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A model with deformed atom shells is built to investigate the elastic properties of rare-gas crystals Ne and Kr
under high pressure. It is shown that the observed deviation from the Cauchy relation & cannot be adequately re-
produced with taking into account of only the many-body interaction. The individual pressure dependence of & is
a result of competition of the many-body interaction and the quadrupole interaction associated with the quadru-
pole-type deformation of electron shells of the atoms during the displacements of the nuclei. Each kind of inte-
raction makes a strongly pressure dependent contribution to 3. In the case of Ne and Kr, contributions of these
interactions are compensated to the good precision, providing 3 being almost constant against pressure.

PACS: 62.50.—p High-pressure effects in solids and liquids;

62.65.+k Acoustical properties of solids;

64.10.+h General theory of equations of state and phase equilibria.
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1. Introduction

The rare-gas crystals (RGC) belong to a family of cryo-
crystals. RGC under high pressure are significant as a hy-
drostatic pressure medium in high-pressure experiments
using a diamond-anvil cell (DAC) [1].

Freiman and Tretyak [2] used the Aziz—Slaman pair po-
tential [2] and the Loubeyre three-body model [4,5] and,
on this basis, derived the equations of states for cryocrys-
tals of the He—Xe series, which are in excellent agreement
with the experiment in the megabar range. The equations
of states, volume-dependent elastic moduli, and some other
properties can be rather successfully described in terms of
the effective pair potential, whereas the deviation from the
Cauchy relation (CR) 9, in principle, cannot be repro-
duced using the pair potential (see, for example, [6] and
references therein).

The objective of this research is to define the character
and correlation of forces which form the elastic properties
of the RGC including deviation from the Cauchy relation
under high pressures.

The use of Brillouin spectroscopy in combination with
the DAC method has opened up new possibilities for inten-

sive investigations of the elastic properties of RGC over a
wide range of pressures [7-10]. In the last article from this
series concerned with the particularly accurate measure-
ments of the elastic properties of RGC, Sasaki et al. [10]
have summarized and discussed, in particular, how well
the currently existing theory describes the experiment on
the deviation from the Cauchy relation. In the experiment
for the deviation from the Cauchy relation 8, the sequence
Sne > Oar > Ok, > Ox, is observed only at zero pressure.
With an increase in the pressure, as was shown by the ex-
periment performed in [10], there is an individual depen-
dence of & on the pressure. The experiment shows, that
the values of 3y > 8y, > 8xe >3, for p >10 GPa. Fur-
thermore, Sasaki et al. [10] note that the ab initio calcula-
tions carried out in terms of the density functional theory
(DFT) [11] even qualitatively do not reproduce the devia-
tion from the Cauchy relation 8. Their calculations of &
have demonstrated a negative pressure dependence for all
RGC (Ne, Ar, Kr, Xe) with the pressure coefficients clear-
ly depending on the atomic weight.

This circumstance is associated with the fact that, apart
from the many-body interactions, the violation of the
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Cauchy relation, as was shown for the first time by Herpin
[12], is caused by the interactions related to the deforma-
tion of electron shells of the atoms. Herpin [12] obtained
the energy of interaction of the atoms in the form of a se-
ries in powers of the distances between pairs of the ions.
The successive terms of this series are dipole, quadrupole,
etc., bonds of the ions. For crystals in which each atom is
the center of symmetry, the violation of the Cauchy rela-
tion is caused only by the quadrupole terms.

In this work, we have performed the investigation of all
the interactions responsible for the violation of the Cauchy
relation in the framework of the model of lattice dynamics
with deformable atoms, which was developed by K.B.
Tolpygo for ionic crystals [13,14] and rare-gas crystals
[15]. Below, it will be shown that this model, within a uni-
fied approach, allows one to obtain both the short-range
three-body interaction and the quadrupole interaction asso-
ciated with the quadrupole-type deformation of electron
shells of the atoms during the displacements of the nuclei.
In early works (classic versions of the model by K.B. Tol-
pygo) parameters of adiabatic potential were obtained not
with calculations but were found due to different experi-
ments. However, these parameters are expressed through
the definite matrix elements of Hamiltonian of electronic
subsystem on the atomic functions. To describe the proper-
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ties of RGC in the wide range of pressure we, as far as it is
possible, develop the nonempirical version of the model by
K.B. Tolpygo.

