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We describe experiments on superfluid 
3
He in a cylinder of 1 mm in diameter. This geometry causes the pre-

ferred orientation of the n-vector in the superfluid B-phase to be locally different, resulting in a curved configu-

ration across the sample. Exclusive to our experiment is the observation that we succeeded in obtaining a texture 

which is metastable and unchanged in our pressure and temperature ranges, most likely because the experiment 

is performed at low pressures and low magnetic fields. As this texture can be considered as a potential for spin 

waves, we had the unique opportunity to study spin waves for several pressures in exactly the same texture. Our 

geometry causes this texture potential to be nearly quadratic, allowing an analytic solution of the theory which 

can be compared to our experimental results. As predicted we find the intensities of all spin wave modes more or 

less equal. Increasing the pressure shows a gradual increase in the number of spin wave modes in our cell. Final-

ly we were able to cause a transition from the metastable to the predicted stable texture, concluding unexpectedly 

that the metastable texture is realized if the growing (or cooling) speed is sufficiently slow. 

PACS: 67.30.he Textures and vortices; 

67.30.hj Spin dynamics; 

67.30.ht Restricted geometries. 

Keywords: superfluid B-phase, metastable texture, 
3
He. 

 

Introduction 

The superfluid B-phase of liquid 
3
He is characterized 

by the relative broken symmetry of the spin angular mo-

mentum (S) and orbital angular momentum (L) of the 

Cooper pairs, of which the order parameter is proportional 

with the spin-orbit rotation matrix R(n, ) [1]. The angle  

between the two vectors is fixed, and equals the Leggett 

angle L  104 . The normal to the plane formed by L  

and S  is named the rotation axis n, which is a convenient 

vector quantity to describe any orientation effects in the B-

phase. The bulk superfluid B-phase is isotropic, conse-

quently the n-vector will not have any preferred orienta-

tion. However, walls and magnetic fields will introduce a 

preferred orientation of the n-vector. 

In confined geometries and in a magnetic field the 

orientation of the n-vector will be locally different, mean-

ing that the n-vector is bent over the sample. The bending 

is of the typical size of the magnetic healing length ,H  

and forms a potential for spin waves. These spin waves can 

be detected by transverse Nuclear Magnetic Resonance 

(NMR) experiments, and are observed as satellite peaks in 

the absorption spectrum. In general the differential equa-

tions concerning these spin dynamics are not trivial to 

solve for a given geometry. However, for the parallel-plate 

and cylindrical geometries the differential equation, to a 

certain extent, can be solved [2]. 

In the case of slab geometry (separation of the plates 

)HL  and 0B  parallel to the plates, transverse NMR 

experiments did detect spin waves [3]. Here the spacing 

between the spin wave modes (NMR resonances) was 

more or less constant, and the intensity dropped as a func-

tion of 1,k  where k  is the spin wave mode. This is in 

good agreement (at least to first order) with the solution of 

the differential equation for this geometry [4,5]. 

The spin wave experiments performed in cylindrical 

geometries (R is few times )H  do show a decrease of 

intensity with increasing k  as well, see for example Hako-

nen et al. [6]. The experiments, concerning this geometry, 

could be explained by numerical calculations [7]. Here the 

configuration of the texture (which forms the effective 

potential) was determined by minimizing the appropriate 

free energy and solving the resulting Euler–Lagrange equa-

tions. The magnetic healing length decreases as function of 

temperature, consequently the effective potential for the 

spin waves is temperature dependent. Normally, this is 

considered the dominating temperature effect for spin 

waves in the cylindrical geometry [8]. 
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Here, we present that we have been able to grow a n-

texture, which is meta-stable and does not change below a 

certain temperature. Not only do we create this way a tem-

perature independent potential, but this potential is also 

close to a quadratic one, for which the corresponding diffe-

rential equation can be solved analytically. 

2. Theory 

The orientation of the n-vector in superfluid 
3
He–B is 

determined by the magnetic field in the bulk liquid and by 

the proximity to the wall of the cell. The strength of the 

magnetic field, which is the static magnetic field to per-

form NMR, is around 15 mT, for which the superfluid is in 

the high field limit (B >> 3 mT). In this case the most im-

portant orientation energies are: the bulk-field free energy 

,BHF  the bulk-bending free energy BBF  and the surface-

field free energy .SHF  The total free energy to be mini-

mized is  

 = .BH BB SHF F F F  (1) 

The bulk-field energy is minimized when the n-vector 

is aligned with the magnetic field [4]. In the case that 0B  

is perpendicular to the normal to the wall ˆ( ),s  as in the 

case of our experiments, it is shown [4] that SHF  is mini-

mized when n makes an angle = arccos(1/ 5) 64.5  

with respect to both ŝ  and 0.B  However, the change in the 

local orientation can only be continuous, since fast changes 

(discontinuities) of the order parameter will be energetical-

ly unfavorable. One accomplishes a smoothing of the spa-

tial variations over a finite distance, if BBF  is expressed as 

an invariant combination of the gradients of the order pa-

rameter [4,9]. The superfluid takes the configuration which 

minimizes the total free energy over the whole sample. 

