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An analytical free energy gradient for the molecular Ornstein-Zernike self-consistent-field (MOZ-SCF) method
is presented. MOZ-SCF theory is one of the theories to considering the solvent effects on the solute electronic
structure in solution. [Yoshida N. et al., J. Chem. Phys., 2000, 113, 4974] Molecular geometries of water,
formaldehyde, acetonitrile and acetone in water are optimized by analytical energy gradient formula. The
results are compared with those from the polarizable continuum model (PCM), the reference interaction site
model (RISM)-SCF and the three dimensional (3D) RISM-SCF.
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1. Introduction

The structure of molecule changes, sometimes drastically, upon solvation. Such a change plays
an important role in determining the physical properties of the molecule, chemical reaction and
biological processes [1]. The optimal molecular geometry in solution has the lowest free energy
in any other geometries. Therefore, in order to efficiently find the optimal geometry, free energy
derivative with respect to the coordinate of atoms, called free energy gradient, is required. Although
the free energy gradient can also be evaluated by numerical differentiation, such a procedure is not
profitable in accuracy and computational time compared to the analytical method.

Considering these requirements, several theoretical methods have been proposed for analytical
expressions of the free energy gradient. Such theoretical methods describe an electronic structure
in a solution by combining the quantum chemical treatments for solute electronic structures with
the classical statistical mechanical treatments for solvent distributions around the solute. One of
the most popular theoretical models is known as a dielectric continuum model [2–7]. Since the
solvent is regarded as a continuum media in this model, the molecularity of solvent molecule could
not be considered. For example, it is incapable of describing a local solute-solvent interaction such
as hydrogen bonding.

In order to maintain the molecular aspects of solvents, a theoretical model, referred to as the
reference interaction site model self-consistent-field (RISM-SCF) method, has been proposed by
employing the RISM integral equation theory in the statistical mechanics of molecular liquids to
obtain the solvent distribution around a solute [8–11]. An analytical expression of the free energy
gradients in the RISM-SCF formalism was proposed by Sato et al. [12,13]. They have reformulated
the RISM-SCF equations with the use of the free-energy expression introduced by Singer and
Chandler [14]. It has been shown that the derivation automatically provides variational conditions
for multiconfigurational self-consistent-field (MCSCF) wave functions as well as the Hartree-Fock
(HF) wave functions. The expression for the first derivatives of free energy with respect to solute
nuclear coordinates has been derived by using the variational conditions. More advanced three-
dimensional (3D) RISM theory is also implemented to ab initio electronic structure theory by Sato,
Kovalenko, and Hirata [15]. That method, called 3D-RISM-SCF, has been successfully applied to
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fully anisotropic solute molecule, even biomolecule, and the analytical expression of the free energy
gradient in 3D-RISM-SCF formalism has been proposed [16]. However, both these methods employ
the site-site Ornstein-Zernike (OZ) equation for describing the solvent-solvent correlation, which
provides only spherically averaged correlation functions depending only on the site-site distance,
and is known to give trivial values for the solvent dielectric constant.

Most recently, the molecular Ornstein-Zernike self-consistent-field (MOZ-SCF) method has been
proposed in our previous paper [17] employing the MOZ integral equation theory. The MOZ theory
allows us to treat the orientation dependence of intermolecular interactions through the rotational
invariant expansions [18–21]. The MOZ theory turns out to be efficient in reproducing the thermo-
dynamic, dielectric, and structural properties obtained from the simulations for aprotic solvents,
though there is a controversy as to the accuracy of the HNC approximation for the dielectric
constant of protic solvents [22,23]. In the previous paper, the multidimensional integral method
proposed by Lado et al., which is applicable of treating the anisotropic molecule, was employed to
solve the HNC closure [24]. The quantum mechanical effects, i.e., the exchange repulsion and charge
transfer interactions, have also been incorporated in calculation of the solute-solvent interactions.
Since our approach is based on a molecular model of solvent, the short-range exchange repulsion
and charge transfer interaction between solute and solvent at a molecular level were explicitly
considered by introducing an effective potential located on solvent molecule.

