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Longitudinal collective dynamics of an equimolar Lennard-Jones KrAr mix-
ture is studied in detail in a wide range of spatial and time scales. Combin-
ing both the molecular dynamics simulations and analytical generalized col-
lective mode approach, we calculated the spectrum of generalized collec-
tive excitations and analyzed the dominant dynamic processes that deter-
mine the main contributions to time correlation functions in different regions
– starting from the hydrodynamic limit and up to the range of the so-called
molecular regime. The origin of collective propagating modes as well as the
specific features of their dispersion laws within and beyond the hydrody-
namic region are established. It is shown that the structural relaxation and
processes, connected with mutual diffusion of particles, determine mainly
the central peak of total dynamic structure factor beyond the hydrodynamic
region. The dispersion laws, obtained for the propagating modes in our an-
alytical approach, are compared with the dispersion curves, estimated from
the maxima positions of partial current spectral functions. The difference in
these two sets of numerical results is discussed.
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1. Introduction

Collective dynamics of liquids is one of the important and yet unresolved prob-
lems of modern statistical physics. Its complexity is mostly connected with very
complicated interplay of various dynamic processes on different spatial and time
scales that cannot be reproduced within simplest analytical theories. Only in hydro-
dynamic limit, when the slowest processes are well separated in time scale from the
fast kinetic ones and a liquid could be treated as a continuum without any molecular
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structure, it is possible to obtain relatively simple and working expressions for the
hydrodynamic time correlation functions [1,2].

Rapid development of computers in the last two decades has made it possible to
perform computer simulations for systems with large numbers of particles, enabling
us to study in detail different time correlation functions in a wide range of spatial
and time scales – from hydrodynamic limit and up to molecular regime, where
the microscopic processes sufficiently affect the form of time correlation functions.
Even in the case of simple liquids we can feel the lack of a reliable theoretical
approach to the description of collective processes in liquids on a molecular scale.
For instance, only recently [3–6] it was realized that the structural relaxation plays
the dominant role beyond the hydrodynamic region making the leading contribution
to the central peak of dynamic structure factor S(k, ω) (k and ω being wavenumber
and frequency, respectively), while in long-wavelength limit the most important
contribution is caused by the hydrodynamic relaxation process of thermal diffusion.
Therefore, one can speak about a crossover phenomenon in the liquid dynamics,
describing the change of dominant dynamic processes when spatial and time scales
vary from hydrodynamic region to molecular regime.

For binary liquids, the dominant dynamic processes that determine the collec-
tive dynamics beyond the hydrodynamic region are still under discussion. For the
longitudinal dynamics, it is generally accepted that there exist at least two bran-
ches of propagating excitations beyond the hydrodynamic region, which in a short-
wavelength region describe the partial dynamics of heavy and light components in
a binary mixture. However, regarding the dispersion laws of these two branches
by approaching the hydrodynamic region there is no clear model for describing the
crossover in dispersion from the molecular region to the hydrodynamic one. Especial-
ly big problems arise regarding mixtures composed of disparate mass particles. So
far it has not been finally established what is going on with the high-frequency prop-
agating branch in the long-wavelength limit. Hence, the problem of “fast sound” [7]
reported in the literature over almost 20 years is still far from being finally solved. It
is not also known what is the role of concentration in the damping of high-frequency
branch, how the mass ratio affects the width of hydrodynamic region, how will the
dispersion law change by decreasing the concentration of relevant species up to the
impurity limit.

One of the most natural ways of exploring the collective dynamics in binary liq-
uids is to vastly apply simple theoretical models and reliable schemes for the analysis
of computer experiments in order to clarify the dominant relaxing and propagating
processes in a wide range of wavenumbers k and frequencies ω, including the hydro-
dynamic limit. A good choice for such a study is an equimolar binary liquid with
relatively small mass ratio that would allow one to compare the obtained results with
those known for simple fluids. In such a way one can systematically target further
the effect of concentration or mass ratio onto the dispersion laws for propagating
excitations. Recently, the main dynamic processes in the transverse dynamics of a bi-
nary equimolar KrAr liquid [8,9] were studied by combining the molecular dynamics
(MD) simulations and an analytical generalized collective modes (GCM) approach
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[10–12]. A clear picture of transverse dynamics in terms of two branches of propagat-
ing excitations was established: in short-wavelength region the branches show a well
observed partial character, describing the dynamics of light and heavy components,
while in the long-wavelength region the low-frequency branch exhibits the collective
shear-wave dispersion with a propagation gap in k → 0 limit and the high-frequency
branch corresponds to the pair of collective optic-like excitations. A simple theoret-
ical model for separated transverse mass-concentration current fluctuations allowed
us to explain the origin of optic-like branch in the long-wavelength limit and to clar-
ify a physical mechanism causing the damping of transverse optic-like excitations
[8,9]. Later, a similar three-variable model for the dynamics of mass-concentration
fluctuations was solved for the longitudinal case [13]. Remarkably, exactly the same
mechanism of damping for the optic-like excitations was found in the case of the
longitudinal dynamics. In particular, it was shown that high mutual diffusion and
a tendency to demixing, when the atoms are mainly surrounded by like particles,
cause strong damping and can even suppress the optic-like branch. Such a picture
seems to work in a gaseous mixture He0.65Ne0.35 [14,13], where the high-frequency
branch vanishes from the spectrum in the small-k region because of the strong effect
of mutual diffusion processes.