Thus, we believe that it is expedient to proceed to the
calculations from first principles, at least, to determine the
type of functional dependences and to calculate the values
of the most important parameters. On the other hand, since
we deal with a multielectron system, it is expedient to use
the Hartree—Fock method. This method is clearly formu-
lated, provides sufficient accuracy, and is not overly cum-
bersome for the implementation in the modern computers.
(see, for example, [16]).

2. Quadrupole deformation of electron shells and the
elastic properties of compressed rare-gas crystals

Potential energy U of a crystal in adiabatic approxima-
tion is found in [13,14,15,17] as the minimum of the aver-
age Hamiltonian of the electron subsystem H. Taking into
account the third-order terms in the weak interatomic inte-
raction H'" and the deformation of electron shells of the
atom under consideration, we obtain the expression for the
potential energy U in the following form (the details of
the calculation are described in [15,18])
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Here, the first four terms describe the deformation of
electron shells (o, By, are the coefficients of the dipole
and quadrupole polarizabilities). The next three terms de-
scribe the van der Waals forces, and K characterizes the
Coulomb (in the classical sense) interaction of all the di-
poles and quadrupoles with each other. Finally, the short-
range interaction forces are determined by the formula
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Here, Z means that it is necessary to iterate over all
ap

nine combinations of the indices o, B (although among all

the nine components Q(lxﬁ , only five components are inde-
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The matrix element of the quadruple moment is given
by the expression
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The matrix element of the short-range interaction of

Hamiltonian Ith and 1'th atoms H!\ is
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where |0)=\¢ and E} is the wave function and the
energy of the ground state of the individual atom I accor-
dingly; |i>:\yi' ,and Ei' is the wave function and the
energy of the ith excited state of the Ith atom accordingly.
B, is the interchange operator of electrons r, r'.

Using the long-wave method [19], it is possible to find
expressions for the Birch elastic moduli which are valid
under any pressure [20-22] and taking into account the
three-body forces and the deformation of atomic electron
shells caused by the quadrupole interaction. The long-
range three-body forces [23] and the contribution from the
quadrupole interaction to the van der Waals forces in the
compressed crystals at high pressures are less important;
therefore, they will not be presented in the expressions
given below.

Then, the Birch elastic moduli Bj, can be written in the
form

2
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where the parameters of short-range forces between the
nearest neighbors are
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and the parameters of the short-range interaction forces
between the next-to-nearest neighbors (second-nearest
neighbors) F, E, and the van der Waals parameter B are

6C
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F =Ho(2a); E =Go(2a);

The three-body corrections dH and 3G which lead
to the noncentrality of the pair interaction have the form
[24]:
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where 1y =a~/2 is the distance between the nearest neigh- a dD, (r)
bors, andr; =a+/6/2, a is the half of cube edge, e is the J_ 2’( Dy (o) |;
electron charge. S =S5,, +2S,,, where S,,, S,, are the "l
overlap integrals of external p-atomic shells (the OZ axis
connects two nearest neighbor atoms). The function _ 1| a dDy(r)
f(r)=S(n)/r|. Sy, Sy, S3 is expressed in terms of the W= [ dr |, +Du(i0) | (13)

first and second derivatives of the overlap integral S , with
respect to the modulus of the argument.
The parameter of the three-body interaction is

[S( na dS(r)} [E df(R/Z)} an
rodr LR dR Ip_af6
The parameters of the quadrupole interaction are [18]
_ b(Z\N _U)2 - 8bW2 2B44 (12)
9 1+0.32673-b° 1-0.0661-b’
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Then, the deviation from the Cauchy relation written in
terms of the Birch elastic moduli takes the form:

2
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where §; is the deviation from the Cauchy relation only
due to the three-body interaction, Uy = 2452 () f(r).
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As can be seen from expression (3), (12), (13), the de-
pendence of D on the compression can be obtained after
calculating the matrlx element (0| H |OO> We perform
the calculations based on some approxmatlons, firstly,
suppose [25]

s2(r'"

Go[HY 100y~ 00| HI o0y Ul ~ A2 2 e (15)

where |r''| is the distance between the atoms | and I'
(for the nearest neighbors, we have |r”’|:a\/§), and A
is the coefficient of the order of unity [26]. In addition, we
set T ~8V, in accordance with formulae (12).