In this paper, the analytical expression is proposed based on the MOZ-SCF model for the free
energy gradient with respect to solute nuclear coordinates. It is possible that the MOZ-SCF model
has been derived based on the variations of the free energy functional, similarly to RISM-SCF.

The organization of this article is as follows. In the section 2, the MOZ-SCF formalism and
the analytical energy gradient are described as well as the computational details. The section 3
shows the results of calculations. The optimized geometries of water, formaldehyde, acetonitrile and
acetone in water are compared with the results of RISM-SCF, 3D-RISM and polarizable continuum
model (PCM). The concluding remarks are given in the section 4.

2. Theoretical method

2.1. MOZ-SCF formalism

Since the details of the MOZ-SCF method have been presented in our previous paper [17], only
the outline of the theory is described here.

The total Helmholz free energy A of the system is given as the sum of solute electronic energy
and the excess chemical potential coming from the solute-solvent interaction,

A = 〈ψ | H0 | ψ〉 + ∆µ . (1)

Here H0 is Fock operator in gas phase, ψ is the wave function of solute, and ∆µ is the excess chem-
ical potential which is the functional of the solute-solvent total correlation function h(ω1ω2R12)
and the direct correlation function c(ω1ω2R12) as well as the solute-solvent interaction energy
u(ω1ω2R12) [14];

∆µ = ρ

∫
dR12

〈
1

2
h2(12) −

1

2
h(12)c(12) − c(12)

〉

ω1ω2

, (2)

where (12) = (ω1ω2R12). ω1 and ω2 are the Euler angles defining the orientations of the solute
and a solvent molecule, and R12 is the vector connecting the origin of the solute coordinate and
the center of mass of a solvent molecule, respectively. Here 〈. . .〉ω1ω2

means the integration over
the orientation angles, ω1 and ω2. The hypernetted chain (HNC) closure is assumed for relating
the correlation functions and the interaction energy,

g(12) = exp{−βu(12) + h(12) − c(12)}, (3)

where g is the radial distribution function, h + 1, and β = 1/kBT with kB and T being the
Boltzmann constant and temperature.
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In the MOZ-SCF approach, the correlation functions as well as the interaction potential are
expanded in terms of the basis set of rotational invariants;

a(12) =
∑

mnlµν

amnl
µν (R12)Φ

mnl
µν (R̂12ω1ω2), (4)

where R̂12 denotes the orientation of R12. The rotational invariants have the usual definition,

Φmnl
µν (R̂12ω1ω2) = fmnl

∑

µ′ν′λ′

(
m n l
µ′ ν′ λ′

)
Rm

µ′µ(ω1)R
n
ν′ν(ω2)R

l
λ′0(R̂12), (5)

where Rm
µ′µ(ω) is a Wigner generalized spherical harmonic,[25] the brackets (· · ·) is a 3-j symbol,

and fmnl is conveniently chosen to be [(2m+ 1)(2n+ 1)]1/2.
The free energy A is regarded as a functional of the correlation functions, c(12), h(12) and

η(12), as well as the one particle orbital and CI expansion coefficients. Imposing the constrains to
the orthnormality of the configuration state functions and one particle orbitals, we can define the
following Lagrange function:

L = A− E

(
∑

I

C2
I − 1

)
−
∑

i

∑

m

εim(Sim − δim), (6)

where Sim = 〈φi | φm〉, CI denotes the CI coefficient and εim is the Lagrange multiplier. Variations
with respect to the functions yield

δL = −
ρ

β

∫
dR12

〈{
h(12) − η(12) − c(12)

}
δh(12)+

{
−1 − h(12) + e−βu(12)+η(12)

}
δη(12)

〉

ω1ω2

−
1

2π2

ρ

β

∫
dkk2

∑

mnµν

∑

χ

(−)m+n+µ+ν

{
C̃mn

µν,χ − H̃mn
µν,χ + ρ

∑

n′ν′

(−)χ+ν′

C̃mn′

µν′,χX̃
n′n
−ν′ν,χ

}

× δC̃mn
−µ−ν,χ + 2

∑

I

{
∑

J

CJHIJ − ECI

}
δCI

+ 2
∑

i,j

〈
δφi

∣∣∣∣∣γijh+
∑

kl

Γijklgkl + γijρ

∫
dr 〈û(12)g(12)〉

ω1ω2
− εij

∣∣∣∣∣φj

〉
. (7)