Thus, on the one hand, the analysis of collective modes spectrum obviously indi-
cates that in the long-wavelength region there commonly exists an optic-like branch
of mass-concentration waves unless some specific processes in the liquid (like high
diffusion or a tendency to demixing) can suppress it because of strong dissipation.
This last statement can be rigorously proved by neglecting the dissipation terms in
the relative spectral problem. On the other hand, in the literature there are many
reports on the dispersion curves in binary liquids, obtained numerically from the
estimates of peak positions in the MD-derived partial current spectral functions
Cαα(k, ω), α = A, B [15–18]. The general picture, found in these studies for the
dispersion curves of propagating modes, is as follows: two branches, well defined in
the short-wavelength region and describing the high- and low-frequency excitations,
are merged into a single branch with linear sound-like dispersion in small k lim-
it. This point will be discussed in detail in this paper by applying both the GCM
approach and numerical estimates method and by analyzing the results obtained.

In fact, hydrodynamic equations reflect the local conservation laws for dynamic
variables, connected with additive integrals of motion. For a binary liquid they are
[19] the densities of total number of particles nt(k, t), concentration c(k, t), total
momentum Jt(k, t), and energy ε(k, t), respectively. Solution of the hydrodynamic
equations describes the slowest dynamic processes on large spatial scales which cor-
respond in the case of binary liquids to the thermal and concentration diffusion (two
relaxing processes), and a pair of sound propagating modes (propagating processes).
In terms of relative eigenvalues for small wavenumbers k one can write down

dα(k) = Dαk2 , α = h, c (1)

for the heat and concentration diffusive modes with Di being the damping coeffi-
cients, and

zs = Γsk
2 ± icsk (2)
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for sound propagating modes, where Γs and cs denote the sound attenuation coeffi-
cient and sound velocity, respectively. These hydrodynamic eigenvalues are respon-
sible for k-dependence of the dynamic structure factor S(k, ω) [1,19], which can be
written as follows:

Shyd(k, ω)

S(k)
= Gnn

s

∑

α=+,−

Γsk
2 − αk(ω/cs + αk)bnn

(ω + αkcs)2 + (Γsk2)2

+
∑

α=h, c

Gnn
α

Dαk2

ω2 + (Dαk2)2
(3)

and consists of two central Lorentzians with the amplitudes Gnn
h and Gnn

c that ap-
pear due to the heat and concentration diffusion, respectively, and two non-central
Lorentzians (so-called Brillouin peaks located at ω ' ±csk) with amplitude Gnn

s .
Although the expression (3) is valid only in hydrodynamic limit, it is widely used
for the analysis of experimental data and the results of MD simulations. One can see
that this expression contains no indication of the appearance of optic-like propagat-
ing modes. This is because only the slowest processes are usually taken into account
within the hydrodynamic treatment, and the additional terms in (3) that can be
caused by faster phenomena are just neglected [they contribute in higher order with
respect to k and/or ω]. It will be seen later that the optic-like modes give a good
example of this kind of processes.

The goal of this study is to investigate the main propagating and relaxing pro-
cesses that dominate in different spatial and time scales in the longitudinal dynamics
of a binary equimolar liquid with a relatively small mass ratio. This allows us to clar-
ify some key-points being under discussion in the literature, namely: (i) to establish
the physical origin of collective modes formation in different regions of wavenum-
bers, starting from the hydrodynamic one, and (ii) to analyze their contributions to
the dynamic structure factors and spectral current functions depending on spatial
and time scales considered.

The remaining part of the paper is organized as follows. In section 2 we describe
the details of our MD simulations and report generalized thermodynamic quanti-
ties and time correlation functions of Lennard-Jones KrAr mixture. In section 3
we discuss the numerical results found for the generalized collective modes within
several theoretical schemes in order to justify the origin of mode formation and to
establish the dynamic processes with dominant contributions in different regions of
k considered. Section 4 contains our conclusions of this study.