This results in a continuous change of the orientation of the 

n-vector over the whole sample, and this configuration is 

called the n-texture [9]. 

For the case of an axial magnetic field and a cylindrical 

geometry with radius ,HR  one can calculate that the 

energetically most favorable configuration of the n-texture is 

the flare-out configuration, as calculated by Smith, Brink-

man and Engelsberg [4]. Here we expect that the n-vector 

has an angle with 0B  and ŝ  of arccos(1 5)  at the wall 

(r = R) of the cylinder and that it will align itself over a 

typical length H  parallel to the z-axis (and the magnetic 

field) in the center of the cylinder. These two boundary 

conditions change the n-vector orientation in a spiral-like 

configuration, which can be parameterized by  

 ˆˆ ˆ ˆ= sin cos sin sin cos ,n r j z  (2) 

in cylindrical coordinates. The angles  and  are func-

tions of r only, and their behavior is intensely studied 

[7,10,11]. The angle  is hardly r dependent and is in prac-

tice close to /3.  The angle  between the n-vector 

and magnetic field varies smoothly over the sample be-

tween values fixed by the boundary conditions. Both radial 

dependencies are experimentally confirmed by Spencer 

et al. [12,13]. 

The magnetic healing length is proportional to 

1 / /cT T B  [8,11,13], meaning that it increases during 

cooling, and the flare-out texture gradually grows in a spir-

al way to the center. The growing should be able to contin-

ue as long as the boundary conditions can be fulfilled, 

meaning that the flare-out texture will grow as long as it is 

the most energetically favorable configuration. Simulations 

[11] till ratios of / > 0.5H R  support this idea of growing. 

Quantitative calculations for higher ratios seem to be 

tough. One may assume that the most extreme form of the 

flare-out configuration would be the gradual change of the 

n-vector connecting the two boundary conditions. Not 

clear is how this energetically compares to other textures. 

Actually, because of complexity of the calculations, it is 

not clear at all how transitions to other textures should oc-

cur when .H R  The qualitative answer for the limit 

H R  is clear. The texture should be completely uni-

form [7], and  should have an angle of arccos(1/ 5),  as 

directed by the boundary condition at the wall. 

To study any textural transitions we consider a cylindric-

al geometry with a diameter of 1 mm. Converting back the 

magnetic healing length as found in literature [8,11,13] to 

our pressures (0–6 bar) and magnetic field (15 mT), it is 5 to 

10 times longer than the radius of the cylinder at 0.7 T/Tc. If 

one starts cooling all textures initially started to grow in the 

flare-our configuration. The growing continues till tempera-

tures around 0.7 T/Tc. Lower temperatures leave the texture 

unchanged, so a textural transition is not observed. It is be-

lieved that this flare-out configuration is formed where the 

two boundary condition are directly connected, or with other 

words, the n-vector is gradually changed over the whole 

range of the sample. This texture is stable, but is not ex-

pected on energetic grounds, for which we consider this a 

metastable texture. The reason may be that a transition cor-

responds with sharp jumps in the n-texture, which will defi-

nitely be discouraged by the bulk-bending free energy. 

However, the bending of the n-vector will act as an attrac-

tive potential for spin waves, resulting in a temperature 

independent potential for various pressures for tempera-

tures below 0.7 T/Tc. 

