The estimation of coherence length for electron-doped superconductor Nd_{2-x}Ce_xCuO_{4+δ}

T.B. Charikova, G.I. Harus, N.G. Shelushinina, and O.E. Sochinskaya

Institute of Metal Physics RAS, Ekaterinburg, Russia E-mail: charikova@imp.uran.ru

A.A. Ivanov

Moscow Engineering Physics Institute, Moscow, Russia

Received September 24, 2010

Results of low-temperature upper critical field measurements for Nd_{2-x}Ce_xCuO_{4+δ} single crystals with various x and nonstoichiometric disorder (δ) are presented. The coherence length of pair correlation ξ and the product $k_F \xi$, where k_F is the Fermi wave vector, are estimated. It is shown that for investigated single crystals parameter $k_F \xi \approx 100$ and thus phenomenologically NdCeCuO-system is in a range of Cooper-pair-based (BCS) superconductivity.

PACS: 74.25.F- Transport properties;

Keywords: single crystals, electron-doped superconductor, Fermi wave vector.

74.72.-h Cuprate superconductors.

1. Introduction

In the hole-doped cuprate high- T_c superconductors the size of the pairs, as estimated from the Ginzburg-Landau coherence length ξ , is only few times the lattice spacing [1] in contrast to ordinary superconductors where the pair size greatly exceeds the lattice spacing or the average distance between carriers. In view of short coherence length of high- T_c superconductors a situation close to compact bosons with Bose-Einstein (BE) condensation at T_c is conceivable. The evolution from BCS superconductivity to BE condensation through the increase of the coupling strength between fermions was studied by Nozieres and Schmitt-Rink [2] and it was concluded that the evolution is smooth.

In [3] convenient phenomenological parameter was selected to establish the crossover from BCS superconductivity to BE condensation of composite bosons, namely, the product $k_F \xi$ of Fermi wave vector times the coherence length. Pistolesi et al. [3] argued that Cooper-pair-based superconductivity is stable against bosonization down to $k_F \xi = 2\pi$. The stabilization criterion $k_F \xi \geq 2\pi$ corresponding to the condition $\xi > \lambda_F$, with $\lambda_F = 2\pi / k_F$ being the electron wave length, should be regarded as an analog of the Ioffe-Regel criterion for transport in disordered systems [4].

It appears that for hole-doped high- T_c superconductors (series of La-, Y-, Bi- and Tl-systems) $k_F \xi \cong 10$ that are although in a BCS range but near the "instability" line $k_F \xi = 2\pi$ on the plot of T_c vs $T_F (= E_F/k)$ of Uemura et al. [5]. Our goal was to estimate a parameter $k_F \xi$ at electron-doped superconductor Nd_{2-x}Ce_xCuO_{4+δ} with various Ce concentration.

2. Experimental results and discussion

In order to find ξ the low-temperature measurements of upper critical field B_{c2} on $Nd_{2-x}Ce_xCuO_{4+\delta}$ single crystal films with various Ce concentration and nonstoichiometric disorder δ [6] in magnetic fields up to 9 T $(B \parallel c, J \parallel ab)$ and temperature range 0.4–40 K with SQUID-magnitometer MPMS XL of Quantum Design and by dc-current method in solenoid up to 12T from "Oxford Instruments" were carried out.

In Fig. 1 the dependencies of the resistivity ρ in CuO₂planes $(J \parallel ab)$ on perpendicular magnetic field $B \parallel c$ are presented for optimally reduced films with x = 0.14; 0.15; 0.18; 0.20 and an example of B_{c2} determination (for x = 0.15 at T = 0.4 K) is shown. As it should be obtained B_{c2} value is the higest for optimally doped sample with with x = 0.15.

Fig. 1. Resistivity at CuO $_2$ -planes ($J \parallel ab$) vs magnetic field ($B \parallel c$) for samples Nd_{2-x}Ce_xCuO₄ with different Ce concentration at low temperatures. The lines are guides to the eye.

Figure 2 demonstrates an effect of nonstoichiometric disorder on the upper critical field of optimally doped $Nd_{1.85}Ce_{0.15}CuO_{4+\delta}$ system. Results of magnetoresistance measurement are presented for three types of $Nd_{2-x}Ce_xCuO_{4+\delta}$ single crystal films [7]: as-grown samples, optimally reduced samples (optimally annealed in a vacuum at T=780 °C for t=60 min; $p=10^{-2}$ mm Hg) and non optimally reduced samples (annealed in a vacuum T=780 °C for t=40 min; $p=10^{-2}$ mm Hg). The film thikness was 1200-2000 Å.

Using the relation between the coherence length and the upper critical field $2\pi B_{c2}\xi^2 = \Phi_0$ where the elementary flux quantum $\Phi_0 = \pi c \hbar/e$, the values of ξ for all samples were estimated. The data for normal state in-plane resistivity and Hall coefficient [6] were turned to account for determination of parameter $k_F \ell$, mean free path ℓ and $k_F = (2\pi n_s)^{1/2}$, n_s being the surface electron density. All the obtained parameters along with the $k_F \xi$ values are presented in Table 1 for optimally reduced samples with different Ce concentration and in Table 2 for samples with x = 0.15 and different nonstoichiometric disorder.

Fig. 2. Resistivity at CuO_2 -planes $(J \parallel ab)$ vs magnetic field $(B \parallel c)$ for samples $Nd_{1.85}Ce_{0.15}CuO_4$ with different nonstoichiometric disorder at T = 2 K.