2. Static and time correlation functions

2.1. Some introductory definitions

Let us start from the definition of dynamic variables of total nt(k, t) and mass-
concentration nx(k, t) densities,

nt(k, t) = n1(k, t) + n2(k, t), (4)
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and
nx(k, t) =

m1

m̄
x2n1(k, t) − m2

m̄
x1n2(k, t), (5)

for a binary system of N particles, N = N1 + N2, with atomic masses m1 and m2,
respectively, where

nα(k, t) =
1√
N

Nα
∑

i=1

eikrα

i , α = 1, 2, (6)

are the ordinary partial densities. The notations for reduced mass m̄ = (N1m1 +
N2m2)/N and mass-concentrations xα = Nαmα/Nm̄ were introduced in (5). An
advantage of such a definition for the mass-concentration density is its simple relation
to the longitudinal mass-concentration current Jx(k, t), namely:

∂nx(k, t)

∂t
=

ik

m̄
Jx(k, t) , (7)

and, as it was shown in [8,9], Jx(k, t) is a dynamic variable orthogonal to the to-
tal mass-current density Jt(k, t). This makes especially convenient the theoretical
treatment of dynamic processes in small wavenumbers region in terms of t− x vari-
ables, where the collective type of the dynamics prevails (see [13]), while for large
wavenumbers the partial character of dynamics is dominant.

2.2. Details of molecular dynamics simulations

We have performed MD simulations for an equimolar Lennard-Jones KrAr liquid
at temperature T = 116 K and density n = 0.0182 Å−3. The time evolution of basis
dynamic variables has been obtained from production runs of standard molecular
dynamics simulations in microcanonical ensemble using the system of 864 particles
in a cubic box. Regular production run took over 3 × 105 time steps, while for
three lowest k-values, in order to obtain the desired convergence of relevant static
averages and time correlation functions, the system has been simulated over 2.1×106

time steps. Twenty two k-points were sampled in MD simulations, and the smallest
wavenumber reached in MD is kmin = 0.1735 Å−1. To reduce the dimension of
relevant quantities the following energy, mass, spatial and time scales have been
used in our simulations: ε = kBT , µ = m̄, σ = k−1

min, τ = σ(µ/ε)1/2 = 4.598 ps.
We combined MD simulations with the parameter-free GCM approach for the

study of the longitudinal collective mode spectrum, time correlation functions (TCFs)
and separated contributions to certain TCFs, caused by various collective excita-
tions. For each sampled k-point the shape of MD-derived time correlation functions
and the spectrum of eigenvalues have been analyzed within the eight-variable GCM
approach with the following basis set of dynamic variables:

A
(8)(k) =

{

nt, nx, Jt, Jx, ε, J̇t, J̇x, ε̇
}

. (8)

Comparing (8) with the standard set of hydrodynamic variables, one can see that
the mass-concentration fluctuations are treated with the same precision (with re-
spect to the order of frequency sum rules reproduced exactly) as the total density
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Figure 1. Static structure factors for a Lennard-Jones equimolar KrAr mixture
at 116 K obtained in MD simulations.

fluctuations. Moreover, by applying the set of dynamic variables (8) within the GCM
scheme, we provide the high level of treatment for the energy fluctuations (see [12])
(the theoretical energy-energy TCF explicitly reproduces at least first three frequen-
cy moments in the whole k domain considered).

2.3. Static properties

The numerical results, obtained directly in MD simulations as static averages,
for the static structure factors

Sij(k) = 〈ni(k, 0)n∗

j(k, 0)〉, i, j = t, x,

defined on the total (4) and mass-concentration (5) densities, are shown in figure 1.
One can see in figure 1 the complete difference in the shape of static structure

factors Stt(k) and Sxx(k). As for simple liquids the total density structure factor
Stt(k) behaves in a regular way. It tends to a constant connected with the isothermal
compressibility κT in the long-wavelength limit, and at kp ≈ 1.9 Å−1 this structure
factor has a well-defined main maximum. The mass-concentration structure factor
Sxx(k) in contrast to Stt(k) is almost a structureless function of wavenumber which
means almost uniform A−B solubility on different spatial scales. The form of static
structure factors Stt(k) and Sxx(k) is an important input for the subsequent analysis
of dynamic properties.

The k-dependence, found for the static correlation function “energy-energy”
See(k), is plotted in figure 2 (upper frame). This function reflects all the features of
Stt(k), while the static cross-correlation functions Set(k) and Sex(k) (lower frame in
figure 2) are negative in the whole k-range considered and show a similar oscillat-
ing behaviour. Note that Set(k) displays much more pronounced oscillations than
Sex(k).