Here C̃mn
µν,χ, H̃mn

µν,χ and X̃mn
µν,χ are χ transform of the rotational invariant expansion coefficients, cmnl

µν ,

hmnl
µν and xmnl

µν , respectively [18–20]. xmnl
µν is the coefficient of the solvent-solvent total correlation

function. φ, h, gkl, γij and Γijkl are one particle orbital, one and two electron hamiltonian and
the vector coupling coefficients. The variation of L with respect to the correlation functions and
electronic wave function gives the MOZ integral equation, the HNC relation and the solvated Fock
equation. The wave function of solute molecule is determined by

{H0 + V̂ (r)}ψ(r) = εψ(r), (8)

and

V̂ (r) = ρ

∫
dR12

〈
ûelec(r;ω2R2) g(ω2R2)

〉
ω2

. (9)

Here r, ρ and ûelec are the coordinate of the electron, the solvent number density and the solute-
solvent pair interaction potential operator, respectively. g(ω2R2) = g(ω1ω2R12)ω1,R1=0 means
that the orientation of solute molecule is fixed and the solute molecule is located at the origin of
the coordinate. Note that the angle bracket means angler averaging of solvent orientation. The
solute-solvent interaction potential operator is given as the sum of the short range and long range
parts,

ûelec(r;ω2R2) = ûelec
short(r;ω2R2) + ûelec

es (r;ω2R2). (10)
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The short range potential represents the exchange repulsion between the electrons in a solute and
electrons in a solvent molecule, which is given by

ûelec
short(r;ω2R2) =

∑

nνν′

v̂n
ν′ν(R2r)R

n
νν′(ω2), (11)

where R2r = r − R2. The radial part of the effective one electron operator is represented by the
sum of simple Gaussian functions,

v̂n
ν′ν(|R2r|) =

kmax∑

k

Cn
ν,k|R2r|

n exp
{
−ζn

ν,k|R2r|
2
}
Ynν′(R̂2r), (12)

where Ynν′(r̂) is a spherical harmonic. The parameters Cn
ν,k and ζn

ν,k were least-squares fitted to the
ab initio results of the sum of exchange repulsion and charge transfer energies for solvent dimer.
The parameters Cn

ν,k and ζn
ν,k for water are summarized at table 1.

Table 1. Potential parameters of effective one electron operator for H2O given in atomic units.

n ν k Cn
ν,k ζn

ν,k

0 0 1 5.7595 1.2764
0 0 2 1.0136 0.4015
1 0 1 0.0202 0.3094
2 0 1 1.0114 1.1574
2 2 1 0.0764 0.5681
2 −2 1 0.0764 0.5681

The long range part represents the electrostatic interaction is given as follows:

ûelec
es (r;ω2R2) =

∑

mnlµν

Pmnl
µν (ω1ω2R12)|ω1,R1=0Q̂

m,elec
µ (r), (13)

Pmnl
µν (ω1ω2R12) = (−)mδm+n,l

[
(2l + 1)!

(2m)!(2n)!

] 1

2 1

fmnl

Qn
ν

Rl+1
12

Φmnl
µν (ω1ω2R̂12). (14)

Here Qn
ν is solvent multipole moment, and Q̂m,elec

µ is related to solute multipole moment via

Qm
µ = 〈ψ | Q̂m,elec

µ (r) | ψ〉 +Qm,core
µ (15)

in which Q̂m,elec
µ (r) = rmYmµ(r̂), Qm,core

µ =
∑

i∈nuclei ZiR
m
i Ymµ(R̂i), and Ri is position of ith

nuclei. The total solute-solvent interaction potential , u in equation (3), is the sum of the electronic,
nuclei-solvent electrostatic and dispersion interaction;

u(12) =
〈
ψ | ûelec

es (r;ω1ω2R12) + ûelec
short(r;ω1ω2R12) | ψ

〉

+
∑

mnlµν

Pmnl
µν (12)Qm,core

µ + uDisp(12). (16)