Up to here, the theory did not contain adjustable parame-
ters because all parameters of two-body (H,, Gy, F, E)
and three-body (8H, 3G, V,, R;) interactions can be accu-
rately calculated for each crystal of Ne—Xe series. We have
found the functional relationship for the quadrupole parame-
ter Vg, but, at present, it is not possible to define the abso-
lute value basing on formulae (3), (12), (13),. That is why
we offer to take the initial value of the parameter
qu(sz) from the experimental ngp when p~ 0 for
basis.

0 3 2a
Vg = 13 o (5exp 8t). (16)
In case when experimental values SEXp are absent, we
can use the precisely calculated three-body parameter V;
and put Vg = [V | [26].

3. Results and discussion

In Figures 1 and 2 the dependence of the calculated
Birch moduli on pressure is presented as well as the expe-
rimental values for neon and krypton. The many-body and
quadrupole terms affect mostly B, and By, , while the
difference between calculations in the model of the de-
formed atom and the central pair interaction in the elastic
constant B;; is practically imperceptible. In given calcula-
tions shear moduli B;,, B, and experimental data are
well-matched in neon and krypton. In case of the elastic
constant By, the many-body interaction prevails. In case
of the elastic modulus B4, the quadrupole term brings a
good contribution which improves the agreement with the
experimental data for Kr. In accord with Figs. 1 and 2 in-
clusion of the quadrupole interaction has a particular
meaning for Kr.

The Table 1 presents the three-body and quadrupole in-
teraction parameters for Ne, Kr and the contributions to the
deviation from the Cauchy relation & due to the inclusion
of the three-body interaction &, the quadrupole interac-
tion 3.

In accord with Table 1 |8 | is less than |E‘3tKr |. The
many-body interaction provides negative pressure depen-
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Fig. 1. Pressure dependence of the Birch elastic moduli B for
Ne. Squares are calculation of the Birch elastic modulus BY,
taking into account the next-to-nearest neighbors () [22], and
By, = BY, +B}; + B} with the three-body and quadrupole interac-
tions (H); circles are the same as for the Birch elastic modulus
B,,; triangles are the same as for the Birch elastic modulus Bgy;
experimental data [9] (O,0,A).

dence of & for RGC which is proportional to the atomic
weight similarly to ab initio calculation of DFT [11]. We
can see that the resultant dyneo, = ¢ +3y has a meaning of
a small difference of two large values, that is the compen-
sation of contributions into & from two strongly pressure
dependent interactions: the many-body interaction and the
quadrupole one which is revealed in the quadrupole-type
deformation of electron shells of the atoms during the dis-
placements of the nuclei.
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Fig. 2. Pressure dependence of the Birch moduli Bj for Kr.
Squares are calculation of the Birch elastic modulus Bfl taking
into account the next-to-nearest neighbors () [22], and By =
= Bfl+Blt1 + qul with the three-body and quadrupole interactions
(Mm); circles are the same as for the Birch elastic modulus Biy;
triangles are the same as for the Birch elastic modulus Bg4; and
the experimental data [7] (0,0,A).
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Table 1. Parameters (in a.u.) of the three-body G, 5H, Vi, Ry and quadrupole Vq interactions and the deviation from the Cauchy rela-
tion & = 8¢ + 8 (in GPa) for Ne and Kr as a function of the pressure p (in GPa) (compression u = AV/V,)

u | P |k [s610" | sH10° | Re10? | Ve10® | vg10® | & | g 5
Ne: V&P =0.012 (p = 4.6954), A= 0.4

0 0126 | 46885 | 0045 | 0022 | 0009 | —0025 | 0072 | —0026 | 0147 0.121
0.1 0.396 | 53957 | 0074 | —0036 | 0016 | —0041 | 0114 | —0051 | 0267 0.215
0.2 0.998 | 63139 | 0124 | —0062 | 0028 | —0068 | 0186 | —0.106 | 0508 0.402
0.3 2402 | 75435 | 0215 | -0110 | 0051 | —0118 | 0315 | —0233 | 1.028 0.795
0.4 5911 | 92648 | 0382 | 0202 | 0098 | —0209 | 0560 | —0545 | 2246 1.702
05 | 15644 | 118143 | 690 | -0382 0194 | —0376 & 1060 | —1378 | 5426 4,049
0.6 | 47.049 | 150083 | 1.225 | —0730 | 0398 | —0665 2183 | —379% | 15051 11.255
0.7 | 17468 | 233457 | 1.780 | -1269 | 0.787 | -0964 | 5060 | —11.021 | 51185 40.164