The generalized hydrodynamic theory usually operates with the so-called gen-
eralized thermodynamic quantities (see, e.g., [14]) which are k-dependent functions
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Figure 2. Reduced static correlation functions of a binary liquid KrAr at 116K:
(i) energy-energy (on the top); (ii) energy-density and energy-mass concentration
(on the bottom).

and in the limit k → 0 tend to their thermodynamic values observed in real ex-
periments. In figure 3 we show four generalized thermodynamic quantities, namely,
the generalized dilatation δ(k), the normalized linear expansion coefficient αT(k)T ,
the generalized specific heat at constant volume CV(k) and the generalized ratio
of specific heats γ(k), calculated for the system considered in our MD simulations.
The expressions for these generalized thermodynamic quantities can be found in
[14]. Note, first, that all four generalized thermodynamic quantities in figure 3 have
well defined peaks at the position kp of the main maximum of the total static struc-
ture factor. And, second, a lot of useful information can be extracted from such
dependencies. In particular, from these calculations, considering small k limit, we
can predict the value of αT = 0.0043 K−1 for linear expansion coefficient of a binary
KrAr liquid at the temperature of 116 K.

The generalized k-dependent specific heat at constant volume CV(k) is in agree-
ment with the value of 2.43 kB at k = 0, obtained independently via the fluctuation
formula during the MD production runs. The generalized ratio of specific heats tends
to a value of ≈ 2.15 in long-wavelength limit, which is quite reasonable value for
Lennard-Jones liquids. One should note, that γ(k) is in fact a measure of coupling
between the heat and viscous processes: for γ = 1 one can describe heat and viscous
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Figure 3. Generalized k-dependent thermodynamic quantities for KrAr mixture:
the generalized dilatation δ(k); the generalized linear expansion coefficient αT(k);
the generalized specific heat at constant volume CV(k) (the filled box at k = 0
corresponds to the value obtained directly in MD simulations); and the general-
ized ratio of specific heats γ(k).

processes separately. That is why the longitudinal dynamics of liquid metals with
the typical value of γ being of the order 1.1 − 1.2 is described pretty well within
the viscoelastic theories. For Lennard-Jones liquids the coupling between the heat
and viscous processes is usually rather strong and, for instance, only in the region of
wavenumbers k ≈ 1.3 Å−1 for the system considered the generalized ratio of specific
heats γ(k) approaches unity, so that the viscoelastic treatment could be successfully
applied in this region.

The numerical results, obtained for the static averages

ω̄tt
4 (k) =

〈J̇tJ̇
∗

t 〉
〈JtJ

∗

t 〉
, ω̄tx

4 (k) =
〈J̇tJ̇

∗

x〉
〈JxJ∗

x〉
, ω̄xx

4 (k) =
〈J̇xJ̇

∗

x〉
〈JxJ∗

x〉
,

22



Longitudinal dynamics in a Lennard-Jones binary liquid

0

1000

2000

3000

4000
tt

xx
ak2

-1500

-1000

-500

0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

N
or

m
al

iz
ed

 4
-th

 fr
eq

ue
nc

y 
m

om
en

ts
 / 

re
du

ce
d 

un
its

k / A�°-1

xt
-bk2

Figure 4. The ratio of fourth and second order frequency moments for the dynam-
ic structure factor: density–density, ω̄tt

4 (k); density–mass concentration, ω̄tx
4 (k);

mass concentration–mass concentration, ω̄xx
4 (k). The hydrodynamic asymptotes

are shown by short-dashed lines.

being directly connected with the ratio of fourth and second order frequency mo-
ments of relevant dynamic structure factors, are plotted in figure 4. It is very impor-
tant for the subsequent analysis that in the long-wavelength limit ω̄xx

4 (k) tends to
a non-zero constant, while the other static averages show clearly the k2-behaviour
in a small k domain. We also note that the function ω̄tt

4 (k) is often treated [1,2] in
connection with the dispersion law for sound excitations in the viscoelastic mod-
els. This is because the dynamic variable J̇t(k, t) is proportional to the longitudinal
component of stress tensor and in the limit k → 0 the relevant static average defines
the so-called high-frequency sound velocity c∞:

c2
∞

k2 = ω̄tt
4 (k), k → 0.