Here uDisp denotes the dispersion energy, for which the London static polarizability approximation
is employed;[26]

uDisp(12) = −
15

2

∑

mnlµν

Ē12R
−6
12

√
(2m+ 1)(2n+ 1)(2l + 1)(−)m+n

×

(
2 2 l
0 0 0

)



1 1 m
1 1 n
2 2 l




αmµαnν
1

fmnl
Φmnl

µν (ω1ω2R̂12), (17)
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where Ē12 = E1E2/(E1 +E2) with E1 and E2 being the ionization energies of solute and solvent,
respectively. αmµ is an element of the polarizability tensor. In this study, the ionization energies
of solute and solvent and polarizability tensor in London formula are assumed to be constant.

Lennard-Jones (LJ) type potential can be employed instead of the sum of the effective short-
range potential and the London dispersion mentioned above. Lennard-Jones potential is written as

uLJ(12) = 4

Solute∑

i

Solvent∑

j

εij

[(
σij

Rij

)12

−

(
σij

Rij

)6
]
, (18)

where σ and ε are usual Lennard-Jones parameters and Rij is the distance between solute site i
and solvent site j. Thus, when the Lennard-Jones potential is employed, the total solute-solvent
interaction potential becomes

u(12) =
〈
ψ | ûelec

es (r;ω1ω2R12) | ψ
〉

+
∑

mnlµν

Pmnl
µν (12)Qm,core

µ + uLJ(12). (19)

In this case, only the electrostatic potential depends on the solute electronic structure.

2.2. Analytical energy gradient

In order to perform the geometry optimization for solvated molecule, the analytical energy
gradient is introduced by a similar procedure described in reference [12]. The first derivative of the
free energy with respect to the nuclear coordinate of the solute molecule Ra is written as

∂A

∂Ra
=

∂Enuc

∂Ra
−
ρ

β

∫
dR12

〈{
h(12) − η(12) − c(12)

}∂h(12)

∂Ra

+
{
−1 − h(12) + e−βu(12)+η(12)

}∂η(12)

∂Ra

〉

ω1ω2

−
1

2π2

ρ

β

∫
dkk2

∑

mnµν

∑

χ

(−)m+n+µ+ν

{
C̃mn

µν,χ(k) − H̃mn
µν,χ(k)

+ ρ
∑

n′ν′

(−)χ+ν′

C̃mn′

µν′,χ(k)X̃n′n
−ν′ν,χ(k)

}
C̃mn

µν,χ(k)

∂Ra
+
∑

ij

γijH
a
ij

+
∑

ijkl

Γijkl(ij|kl)
a −

∑

ij

εijS
a
ij + ρ

∑

ij

γij

〈
uelec,a

ij (12) · g(12)
〉

ω1ω2

+ ρ

∫
dR12

〈
∂ucore(12)

∂Ra
· g(12)

〉

ω1ω2

, (20)

where the notation of symbols is the same as in reference [17]. ucore(12) is the electrostatic inter-
action potential between solute nucleus multipole moment, Qm

µ , and solvent multipole moment,
Qn

ν . Using the MOZ-SCF variational conditions, equation (7), it easy to show that the free-energy
gradient is reduced to

∂A

∂Ra
=

∂Enuc

∂Ra
+
∑

ij

γijH
a
ij +

∑

ijkl

Γijkl(ij|kl)
a −

∑

ij

εijS
a
ij + ρ

∑

ij

γij

〈
uelec,a

ij (12) · g(12)
〉

ω1ω2

+ ρ

∫
dR12

〈
∂ucore(12)

∂Ra
· g(12)

〉

ω1ω2

, (21)

where the MO integrals Ha
ij , (ij|kl)a and Sa

ij are calculated by transforming the derivatives of

the corresponding atomic orbital integrals. The derivatives of ucore(12) and uelec,a
ij (12) are easily

calculated in the same way as the other derivatives. In this study, since the polarizability tensor
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and the ionization energies of solute molecule are assumed to be constants, the derivatives of the
dispersion energy are zero.

