q
λ− μ

μ − λ −
− −  

2 2

, 1,
( 1 / 2) ( ) ( )W Q W Q

Q λ μ λ− μ
μ − λ −

− −  

 
2
,2

,
( )2 1 ( ) ( 1/ 2) .

2
W Q

W Q
Q Q

λ μ
λ μ

′⎛ ⎞λ − ⎜ ⎟− − λ −
⎜ ⎟
⎝ ⎠

 (54) 

To obtain the function , ,( ) = ( )F Q dQG Qλ μ λ μ∫  we employ 
the relationships  

, ,

, , , ,

, ,

, , , ,

, ,2

, , , ,

( ) ( ) =

1 [ ( ) ( ) ( ) ( )],

( ) ( ) =

( ) ( ) ( ) ( ),

( ) ( ) =

1 ( ( ) ( ) ( ) ( ))
2

dQ W Q W Q
Q

W Q W Q W Q W Q

dQ W Q W Q
Q
W Q W Q W Q W Q

dQ W Q W Q
Q

W Q W Q W Q W Q

λ μ ρ μ

λ μ ρ μ ρ μ λ μ

λ μ λ μ

λ μ λ λ μ λ λ μ λ μ

λ ν λ ν

ν λ ν λ ν λ ν ν λ ν

′ ′= −
ρ−λ

′ ′= ∂ − ∂

′ ′= ∂ − ∂
ν

∫

∫

∫

 (55) 

which follow from the differential equation (52) for the 
Whittaker function. Then using the the recursion formula 
(53) we arrive at the following result: 

____________________________________________________

 
2 2

, 1, , , 1,
( 1 / 2)( ) = [ ( ) ( ) ( ) ( )]
2

F Q W Q W Q W Q W Q
Qλ μ λ+ μ μ λ μ λ μ μ λ+ μ

μ + λ −
∂ − ∂ −

μ
  

 
2 2 2

, 1, 1, ,
[ ( 1 / 2) ] [ ( ) ( ) ( ) ( )]

2
W Q W Q W Q W Q

Q λ μ μ λ− μ λ− μ μ λ μ
μ − λ −

− ∂ − ∂ +
μ

  

 
2 2

2
, 1, , 1, 1,

[ ( 1 / 2) ][ ( ) ( ) ( ) ( ) ( )]W Q W Q W Q W Q W Q
Q λ μ λ− μ λ μ λ− μ λ+ μ

μ − λ −
+ − − −   

 2
, 1, , , 1,

2 1[2 ( ) ( ) ( ) ( ) ( )].
2

W Q W Q W Q W Q W Q
Q λ μ λ+ μ λ λ μ λ μ λ λ+ μ
λ −

− − ∂ + ∂  (56) 

_______________________________________________ 

The integral of each term in Eq. (40) is expressed via 
, ( )F Qλ μ  with the prefactors given by Eqs. (50) and (51), 

so that we arrive at the final expression for the function 
( , , )I y z η  which was defined in Eq. (39). 

Thus our purpose is to derive such a representation for 
( , , )I y z η  that it can be easily computed after the analytic 

continuation is done 

(1 )/2,(1 )/2
1 2 1( , , ) = ( )

2 2 z
z zI y z F y− −η −η
+ + η−⎛ ⎞ ⎛ ⎞η Γ Γ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 (2 )/2, /2
1 2 1 ( ),

2 2 z
z z F y− −η η
− + η−⎛ ⎞ ⎛ ⎞+ Γ Γ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (57) 

where the function , ( )F yλ μ  is given by Eq. (56). The re-
sults of the numerical computation of the LDOS on the 
base of Eqs. (37) and (57) are shown in Figs. 1 and 2. We 
emphasize that in Fig. 1 we plot the total LDOS 

S( , , )N r E Bη  as a function of energy E  for fixed values of 
r  and in Fig. 2 the LDOS difference S( , , )N r E BηΔ  as a 
function of the distance r  from the vortex center for fixed 
values of E  is presented. Since Eq. (37) describes the per-
turbation of the LDOS S( , , )N r E BηΔ  by the vortex, to ob-
tain the absolute value of the LDOS S( , , )N r E Bη  we add to 

SNηΔ  its = 0η  value which is given by Eq. (11). In 
Fig. 1,a we compare already discussed after Eq. (11) case 
of the constant magnetic field (obviously, there is no r-de-

pendence when = 0)η  with the case of Abrikosov’s vortex 
( = 1/ 2)η  for = .r l  Although the model we consider is 
suitable for all values of the distance from the center of the 
vortex ,r  there are obvious physical limitations on the 
possible value of r  if the vortex penetrating graphene is 
coming from a type-II superconductor. 