Kr: VP = 0.05369 (p =0,6163), A=05

0 0.0032 | 18138 | 2265 | -1138 | 0516 | -1243 | 0863 | 0562 | 0.678 0.116
01 | 05430 | 20874 | 3414 | -1764 | 0827 | -1875 & 1321 | -1.036 | 1.195 0.160
0.2 | 17490 | 24423 | 5136 | —2749 | 1339 | —2.820 & 2075 | -1962 | 2.196 0.234
0.3 | 44680 | 29183 | 7.635 | —4279 | 2185 | —4188 | 3357 | —3.825 | 4.245 0.420
04 | 10870 | 35842 | 9183 | —6504 & 3534 | 5941 | 5624 | —7599 | 8735 1.136
05 | 27190 | 45705 | 13887 | -9377 | 5572 | —7610 @ 9831 | —15281 | 19.470 4.189
0.6 | 74576 | 61543 | 10.306 | —10.303 | 7.491 | —5623 | 18.099 | —27.663 | 48.267 20.605

Note: The coefficient K = e%/2a" is given in GPa.

Figure 3 demonstrates deviation from the Cauchy rela-  that deviation from the Cauchy relation for light crystals of
tion for Ne and Kr. It was shown in our recent paper [24] Ne and Ar can be satisfactory described due to the three-
body interaction only. The present calculations show that
accounting of the electron shell deformation improves the

10 _é\le agreement with the experimental data for Ne. It is funda-
L el mentally required when evaluating deviation from the
. Cauchy relation for heavy RGC that is Kr.
8- RN R The ab initio calculations carried out in terms of the
r RN DFT [11] are consistent with the experimental data only in
Kr S L . . .
61A S the vicinity of p=0. With an increase in the pressure, the
s | N difference becomes more noticeable.
O Se
S 4f 'IDDEDDDED\\ S 4. Conclusions
(\Il -/ Ne
§f .—l. In the series of recent papers [27-29] we considered
. 2r AA ) L nonadiabatic effects, i.e., the electron—phonon interaction
g AMAA AN A %%k induced by the deformation of electron shells of the atoms
| AA- AAAAA: AA A Kr in the dipole approximation. This corresponds to the inclu-

sion of the lower order terms in the nonadiabaticity para-
. meter. As is known [19,30], these terms do not contribute
—2r to the elastic moduli. The next order, i.e., the consideration
i A of the electron—phonon interaction induced by the defor-
) mation of electron shells of the atoms in the quadrupole
approximation leads to the appearance of the correspond-

Ne -m- -0- --m=m- . . . . .
- ing terms in expressions (6) for the elastic moduli. These

Kr A A AL o . . .
-6 ) A , ) ) ) , terms make smaller contributions in comparison with those
0 2 4 6 8 10 of the pair interaction potential, but they are comparable to
p,GPa the contribution of the three-body interaction (the parame-

ters |V, | andVy are of the same order of magnitude).

This fact is especially seen when analyzing the devia-
tion from the Cauchy relation & in Ne and Kr. The contri-
bution of the many-body and quadrupole interactions is

—4|- Pres. cal. exp. [10] DFT[11] .

Fig. 3. Pressure dependence of the Cauchy deviation for Ne and Kr.
(M, A) are present calculations of 3. The results are compared to ab
initio calculations in the DFT model [11] (0N, A), and the experi-
mental data [10] are (O,A).
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almost accurately compensated that provides for & the
constant dependence on pressure. It is not obvious in ad-
vance, which of the interactions dominates and in which
range of pressure. The presented calculations give an op-
portunity to describe the individual pressure dependence of
3(p) which is being observed during the experiment [10]. It
should also be noted that the ab initio calculations per-
formed in the framework of the density functional theory
do not reproduce Bexp in the case of Kr [10,11].

The performed investigation of the deviation of the
Cauchy relation has enabled us to establish the nature and
ratio of the forces responsible for the properties exhibited
by the rare-gas crystals at high pressures. Thus, it has been
demonstrated that the violation of the Cauchy relation in
rare-gas crystals is caused by the following two factors:

(i) the three-body interaction forces induced by the
overlap of electron shells of the atoms in the crystal; and

(ii) the electron—phonon interaction associated with the
quadrupole-type deformation of electron shells of the
atoms due to the displacement of the nuclei.
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