If Lennard-Jones potential is employed instead of the sum of the effective short range potential
and London formula, the derivative of Lennard-Jones potential should be added to equation (21)
instead of the effective short-range contribution to the free-energy gradient,

∂A

∂Ra
=

∂Enuc

∂Ra
+
∑

ij

γijH
a
ij +

∑

ijkl

Γijkl(ij|kl)
a −

∑

ij

εijS
a
ij + ρ

∑

ij

γij

〈
uelec,a

ij,es (12) · g(12)
〉

ω1ω2

+ ρ

∫
dR12

〈
∂(ucore(12) + uLJ(12))

∂Ra
· g(12)

〉

ω1ω2

. (22)

3. Results and discussion

The analytical free-energy gradient of MOZ-SCF was applied to a geometry optimization of
H2O molecule in water solvent. Before performing the MOZ-SCF calculations, the solvent pair
correlation function was obtained by solving the MOZ equation for pure water with the HNC
approximation. The temperature is 300K and the number density is 0.033327 molecules Å−3. The
solvent parameters were taken from SPC model potential [27]. The maximum order of truncation
of solvent rotational invariant expansion is four, nmax = 4. The order of quadrature employed
solving the closure is 7. For all MOZ calculations, the same solvent pair correlation function was
employed. In all numerical calculations of MOZ, the number of grid points was chosen to be 512
with the width of 0.07 Å.

In order to perform the solute-solvent calculation, MOZ code was incremented to the GAMESS
(US) program package [28]. The HF wave function was employed with the 6-31G* basis set [29].
The rotational invariant expansion was truncated at mmax = 4. The multipole moment of solute
H2O was taken up to the octapole moment.

The MOZ-SCF calculations were performed with two different type potentials; one is the sum of
the effective short-range potential, London dispersion and the multipole electrostatic interaction,
and the other is the sum of the Lennard-Jones potential and the multipole electrostatic interaction.
In the later case, Lennard-Jones parameters of solute molecule were employed in the same way as
solvent one.

The geometry optimization was also examined using PCM, RISM-SCF and 3D-RISM-SCF
method to compare the results with the MOZ-SCF. The PCM calculations were carried out using
the option of default water. Both of RISM-SCF and 3D-RISM-SCF calculations were employed
using the same Lennard-Jones parameters and basis functions with MOZ-SCF calculation. In the
RISM-SCF calculations, the number of grid points was chosen to be 2048 with the width of 0.05
Å. On the other hand, 128 grids points with 0.5 Å were employed for 3D-RISM-SCF calculation.

Table 2. Geometrical parameter as a result of optimization of water in water.

MOZ(EP)a MOZ(LJ)b RISM 3D-RISM PCM GAS

O-H (Å) 0.948 0.958 0.952 0.956 0.950 0.947
∠HOH (Deg) 105.42 104.96 104.15 104.36 104.48 105.50
Dipole (Debye) 2.678 2.665 2.741 2.653 2.4614 2.199

a and b are MOZ results with the effective short-range potential and with the Lennard-Jones potential,

respectively.

In table 2, the results of geometry optimization of H2O molecule in water solvent are shown.
The results of MOZ-SCF calculation with effective short-range potential (EP) for geometrical pa-
rameter, O-H bond length and H-O-H angle, are close to gas phase value rather than the results
of MOZ-SCF with LJ potential. On the other hand, both calculations show the similar value of
dipole moment. As seen in figure 1, u000

00 s, the lowest order terms of rotational invariant expansion
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coefficient of the interaction potential for both cases are very close. There are small differences
which are depth of well and gradient of potential wall. The lowest order terms of rotational in-
variant expansion coefficient of the distribution function, g000

00 , of two types of MOZ-SCF results
are described in figure 2. g000

00 denotes the radial distribution which depends only on the distance
between solute molecular center and solvent molecular center. Although the positions of 1st and
2nd peaks of g000