Using this last relation we have estimated c∞ ≈ 1210 m/s for the studied KrAr
mixture. In a similar way, the function ω̄xx

4 (k) can be associated with the dispersion
law for the propagating mass-concentration waves in long-wavelength limit, and the
obvious feature of optic-like excitations with the nonzero frequency of propagation
at k = 0 can be easily obtained. It should be noted once again that this is a general
property of a binary liquid, when the dissipation processes are neglected on such a
level of description.
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2.4. Time correlation functions

In figures 5–7 the numerical results, obtained for time correlation functions of
a binary KrAr liquid in MD simulations as well as within the GCM approach, are
presented for several wavenumbers k. In these figures one can see how the GCM
approach permits to reproduce six main TCFs of primary interest obtained in MD
simulations on different spatial and time scales.
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Figure 5. Time correlation functions obtained in MD simulations (solid lines)
and their GCM counterparts (dashed lines) for a wavenumber k = 0.49 Å−1: the
partial TCFs (on the left side) and the TCFs with the energy density (on the
right side). The time scale is τ = 4.598 ps.

The GCM counterparts have been calculated with the help of theoretical expres-
sions for time correlation functions (see, e.g., [12]) , represented in this study as
linear combinations of the eight contributions from the corresponding generalized
collective excitations:

F
(GCM)
ij (k, t) =

8
∑

α=1

Gij
α (k)e−zα(k)t, (9)

where Gij
α (k) are the k-dependent amplitudes, describing the corresponding contri-

bution of the collective mode zα(k). Both the amplitudes Gij
α (k) and the eigenvalues

zα(k) in general can be the complex quantities and are calculated from the eigenval-
ue problem for the generalized hydrodynamic matrix, generated in our case on the
eight-variable basis set A

(8)(k).
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Figure 6. Time correlation functions obtained in MD simulations (solid lines)
and their GCM counterparts (dashed lines) for a wavenumber k = 1.04 Å−1: the
partial TCFs (on the left side) and the TCFs with the energy density (on the
right side). The time scale is τ = 4.598 ps.

Comparing the curves, given in figures 5–7, it is seen that the GCM approach
makes it possible to reproduce the time-dependence of MD-derived TCFs with high
precision in a wide k range considered. This conclusion is valid both for the partial
TCFs, Fαβ(k, t) with α, β = Kr, Ar, and for the TCFs, constructed on the energy
density variable, Fαε(k, t) with α = Kr, Ar and Fεε(k, t). The time scale of τ =
4.598 ps indicates that the range of time correlations at k = 0.49 Å−1 (see figure 5)
is of the order of 60 ps. For this reason, to provide a good convergence of the
tails of time correlation functions, we have simulated the system for three smallest
wavenumbers in the scale seven times longer.

The six time correlation functions shown in figures 5–7 define six main correlation
times in a binary liquid:

τij(k) =
1

Fij(k, 0)

∫

∞

0
Fij(k, t)dt , i, j = A, B, ε .

In this study the six correlation times were directly estimated from MD-derived
TCFs for subsequent use in matrix elements of generalized hydrodynamic matrix
T(k) generated on the basis set A

(8)(k).
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Figure 7. Time correlation functions obtained in MD simulations (solid lines)
and their GCM counterparts (dashed lines) for a wavenumber k = 2.11 Å−1: the
partial TCFs (on the left side) and the TCFs with the energy density (on the
right side). The time scale is τ = 4.598 ps.

3. Spectrum of collective excitations

3.1. Results for the eight-variable model

Spectrum of propagating collective excitations (the imaginary and real parts of
corresponding eigenvalues), obtained in our eight-variable GCM analysis, is shown
in figure 8. The “plus” symbols in this figure correspond to the low-frequency heat
waves with a propagation gap at small wavenumbers. Such a behavior is quite similar
to the one observed previously for a heat wave branch in simple liquids. For the KrAr
mixture there exists a rather wide propagation gap with a width ≈ 2.1 Å−1, where
the heat waves cannot propagate. Instead, two relaxing processes driven by the heat
fluctuations exist in this region.

The purely real eigenvalues di(k), describing three slowest relaxation-like pro-
cesses in the system, are shown in figure 9. The hydrodynamic process of thermal
diffusion is shown in figure 9 by filled circles. Note that when the wavenumber k
increases, the rapid growth of an inversed relaxation time for thermal diffusion is
observed. This means that under such conditions the thermal diffusive process can
play a crucial role in a small time scale only. Another relaxation process, caused by
thermal fluctuations, has an extremely small relaxation time and is not shown in
figure 9. At k ' 2.1 Å−1 the relaxation times of both thermal relaxation processes
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(8)(k). The small-k asymptotes are shown for the generalized
sound excitations by dotted lines.

become close in magnitude and the heat waves emerge in the liquid.