For the flare-out texture in a long circular cylinder with 

the axis aligned with the magnetic field one can formulate 

the differential equation concerning the spin dynamics. In 

the transverse case, relevant for our transverse NMR expe-

riments, it is given by [2,7,10,11,14] 

2 2
,

1
( | | )L

r D k
d d

K K R r
r dr dr

 

 2
, , ,

1
(1 ) = .sin

2
k k kE  (3) 



O.W.B. Benningshof and R. Jochemsen 

988 Low Temperature Physics/Fizika Nizkikh Temperatur, 2013, v. 39, No. 9 

The first term can be seen as the kinetic part. Here K  

and K  are dimensionless parameters which equal 8/5 and 

4/5, respectively, if calculated in the weak-coupling Ginz-

burg–Landau [15] approximation. L
rR  are the transverse 

components of the spin-orbit rotation matrix, and D  is 

the dipole coherence length. The second part in Eq. (3) is 

the potential part, which is formed by the relevant trans-

verse components of Eq. (2). The eigenvalues are given by 

the following equation  

 
2 2 2

, , ,= ,k k L B k BE  (4) 

where ,k  corresponds with the frequency of the kth spin 

wave mode, L  is the Larmor frequency and B  the lon-

gitudinal NMR frequency of the B-phase. 

In general the differential Eq. (3) is not trivial to solve, 

especially in combination with a temperature dependent 

potential. However, in our case we have a temperature in-

dependent potential, and moreover, our potential only dif-

fers maximally 6.5% if the term 21
sin

2
 is approximated 

by a quadratic dependency in r. As the potentials are very 

alike, it is convenient to compare the data with the results 

from a quadratic potential, for which the differential equa-

tion is analytically solvable. It reduces to the Schrödinger 

equation for the two dimensional harmonic oscillator, for 

which the eigenvalues are given by  

 ,
1

= 1 2 ( 1),
2

D
kE K K k  (5) 

where  is the measure of curvature of the potential. Only 

s-wave states couple to the homogeneous rf field, or with 

other words: only the = 0l  modes have nonvanishing in-

tensities in experiments using uniform rf fields [7]. Conse-

quently, only the even k  modes couple to the correspond-

ing NMR frequencies. The eigenvalues have constant 

separation and, as this is a two dimensional system in a 

quadratic potential (density of states is constant), the inten-

sities should all be equal. Interesting is that in the Ginz-

burg–Landau regime [2], the eigenvalues are pressure de-

pendent, as D  changes as function of pressure, which 

tunes it between 32 m (zero pressure) and 7 m (melting 

pressure). As the energy landscape (potential energy) for 

all pressures is the same, while the level spacing of the 

eigenvalues decreases with increasing pressure, the amount 

of spin wave modes in the cylinder should grow. 

In reality D  does also change with temperature [8], but 

this dependency is weak, certainly compared to the tempera-

ture dependency in B  [16], as it is proportional with 
2( ) / .BT  The temperature behavior of the energy gap 

( )T  and the susceptibility B  for the superfluid B-phase 

are both experimentally and theoretically known [17–19], 

meaning that our system, including the growing of spin 

wave modes, is in theory completely known. 

3. Cell 

A schematic drawing of the final cell is shown in Fig. 1. 

The cell is constructed on a block of copper, which fits on 

the experimental space of the nuclear stage and is 10 mm 

thick. In this way the cell with all the various components 

could be assembled outside the cryostat, including the 

magnet, and could easily be screwed on the nuclear stage. 

The cell itself mainly consists out of silver and poly-

etherimide (PEI). 

The silver piece sliced into the copper block, and was ri-

gidly fixed with additional bolts. One should be sure that 

copper and silver pieces are squeezed sufficiently against 

each other, to prevent extra impedance for the thermal con-

duction. The silver piece itself, which has good thermal con-

ducting properties at low temperatures [20], should cool the 
3
He to the temperatures of the nuclear stage. Silver is pre-

ferred over copper, despite the fact that it has a lower ther-

mal conductance, because its properties are more favorable 

in the presence of a magnetic field. However, the interfacial 

thermal resistance, better known as the Kapitza resistance 

,KR  between the liquid 
3
He and the silver becomes rather 

high at low temperatures. The amount of vibrations (pho-

nons) is strongly decreased at low temperatures and in com-

bination with the mismatch at the interface (low scatter 

probability) this gives a high Kapitza resistance. The tem-

perature difference across such interface is given by 

 = ,KR Q
T

A
 (6) 

where Q  is the heat flow and A  the surface area of the 

interface. In the case of an interface between 
3
He and sil-

ver the Kapitza resistance at 2 mK is =KR  10
5
 m

2
K W

–1
 

[20]. To prevent the interface of becoming the highest im-

pedance of the heat transport, the area should be made suf-

ficiently large. This is accomplished by a silver sinter 

pressed on the silver piece. Here the sinter works as a 

sponge in the 
3
He liquid and has an enormous surface area. 