00 are quite the same, height and width of 1st peak for EP are lower and broader
than LJ case. This difference is caused by the gradient of u000

00 at the contact distance. Since EP
employs the Gaussian function as a basis to reproduce the short-range interaction, u000

00 of EP
shows gentler slopes than LJ which employs 1/r12. However, these differences are quite trivial.
Actually, these two calculations yield similar coordination numbers, 9.56 and 9.52 for EP and LJ
at 4.0 Å, respectively.
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Figure 1. Comparison of the center-center interaction u
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00 of models for water.
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Figure 2. Comparison of the center-center distribution g
000

00 of models for water. Solid line and
dashed line are the result of MOZ-SCF with effective short-range potential and Lennard-Jones
potential, respectively.

As seen in table 2, the results of optimized geometry of MOZ-SCF, RISM-SCF and 3D-RISM-
SCF are very close. Although PCM results show a similar value of H-O-H angle, the distance
between oxygen and hydrogen is close to gas phase value rather than other solvated structures.
These results indicate that the optimized structure is strongly affected by the short-range potential
rather than by the type of integral equation. On the other hand, the dipole moment shows the
obvious difference. Therefore, the electronic structure of solute molecule is affected by the type of
integral equation.

The geometry optimization of H2CO is also performed with C2v symmetry in aqueous solution.
The wave functions employed here are the complete active space (CAS) SCF, which is constructed
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by distributing six electrons in the five active orbitals, i.e., the carbonyl π, π∗, σ, and σ∗ orbitals
and the oxygen nonbonding orbital. The basis set is the 6–31G*. Lennard-Jones parameters of
solute H2CO molecule were taken from OPLS-AA parameter set [30].

Table 3. Geometrical parameter as a result of optimization of formaldehyde, acetonitrile and
acetone in water.

MOZa RISM 3D-RISM PCM GAS
H2CO
C=O (Å) 1.233 1.228 1.231 1.227 1.222
C-H (Å) 1.100 1.083 1.084 1.084 1.192
∠HCH (Deg) 117.28 117.38 117.35 117.31 116.63
Dipole (Debye) 3.164 3.282 3.181 2.958 2.402
CH3CN
C≡N (Å) 1.130 1.136 1.138 1.136 1.135
C-C (Å) 1.420 1.464 1.473 1.468 1.468
Dipole (Debye) 5.351 5.537 5.387 4.981 4.042
CH3COCH3

C-CH3 (Å) 1.478(1.435) 1.501 1.509 1.509 1.514
C=O (Å) 1.213(1.198) 1.206 1.208 1.200 1.192
∠CCC (Deg) 108.56(111.32) 117.30 115.68 116.70 116.63
Dipole (Debye) 4.781(4.7159) 4.800 4.665 4.078 3.119
a Values in the parentheses are the results with lower order truncation, mmax = 4.

In table 3, the results of geometry optimization of H2CO molecule in aqueous solution are sum-
marized. The results show the tendency similar to H2O case. RISM-SCF gives strongly polarized
electronic structure and PCM underestimates the polarization. MOZ-SCF and 3D-RISM-SCF ex-
ert an intermediate effect on the solute electronic state between the RISM-SCF and PCM. These
are comparable to our previous results [17].

The optimized geometries and dipole moments of acetonitrile are also given in table 3. The C3v
symmetry is employed for the electronic structure calculations and C∞v for the MOZ calculation.
Lennard-Jones parameters of solute acetonitrile were taken from OPLS-UA parameter set [31].
The dipole moments as well as the electronic structure show a tendency similar to the H2CO case.
Although the optimized geometries are very close, MOZ-SCF gives a slightly different value for the
distance between two carbons. It often occurs that double/triple bond is weakened by solvation
effect. In fact, C=O is elongated in all the cases as shown in table 3. However, C≡N bond is not.
Only in the MOZ-SCF it gives the decrease of the bond length.