Table 1. The data for Nd_{2-x}Ce_xCuO₄ optimally reduced films

Samples	T_c , K	B_{c2} , T	$k_F\ell$	ξ, Å	$k_F \xi$
x = 0.14	11	2.9	2.7	106.5	_
x = 0.15	21	6.1	51.6	73.5	74.2
x = 0.18	6	0.76	44.4	207.7	118.4
x = 0.20	< 1.3	0.4	14.6	273.3	166.7

Table 2. The data for $Nd_{1.85}Ce_{0.15}CuO_{4+\delta}$ films with different nonstoichiometric disorder

Samples	B_{c2} , T	$k_F\ell$	ℓ , Å	ξ,Å	$k_F \xi$
Optimally reduced	6.1	51.6	51.3	73.5	74.2
Nonoptimal- ly reduced	4.8	9.1	12.5	82.3	68.3
As grown	1.3	8.6	13.4	158.7	80.9

It is known [8] that for "dirty" ($\ell < \xi$) s-wave superconductor

$$B_{c2}(T=0) = \frac{1}{2\gamma} \frac{\Phi_0}{\hbar D} kT_c$$
 (1)

where constant $\gamma \cong 1.78$, $D = v_F \ell / 2 = (\hbar/2m)k_F \ell$ is the diffusion coefficient, v_F is Fermi velocity. Then

$$\xi = \sqrt{\xi_0 \ell},\tag{2}$$

where $\xi_0 \cong \hbar v_F/(kT_c)$ is the coherence length in pure superconductor. From (1) and (2) we have $B_{c2} \sim (k_F \ell)^{-1}$ and $\xi \sim \sqrt{k_F \ell}$, thus B_{c2} should *increase* and ξ should *decrease* with increase of $(k_F \ell)^{-1}$ as a degree of disorder.

As it is seen from Table 2 for $Nd_{1.85}Ce_{0.15}CuO_{4+\delta}$ the upper critical field quickly *decreases* and the coherence length *increases* with increasing of degree of disorder (parameter $(k_F\ell)^{-1}$) in contradiction with standard results for *s*-wave superconductor. Such an unusual behavior of B_{c2} and ξ with variation of disorder may be an evidence of *d*-wave symmetry of superconducting order parameter for $Nd_{1.85}Ce_{0.15}CuO_{4+\delta}$ system. It is in accordance with our results for a slope of upper critical field in vicinity of T_c for this electron doped superconductor [9].

In Fig. 3 a log-log plot of T_c versus Fermi temperature $T_F = \varepsilon_F/k$ (so named "Uemura plot" [5]) for different superconductors is presented and the points for $\mathrm{Nd}_{2-x}\mathrm{Ce}_x\mathrm{CuO}_{4+\delta}$ system received by us are also shown. The lines with constant $k_F\xi$ values ($k_F\xi=2\pi$ and $k_F\xi=10^n$, n=1-5) are superimposed on the plot according to [3]. It may be seen that parameter $k_F\xi\cong100$ for different samples of single crystals $\mathrm{Nd}_{2-x}\mathrm{Ce}_x\mathrm{CuO}_{4+\delta}$ with various Ce concentration and nonstoichiometric disorder. Thus this electron doped system is even more deep in the region of BCS-coupling than hole-doped cuprate systems. The value of $k_F\xi$ is minimal for optimally doped system ($k_F\xi=70-80$ and nearly independent on a degree of dis-

Fig. 3. "Uemura plot" [5] with constant $k_F \xi$ lines [3] and with our points for Nd_{2-x}Ce_xCuO₄ system.

order) and increases for overdoped (x = 0.18 and 0.20) samples.

3. Conclusions

Thus, from a values of upper critical field we estimate the coherence length in $Nd_{2-x}Ce_xCuO_{4+\delta}$ system with various x and δ . Then, using the universal (independent of

the details of the interaction potential) phenomenological parameter $k_F\xi$ [3], we illustrate that investigated electron doped cuprate NdCeCuO system doesn't cross the instability line of BCS superconductivity $k_F\xi=2\pi$ even for optimally doped and optimally reduced samples.

We are grateful to V.N. Neverov for experimental support. This work was done within RAS Programm (project N 01.2.006.13394).

- M. Randeria, in: Bose-Einstein Condensation, Cambrige Univ. Press, 355 (1995).
- 2. P. Nozieres and S. Schmitt-Rink, *J. Low. Temp. Phys.* **59**, 195 (1985).
- 3. F. Pistolesi and G.C. Strinati, Phys. Rev. B49, 6356 (1994).
- 4. N.F. Mott and E.A. Davis, *Electronic Processes in Non-Crystalline Materials*, Mir, Moscow (1974).
- Y.J. Uemura, L.P. Le, G.M. Luke, B.J. Sternlieb, W.D. Wu, J.H. Brewer, T.M. Riseman, C.L. Seaman, M.B. Maple, M. Ischikawa, D.G. Hinks, J.D. Jorgensen, G. Saito, and H. Yamochi, *Phys. Rev. Lett.* 66, 2665 (1991).
- T.B. Charikova, A.I. Ponomarev, G.I. Kharus, N.G. Shelushinina, A.O. Tashlykov, A.V. Tkach, and A.A. Ivanov, *JETP* 105, 626 (2007).
- 7. A.A. Ivanov, S.G. Galkin, A.V. Kuznetsov, and A.P. Menushenkov, *Physica* **C180**, 69 (1991).
- 8. P.G. de Gennes, *Superconductivity of Metals and Alloys*, Mir, Moscow (1968).
- 9. T.B. Charikova, N.G. Shelushinina, G.I. Kharus, and A.A. Ivanov, *JETP Lett.* **88**, 123 (2008).