The silver sinter was 0.5 mm thick and had an effective area 

Fig. 1. (Color online) Cross section of the experimental cell. 
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of 25 m
2
, which gives a /Q T  ratio of 2.5 10

–4
 W K

–1
. 

This is one order of magnitude better than the heat transport 

through helium in the cylinder, as we will see later, and 

made this interface not a limitation in the cool down process. 

The part of the cell which fits into the magnet should be 

made of a non-metallic material. Otherwise it would lead 

to significant losses like eddy currents, which is bad for 

temperature stability and NMR measurements. For this 

purpose this part of the cell is mainly made out of polye-

therimide. PEI is a plastic which is easily to machine and 

has proven to be suitable to work with at low temperatures, 

meaning it does not crack after multiple cool downs. The 

disadvantage of working with PEI, whose molecular struc-

ture per unit polymer is given by C37H24O6N2, is the quan-

tity of hydrogen atoms in it. The gyromagnetic ratio  of 

hydrogen is relatively close to the one of 
3
He (they differ 

approximately by a factor of ~ 1.31) and because the 2T  of 

hydrogen in the polymer is short, the tail of the NMR ab-

sorption is visible at the resonance frequency of 
3
He. From 

this point of view it is more desirable to work with quartz 

glass (SiO2), it is also a nonmetal and has not a net nuclear 

spin. However, the fabrication and machining of quartz 

glass cylinders is much more complicated. Together with 

the fact that several cell’s needed to be constructed to find 

the optimal results for cooling the liquid, SNR of the NMR 

experiments, fiber gluing, etc., made it more convenient to 

construct the cell out of PEI. 

The experiment is performed in a circular cylinder 

made of PEI, which axis is aligned with the static magnetic 

field of the NMR. The total length is 70 mm and 1 mm in 

diameter. The read out is performed with a weakly coupled 

transformer technique [22], where the rf-coil is positioned 

in the middle of the cylinder. 

4. Results 

Measurements are performed between zero and 6 bar, 

and till temperatures below 300 K. A typical sequence 

of NMR spectra at different temperatures is plotted in 

Fig. 2. Here the measurement is performed at 6 bar, and 

the temperature sweep is between 0.57 mK and 1.56 mK 

(transition temperature). Above cT  the resonance fre-

quency occurs at the Larmor frequency. Directly below 

cT , the liquid has undergone the phase transition to the 

superfluid B-phase, and the growing of the flare-out con-

figuration is observed. The absorption spectrum has be-

come wider, caused by the radial changes in the orienta-

tion of the n-vector in the cylinder. 

The texture gets stuck around 1 mK, and from this point 

it forms a constant potential. Also around this temperature 

the spin waves modes become visible, as the separation 

between the modes is enough to distinguish each mode. 

The spin wave absorption lines are more or less equally 

separated, but more importantly they have approximately 

the same intensities. In total 5 spin wave modes become 

clearly visible at the lowest temperatures, which is ex-

pected at this pressure according to Eq. (5). The separation 

between the modes does increase as B  increases by de-

creasing temperature [3]. Below 0.3 T/Tc hardly any tem-

perature dependency is observed, as the susceptibility and 

energy gap are almost saturated. This texture seems stable 

for the whole temperature range (at least till 100 K), and 

no textural transition is noticed. 

The NMR spectrum of the spin wave modes at several 

different pressures obtained at the lowest achievable tem-

peratures (T < 0.3 Tc) are shown in Fig. 3. No noticeable 

temperature effects are expected below 0.3 Tc, so the data 

can be compared with the results of the theory at zero tem-

perature (Eqs. (4) and (5)). The zero temperature theory 

predicts the frequencies of the spin wave with only the 

pressure as a variable. The longitudinal NMR frequency 

B  of the B-phase is very well known as a function of 

pressure [3,16]. The most important approximation is the 

replacement of the real texture potential in Eq. (3) by a 

quadratic one, which allowed the analytical solution of the 

spin wave frequencies as given in Eq. (5). The theoretical 

frequencies for the various spin wave modes are shown in 

Fig. 3 as colored dotted-solid curves. The black (1) and red 

(2) curve represents the k = 0 and k = 2 mode, respectively. 

Both exists at all pressures. The sequence green (3), blue 

(4) and cyan (5) represent the k = 4, 6 and 8 modes, which 

only exist at increasing pressure, allowing 5 modes at a 

pressure of 6 bar. 

Fig. 2. (Color online) NMR absorption scans of helium in a cy-

linder with a radius of 0.5 mm at 6 bar for various temperatures. 