The calculations of geometry optimization of acetone in aqueous solution were also performed
with C2v symmetry. The HF wave function was employed with the 6-31G* basis set [29]. Lennard-
Jones parameters of solute acetone molecule were taken from OPLS-UA parameter set for MOZ-
SCF [31]. As seen in table 3, the structure evaluated by MOZ-SCF with mmax = 4 shows a
different feature from those by the RISM-SCF, 3D-RISM-SCF and PCM. It might be caused by
the fact that the accuracy of the rotational invariant expansion is not sufficient. Since anisotropy
of acetone molecule is relatively high, the rotational invariant expansion is short to reproduce the
solute-solvent correlation. The MOZ-SCF calculation with mmax = 5 was also performed to study
the effects of truncation of the rotational invariant expansion. The C-CH3 bond length approaches
to RISM results rather than MOZ with mmax = 4, though the angle CCC becomes narrower. On
the other hand, the dipole moments, as well as the electronic structure, of both MOZ results show
the similar tendency to H2O and H2CO case. The convergence of the electronic energy seems to
be fast, namely, only lower order contributions are sufficient for the description of the electronic
energy. However, much higher terms are necessary for the accurate energy gradient.
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4. Conclusion

In the present paper, the analytical expressions for the gradient of free energy with respect to the
solute nuclear coordinates were derived from the variational conditions for the MOZ-SCF method.
The calculations of the geometry optimization of H2O and H2CO molecule in water solvent were
carried out with the HF and CASSCF wave functions. The optimized geometry with the present
method was compared with those predicted using the RISM-SCF, 3D-RISM-SCF and PCM.

The difference of the effect of short-range potential between LJ and EP was considered. The
effect on the solute electronic structure turned out to be very close. Thus, these calculations gave
similar dipole moments. On the other hand, the structure of solute molecule was strongly affected
by the short-range potential. The results of H2O and H2CO show a similar tendency. The MOZ-
SCF gave comparable results to those from other methods.

The MOZ-SCF showed the different trends in the optimal geometry of acetonitrile and acetone.
It might be caused by the fact that the accuracy of the rotational invariant expansion is insufficient.
The higher order terms of rotational invariant expansion were required to evaluate the optimal
geometry in comparison with the electronic structure evaluation for anisotropic molecule such as
acetone. Unfortunately, MOZ calculation with a higher limit of truncation of rotational invariant
expansion demands much computational time compared with RISM and 3D-RISM.

The implementations of RISM-SCF/MCSCF and its analytical energy gradient have been suc-
cessfully used in order to study the reaction dynamics of polyatomic systems, geometry optimiza-
tion of photo-excited molecules and so on [32–35]. Since the present model is derived based on the
same logic as RISM-SCF, such studies with the MOZ-SCF method can be performed, which are
in progress in our laboratory.
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Аналiтичний вираз для градiєнта вiльної енергiї в методi
молекулярне рiвняння Орнштейна-Цернiке – самоузгоджене

поле

Н.Йошiда

Факультет теоретичних дослiджень, Iнститут молекулярних наук, Оказакi, Японiя

Отримано 22 травня 2007 р., в остаточному виглядi – 4 липня 2007 р.

Представлено аналiтичний вираз для градiєнта вiльної енергiї в методi молекулярне рiвняння
Орнштейна-Цернiке – самоузгоджене поле (MOZ-SCF). Теорiя MOZ-SCF є однiєю з теорiй для роз-
гляду ефектiв розчинника на електронну структуру молекул розчинюваної речовини в розчинi. Мо-
лекулярна геометрiя молекули води, формальдегiду, ацетонiтрилу i ацетону у водi оптимiзованi за
допомогою аналiтичної формули для енергiї. Отриманi результати порiвнюються з результатами,
отриманими в рамках поляризацiйної континуальної моделi (PCM), моделi базисних силових цен-
трiв (RISM)–SCFi тривимiрного (3D)RISM–SCF.

Ключовi слова: MOZ-SCF, RISM-SCF, оптимiзацiя геометрiї, теорiя iнтегральних рiвнянь

PACS: 31.10.+z, 31.15.Ar, 31.15.Bs, 71.10.-w

372