Two branches of propagating excitations, existing in the whole k range studied,
are shown in figure 8 by filled and open boxes. One should note, that for k >
0.5 Å−1 both branches have nearly the same damping coefficients, while in the
small wavenumbers limit the branch shown by open boxes tends to a finite nonzero
damping coefficient. This is a specific feature of kinetic-like collective modes [11,12].
The branch shown by filled boxes displays almost linear k dependence for imaginary
part of the eigenvalue with the slope c = 808 m/s, while its real part for k <
0.3 Å−1 behaves almost proportional to a k2 which is typical of sound excitations.
Hence, we have sufficient reasons to argue that the branches shown by filled and
open boxes describe the generalized sound excitations and the kinetic optic-like
propagating modes, respectively. The discussion of this subject will be continued in
the next subsection within the simplified models of the longitudinal dynamics giving
additional insight into the mode formation mechanism.

Beyond the hydrodynamic region two relaxing processes become very important.
The first one (see the eigenvalue shown by open triangles in figure 9) has a finite
nonzero relaxation time in the long-wavelength region and obviously does not signif-
icantly contribute to the shape of spectral functions in this domain of wavenumbers.
The short-dashed curve with k2-dependence very well fits (see figure 9) the behaviour
of this relaxing mode for k < 0.6 Å−1. We note that similar kinetic relaxing process,
associated with the structural relaxation phenomenon, has been identified in sim-
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Figure 9. Purely real eigenvalues di(k), describing the relaxation processes in a
binary KrAr liquid, obtained within the GCM approach: symbols – results for the
basis set A

(8)(k); solid and long dashed lines – for the separated three-variable
sets A

(3t) and A
(3x). The small-k asymptotes are shown for the hydrodynamic

diffusion mode by dotted line and for the generalized viscous relaxation mode by
short-dashed line.

ple liquids [5,6,20]. In particular, it was found that the corresponding eigenvalues
behave in small k range as follows:

dstr(k) =
c2
∞
− c2

s

DL

− DLk2 − (γ − 1)Ak2 ,

where DL is longitudinal viscosity, cs denotes an adiabatic sound velocity, and A is
some constant defined by thermodynamic quantities and transport coefficients. An
important point is that, in simple liquids, the structural relaxation process becomes
the dominant one beyond the hydrodynamic region and makes the main contribu-
tion to the central peak of dynamic structure factor [5,6,20]. In the case of a binary
liquid considered one can see in figure 9 that two relaxation processes have nearly
comparable relaxation times for k > 1.5 Å−1. In addition to the structural relax-
ation mode, there is another collective excitation with the purely real eigenvalue,
shown in figure 9 by filled triangles. Taking into account the k2-asymptote of the
mentioned eigenvalue in a small k domain (shown by dotted line), one can conclude
that this second relaxation process is just associated with the mutual diffusion. In
the next subsection we discuss such a conclusion by considering two different subsets
of dynamic variables for the analysis of time correlation functions and the collective
mode spectrum in order to separate the relaxation processes of different origin.

3.2. Simplified models of the longitudinal dynamics

One of the advantages of the GCM approach consists in a possibility to perform
an additional study for separated subsets of dynamic variables. In comparison with
the results found for the basis set of dynamic variables, this allows us to establish
the physical origin of different modes in the spectrum of collective excitations and to
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determine the dominant dynamic processes on various spatial and time scales. Let
us consider two separated three-variable subsets, describing the uncoupled dynamics
of the total density and mass-concentration fluctuations:

A
(3α) =

{

nα, Jα, J̇α

}

, α = t, x. (10)

Note that the joint set A
(6)(k), which just includes the dynamic variables of both

these two subsets, forms an appropriate six-variable basis for the study of longi-
tudinal dynamics in the viscoelastic approximation. It is also obvious that for the
separated subsets, the t−x cross-correlations are neglected. However, in the case of
weak coupling one can expect that the solutions of two 3× 3 secular equations, gen-
erated for subsets (10), will produce the results being very close to the eigenvalues,
obtained for the eight-variable dynamic model (8). This would permit to identify
the origin of different branches in the spectrum of collective excitations and to es-
timate the role of mode-coupling effects. Similar analysis, based on the separated
subsets of dynamic variables, has been successfully applied in our previous study of
transverse collective excitations in binary liquids [8,9] and allowed us to arrive at
the unambiguous conclusions concerning the role of transverse optic-like excitations
in binary mixtures.
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Figure 10. Imaginary parts of the propagating eigenvalues, obtained for the sep-
arated three-variable subsets A

(3t) and A
(3x). The small-k asymptote is shown

for the sound excitations by long-dashed line.