First of all, r  cannot smaller than the vortex core which 
is at least on the order of magnitude larger than the lattice 
constant 0.r  We remind that in the previous paper [1] the 

Fig. 2. The normalized LDOS difference S S
01/2( , , ) /N r E B NΔ  as 

a function of the distance r  measured in the units of the magnet-
ic length l  for for values of / =cE ω=  0.5, 1, 1.5, 2 (solid, 
dashed, dot-dashed, dotted curves, correspondently). The width 

= 0.05 .cΓ ω=  
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distance r  was measured in the units of 0 ,r  because for 
= 0B  there is no such a natural scale as a magnetic length. 

Secondly, we replace the magnetic field created by the 
other vortices replacing it by a constant background mag-
netic field. This approximation may be appropriate if one 
considers a vicinity of the selected vortex which implies 
that r  has to be less than the intervortex distance .lv  This 
distance is proportional to the magnetic length [18], 

= 1.77 ,l c l lπ ≈
v

 where 1c ≈  is the geometric factor 
dependent on the Abrikosov’s lattice structure. Thus al-
though one can investigate the regime r l�  theoretically, 
in practice it is not accessible. 

In Fig. 1,a we compare the already discussed after 
Eq. (11) case of the constant magnetic field with the case 
when the Abrikosov vortex is also present ( = 1/ 2)η  for 

= .r l  We observe that while for = 0η  (the dashed curve 
is, obviously, r-independent) only the peaks at half-
integers / cE ω=  are present, for = 1/ 2η  the weight of 
these peaks is reduced and a set of the new peaks at the 
integers / cE ω=  on the solid curve is developed. This be-
havior can be foreseen from the expression for the full 
DOS difference (33) (or Eq. (32)) discussed in the previous 
section. The case with the Abrikosov vortex is further ex-
plored in Fig. 1,b, where we plot the energy dependence of 
the LDOS for = 0.5r l  (the solid curve) and = 5r l  (the 
dashed curve). Comparing the results for / = 0.5, 1,5r l  
we find that as the distance r  decreases, the integer 

/ cE ω=  peaks are getting stronger, while for = 5r l  they 
practically disappear. This behavior allows to attribute the 
corresponding energy levels to the vortex. On the other 
hand, the half-integer / cE ω=  peaks corresponding to the 
usual Landau levels formed in a constant magnetic field. 
We stress that even for an arbitrary vortex flux η  the latter 
levels will not change the positions, while the levels re-
lated to the vortex will shift their energies. 

Analyzing Eq. (57) which was used to plot Fig. 1, we 
observe that the positions of all peaks are controlled by the 
gamma functions ( )zΓ  which contain simple poles for 

= 0, 1, 2,z − − …  However, the intensity of the peaks de-
pends on the rather complicated modulating function 

, ( ).F yλ μ  For example, we verified that despite that the 
first gamma function in the second term of Eq. (57) con-
tains the pole at the negative energy = / 2,cE − ω=  the 
final LDOS does not contain this pole. To gain more in-
sight on the behavior of the LDOS we have investigated its 
behavior in the limits 0r →  and .r →∞  Taking into ac-
count the 0y →  limit of Im I  given by Eq. (38), we ob-
tain that the value S( = 0, , )N E BηΔ r  is equal to the nega-
tive LDOS (11) in the constant magnetic field. This 
implies that the full LDOS in the center of the vortex is 
completely depleted, 

 S( = 0, , ) = 0.N E Bη r  (58) 

This vortex induced depletion of the LDOS in the non-
relativistic 2DEG was already seen in Ref. 1 and now we 
conclude that it should also occur in the presence of the 
background magnetic field. This behavior we can observe 
from Fig. 2, where curves begin from the negative LDOS 
(11) in the constant magnetic field. Two of these curves, 
viz. the solid and the dot-dashed are for the usual Landau 
levels with / = 0.5, 1.5,cE ω=  and the other two are for 
the vortex levels with / = 1, 2.cE ω=  For small <r l  all 
curves increase linearly as expected from the analytic re-
sults described in Eq. (57) if we take there = 1/ 2.η  Since 
for the large y  the function Fλμ  decays exponentially, the 

LDOS difference 
2 2S /2( , , ) e r lN E B −

ηΔ r ∼  for .r →∞  We 
emphasize that all curves in Fig. 2 are taken by the maxi-
mum values of the LDOS in the solid curve in Fig. 1,a. 

7. Conclusions 

In this paper, we explored the electronic density of 
states of two-dimensional system at the presence of the 
Aharonov–Bohm flux tube and constant magnetic field. 
The expression for LDOS is found exactly as a function of 
energy, coordinates and a value of magnetic flux. The ob-
tained function has a depletion near the vortex core and 
becomes a zero in it’s center. Also the LDOS has new 
peaks which don't correspond to Landau levels. The appea-
rence of these peaks can be explained in terms of the new 
spectrum of elementary excitations in the system. For large 
distance from the flux tube the LDOS difference decays 
exponentially. So contributions to the LDOS via Aharo-
nov–Bohm field play a crucial role near the vortex. Since 
the fabrication of this system is not difficult now, one can 
investigate obtained results for the LDOS experimentally, 
using scanning tunnel microscopy. 
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