The absorption is expressed in voltage V, which is the signal 

measured with the pick-up coil. The temperature range is between 

0.57 mK and cT  (1.56 mK). At and above the transition tempera-

ture the absorption peak is at the Larmor frequency. At lower 

temperatures the resonance frequency shows a shift due to texture 

effects. At even lower temperatures, / < 0.7,cT T  several spin 

waves modes become visible. 
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The measurements are in good qualitative agreement 

with the theory, both the frequencies of the modes and the 

number of existing spin modes at a certain pressure. The 

theory predicts a somewhat smaller spacing between the 

frequencies of the spin modes, which can be explained by 

the fact that the real potential is a bit steeper than the qua-

dratic potential, except close to the cell wall [21]. The 

number of observed spin modes at each pressure is exactly 

as predicted by theory, with one exception: for zero pres-

sure one would expect 2 spin wave modes, while 3 modes 

can be distinguished in the NMR absorption line. 

5. Discussion 

The flare-out configuration for the texture is not the ex-

pected minimum-energy state for the ratios of / HR  in our 

experiment. However, it seems to be a stable state and 

once the liquid has been cooled to the superfluid state in 

this configuration no transition to an other textural confi-

guration is observed. We guess that the forming of this 

meta-stable texture occurs at sufficiently slow cooling. 

Once grown far enough in the flare-out configuration this 

state is meta-stable, as the threshold to jump to an other 

textural configuration is too high. 

If one would cool down more rapidly, the magnetic 

healing length H  would grow and oversize the radial 

dimension of the system much faster than in normal proce-

dure. At the moment the superfluid is formed, the n̂ -vector 

is not given enough the time to grow smoothly into the 

flare-out configuration. This condition will favor the crea-

tion of the forming of the uniform-texture. To cool as fast 

as possible with our setup, the liquid was pre-cooled to the 

lowest temperatures, and than locally heated to the normal 

state by a rf-pulse. While the rest of the system is still cold 

the heat only needs to be removed locally, which should 

make the cooling much faster than in any other method 

available. Enough heat could be produced with a pulse in 

the rf-coil, the absorption was enough to overcome locally 

the energy gap, and it turns out the superfluid cools into 

another textural state. This is depicted in Fig. 4. The black 

(1) absorption line shows the usual stable situation at 6 bar 

(around 300 K) with the 5 spin wave modes. After the 

heat pulse, the resonance frequency is at the Larmor fre-

quency, as shown by the green (3) absorption line, indicat-

ing that the liquid is in the normal state. The locally heated 

liquid then starts to cool and the absorption peak moves 

uniformly to the left and becomes wider as the liquid be-

comes superfluid. The red (2) curve in Fig. 4 shows the 

equilibrium result, when the liquid is cooled back to 

300 K. The spin wave modes have disappeared, and the 

NMR absorption signal only shows a single peak, indicat-

Fig. 3. (Color online) Spin wave absorption peaks as a function 

of magnetic field at pressures of 0, 1.5, 4 and 6 bar. Each absorp-

tion line is obtained at a temperature below 0.3 T/Tc. The absorp-

tion is expressed in arbitrary units. The longest peak corresponds 

with the mode k = 0 in Eq. (5), the neighboring peak corresponds 

to the mode k = 2, and so on. The (more or less vertical) curves 

represent the theoretically predicted spin wave frequencies for the 

various modes at zero temperature. The black (1), red (2), green 

(3), blue (4) and cyan (5) dotted/solid curves correspond with the 

mode 0, 2, 4, 6 and 8, respectively. All curves are plotted for 

increasing pressures (started from 0 pressure), but the curve is 

dashed when the mode is predicted not to exist, and it becomes a 

solid curve when theory predicts the mode to exist. 

Fig. 4. (Color online) Local heating of the superfluid with NMR. 

The black (1) and red (2) curves show the absorption spectrum of 

6 bar at 300 K before and after heating the sample, respectively. 

The corresponding values of both absorption curves are put on 

the left y-axis. The green (3) curve corresponds with the absorp-

tion curve while heating the sample, absorption values are put on 

the right y-axis. Here the values are 2 orders of magnitude higher, 

so enough energy is dissipated to locally warm up the liquid to 

the normal state, as is indicated by a jump of the peak to the Lar-

mor frequency. After the local heating, the texture is changed 

from flare-out to uniform configuration. 
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ing that the superfluid is in an uniform texture. This is the 

energetically expected uniform texture, where the center of 

the peak corresponds with arccos(1/ 5),  as is directed 

by the boundary condition at the wall. 
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