The results of our calculations, obtained for the dispersions of propagating col-
lective modes on the separated subsets A

(3t)(k) (filled boxes) and A
(3x)(k) (open

boxes), are shown in figure 10. One can immediately see the similarity of these
dispersion curves with the functions presented in figure 4 (upper part). Moreover,
comparing the linear slope of the lower branch in figure 10 in a small k domain
with the behaviour of the relevant fourth order frequency moment, we see that the
separated basis set A

(3t)(k) allows us to obtain the sound-like excitations with the
propagating velocity c∞ typical of the elastic medium. Thus, the cross-correlations
with the heat and mass-concentration fluctuations, which are correctly taken into
account within the eight-variable model A

(8)(k), renormalize the sound velocity to
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the value of c = 808 m/s, which is in quite good agreement with the adiabatic
speed of sound cs = 755± 35 m/s, estimated from the functions γ(k) and κT(k) (see
figure 3) in the limit k → 0.

Purely real eigenvalues, calculated for the simplified dynamical models on the
separated subsets, are shown by long-dashed and solid lines in figure 9. One can see
that in complete agreement with the case of simple liquids the eigenvalue, describing
structural relaxation has a minimum at the position of the main peak of total static
structure factor kp. Comparing the results presented in figure 9, we can conclude
that the low-lying relaxing mode shown by filled triangles is directly connected with
the mutual diffusion process.

3.3. Partial current spectral functions

Quite common practice in the literature is to use for the study of collective
excitations different spectral functions, which can be obtained in the scattering
experiments or known from MD simulations. These functions are defined as the
Fourier-transforms of corresponding time correlation functions. In this subsection we
use such an approach for the estimations of the dispersion curves for the high- and
low-frequency branches of propagating modes. This can be done from the location
of maxima positions for the partial ‘current-current’ spectral functions Cαα(k, ω),
being simply connected to the partial dynamic structure factors Sαα(k, ω),

Cαα(k, ω) =
m2

αω2

k2
Sαα(k, ω) ,

with α = Kr, Ar. Our aim herein is to compare the dispersions obtained with the
spectrum of propagating collective modes, calculated within the GCM approach.
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Figure 11. Maxima positions of the partial spectral functions Cαα(k, ω) with
α = Kr,Ar as functions of wavenumber k.

In figure 11 we show the k-dependence of peak positions of the partial current
spectral functions CKrKr(k, ω) and CArAr(k, ω). One can see that the two branches
basically agree with the GCM spectrum in the region k > 0.7 Å−1. We note that, as
it was found in our study of the transverse dynamics [8,9], beyond the hydrodynamic
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region the partial character of the dynamics prevails. The same conclusion has been
recently made for the longitudinal dynamics in binary liquids [13], so that the results
presented in figure 11 are in agreement with our previous studies. However, for
smaller wavenumbers the method of estimation for dispersion curves from the peak
positions of partial current spectral functions Cαα(k, ω) produces a merger of the
two branches exactly as it was reported in [15–18].

Let us discuss this contradiction more in detail. One should note that the numer-
ical scheme for dispersion estimations from the peak positions of Cαα(k, ω) is applied
to the dynamics of binary liquids in complete analogy with the method widely used
in collective dynamics of simple liquids. However, this method: (i) does not take
into account that in binary liquids there exist at least two different propagating
excitations, which could be observed in spectral functions under certain conditions
only (e.g., the frequencies of the modes are well separated, the modes are not over-
damped, and the mode contributions for both modes are nearly of the same order,
etc); (ii) is based on the simplified assumption that the characteristic frequency of a
propagating mode determines alone the maximum position in the spectral functions;
and, therefore, (iii) can be applied only for very rough estimates of the dispersion
dependencies.
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Figure 12. Amplitudes of the mode contributions from the optic-like (high-
frequency) and generalized sound (low-frequency) propagating excitations to the
spectral function CKrKr(k, ω) (on the top) and CArAr(k, ω) (on the bottom) as
functions of wavenumber k.
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In a binary liquid, a sufficient difference between two branches of propagat-
ing collective excitations appears in a small k domain only, where the optic-like
modes have a finite damping coefficient even in k → 0 limit. This results in a
rather flat Lorentzian-like contribution to spectral functions with a weakly devel-
oped peak structure, while the sound excitations in that limit form an extremely
well-pronounced Lorentzian with a well observed peak structure at sound frequen-
cies. Therefore, the optic-like modes contribution can be mostly seen in the shape
of spectral function as some shoulders, which are difficult to identify as real peaks.
That is why the spectral method, widely used in the literature for the study of dis-
persion laws and based on numerical estimations of the peak positions in spectral
functions, cannot be considered suitable for identification of optic-like excitations in
binary liquids.

To complete this section, in figure 12 we have show the amplitudes of mode
contributions from the high- and low-frequency branches to the partial spectral
functions Cαα(k, ω), calculated within the GCM approach (definitions can be found
in [9,13]). It is clearly seen that for k > 1 Å−1 the partial picture in the longitudinal
dynamics dominates and the main contribution to each partial spectral function
is mainly determined by one propagating mode of certain type. We recall in this
connection that for wavenumbers beyond the hydrodynamic region the spectrum
of propagating modes could be very well reproduced [8,9] within simplified models
of the partial dynamics. However, in small k domain the mode contributions from
the two propagating branches to Cαα(k, ω) become comparable (see figure 12). And
with comparable amplitudes the optic-like excitations have no chances to be seen as
an extra maximum in partial spectral functions. In general, the results, presented
in figure 12, nicely illustrate the crossover in the longitudinal dynamics from the
collective behavior to the partial one, when wavenumber k increases.

4. Conclusions

We conclude by making the following remarks:

(i) In this paper the collective excitation spectrum of a binary equimolar Lennard-
Jones KrAr liquid at the temperature 116 K has been studied within the GCM ap-
proach based on the eight-variable dynamic model. Three branches of propagating
excitations, corresponding to the generalized sound, the optic-like modes, caused by
mass-concentration fluctuations, and the low-frequency heat waves, have been iden-
tified. In the region k < 0.3 Å−1, almost linear dispersion with the sound velocity
of cs = 808 m/s is found for the generalized sound excitations, and this result is
in good agreement with another estimated value of cs = 755 ± 35 m/s, obtained
independently. The dispersion of high-frequency optic-like excitations tends to a fi-
nite frequency ωopt ' 5 ps−1 at k → 0 but with the nonzero damping coefficient
σopt ' 4 ps−1. For the low-frequency heat waves, a propagation gap with the width
of 2.1 Å−1 is obtained;

(ii) In agreement with the recent findings for simple liquids, it is shown that the
role of structural relaxation process in a binary liquid rapidly increases beyond the
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hydrodynamic region, while the thermal diffusion becomes almost irrelevant in the
collective dynamics for k > 1 Å−1. However, the specific feature of a binary liquid is
the existence (in addition to the structural relaxation) of another relaxation process,
connected with mutual diffusion, with comparable relaxation time in the region of
the main peak of total static structure factor;

(iii) It is shown that the analysis of the dispersion laws for propagating modes,
based on the numerical estimates of maxima positions in the partial current spectral
functions Cαα(k, ω), leads to the dispersion of high- and low-frequency branches with
their merger in long-wavelength region. This is in contrast with the results, obtained
for generalized collective excitations within the GCM approach. We have explained
the reasons for such contradiction and argued the limitations of the spectral method
widely used in the literature for the study of dispersion laws;

(iv) It is shown that the partial picture of the dynamics dominates in a binary
liquid for large wavenumbers, in particular for a Lennard-Jones KrAr liquid studied
for k > 1 Å−1, while for smaller k values, the contributions from the two propa-
gating branches to Cαα(k, ω) become comparable. This gives a good example of the
crossover in longitudinal dynamics from the partial behavior at larger wavenumbers
to a picture where the collective dynamics with the well-defined sound and optic-like
excitations prevails in a small-k region. We argue that since the optic-like excitations
belong to kinetic-like modes with a finite damping in k → 0 limit, its contributions
to the partial spectral functions Cαα(k, ω) are very difficult to identify using the
spectral method alone.
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Повздовжня динаміка в ленард-джонсівській

бінарній рідині: кросовер від гідродинаміки до

молекулярного режиму

Т.Брик, І.Мриглод

Інститут фізики конденсованих систем НАН України,
79011 Львів, вул. Свєнціцького, 1

Отримано 21 лютого 2004 р.

Повздовжня колективна динаміка в еквімолярній ленард-джонсівсь-
кій суміші KrAr детально досліджується в широкій області просто-
рових та часових масштабів. Комбінуючи симуляції методом моле-
кулярної динаміки та аналітичний підхід узагальнених колективних

мод, ми обчислили спектр узагальнених колективних збуджень та

проаналізували основні динамічні процеси, що визначають головні

вклади в часові кореляційні функції у різних областях – починаючи

від гідродинамічної границі та аж до області так званого молекуляр-
ного режиму. Встановлено походження колективних пропагаторних

мод і особливості їх дисперсії в гідродинамічній області та поза нею.
Показано, що структурна релаксація та процеси, пов’язані з взаєм-
ною дифузією частинок, в основному визначають центральний пік

повного динамічного структурного фактора поза гідродинамічною

областю. Закони дисперсії, отримані в аналітичному підході, порів-
нюються з дисперсійними кривими, визначеними з положень мак-
симумів спектральних функцій для парціальних потоків. Обговорює-
ться різниця між цими двома наборами чисельних результатів.

Ключові слова: колективна динаміка, бінарна суміш, колективне

збудження, структурна релаксація

PACS: 05.20.Jj, 61.20.Ja, 61.20.Lc
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