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Thermal conductivity of solid furan has been measured at isochoric conditions in the high-temperature orien-

tationally-disordered phase I for samples of different densities. Our isochoric data show a gradual increase of ΛV 

with temperature whereas isobaric thermal conductivity goes down in this temperature range. The above effect is 

most clearly expressed in furan, where the atoms in the ring plane are not equivalent, as compared with earlier 

studied C6H6 and C6H12. The increase of ΛV with temperature can be attributed to weakening of the translation-

al-orientational interaction which, in turn, leads to a decrease of phonon scattering on rotational excitations.  The 

experimental data are described in terms of a modified Debye model of thermal conductivity with allowance for 

heat transfer by both low-frequency phonons and ―diffuse‖ modes. 

PACS: 66.70.+f Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves. 

Keywords: thermal conductivity, solid furan, phonons, ―diffusive‖ modes. 

 

 

Introduction 

The thermal and mechanical properties of molecular 

crystals are essentially determined by the character of the 

rotational motion of the molecules. With increasing tem-

perature the rotational motion can in principle pass through 

the following stages: growth of the libration amplitudes, 

appearance of jump-like reorientations of molecules, in-

crease of the frequency of reorientations, hindered rotation 

of the molecules and, finally, nearly free rotation of the 

molecules. Studies of the isochoric thermal conductivity of 

simple molecular crystals established general relationships 

in the heat transfer that result from the presence of rota-

tional degrees of freedom at temperatures of the order of 

the Debye temperature and above T  D [1]. A strong 

translational-orientational (TO) interactions contribute 

significantly to the thermal resistance W = 1/ . This, in 

turn, leads to large deviations of the isochoric thermal con-

ductivity from the Λ  1/T law owing to its approach to a 

certain lower limit Λmin. The concept of the lower limit of 

the thermal conductivity comes from the idea that Λmin is 

reached when the heat transfer occurs as diffusion of ther-

mal energy between neighboring quantum-mechanical os-

cillators, the life time of which is assumed close to one-

half the period of the oscillations [2]. During the transition 

to weakly hindered rotation in ―plastic‖ phases of molecu-

lar crystals, the TO contribution to the total thermal resis-

tance decreases sharply, so that the isochoric thermal con-

ductivity ΛV(T) increases with increasing temperature [1]. 

A more specific example of an orientationally-dis-

ordered phase is rotation of the molecules around a chosen 

axis or rotation of fragments of molecules. The influence 

of this kind of motion on the thermal conductivity is com-

paratively little studied. For cyclic compounds such studies 

have been performed previously only for benzene C6H6 [3] 

and cyclohexane C6H12 [4]. For a correct comparison with 

theory at T  D, thermal conductivity must be measured 

at constant density to exclude the thermal expansion effect. 

It was found that ΛV(T) of benzene decreases with increas-

ing temperature, passes through a minimum at T ≈ 220 K, 

and then increases weakly up to melting. This behavior 

was attributed to a weakening of the translation–orientation 

interaction when the rotational motion of benzene mole-

cules around the ring axis becomes less hindered. The iso-

choric thermal conductivity of solid cyclohexane decreases 

with increasing temperature in orientationally ordered 

phase II, and increases in orientationally disordered 

phase I. 
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The purpose of this work is to continue the study of the 

heat transfer peculiarities in simple cyclic hydrocarbons for 

example of solid furan C4H4O. Furan molecule is a five-

membered heterocycle with one oxygen atom (see Fig. 1). 

If the aromatic character of benzene is due to complete 

symmetry of the molecule and the coplanarity of the 

bonds, despite the fact that the furan molecule is planar, 

the atoms in the cycle are not identical, and therefore the 

bonds are not aligned. According to calorimetric data furan 

undergoes a phase transition at 150 K and melts at 

187.55 K at saturated vapor pressure [5]. A relatively low 

entropy jump on melting ( Sm/R = 2.44, where R is the gas 

constant) implies that phase I of furan is a plastic crystal. 

As follows from x-ray diffraction data it has orthorhombic 

structure (space group Cmca) with four molecules per unit 

cell [6]. Furthermore, this phase is disordered with mole-

cules randomly distributed among four equivalent coplanar 

orientations. The disorder of phase I is also confirmed by 

Raman measurements in the lattice mode region [7]. NMR 

studies reveal a sharp change of the line width at the II→I 

transition from 4.95 to 1.42 Gs
2
, whereas the theoretical 

estimates give 5.12 Gs
2
 for the rigid lattice case and 

1.45 Gs
2
 for the rotator phase [8,9]. The results of NMR 

and dielectric [10] studies have shown that the disorder is 

dynamic, and that the molecules reorient rapidly among the 

four allowed orientations. 

The first order transition to phase II at 150 K is isother-

mal, with a relatively small entropy jump ( Sm/R = 1.64). 

Phase II has the tetragonal structure (space group P41212 or 

P43212) with four oriented molecules per unit cell [6]. The 

structure is ordered in the sense that each molecule has a 

unique allowed orientation. The thermal measurements of 

Guthrie et al. [5] also showed a small lambda point at 

56 K, thus possibly indicating the existence of a phase III 

below this temperature. Previously, the thermal conductivity 

of furan was investigated at constant pressures of 0.11 and 

1.2 GPa in the temperature range of 113–274 K [11]. 

Results and discussion 

Here we present the study of the isochoric thermal con-

ductivity of solid furan C4H4O in orientationally-dis-

ordered orthorombic phase I on samples of different densi-

ties. Isochoric measurements were carried out on a device 

with coaxial geometry using a stationary method. The 

samples were grown under different pressures (20, 60 and 

110 MPa for samples N1, N2 and N3, respectively), the 

temperature gradient along the measuring cell being about 

2.5 K/cm. As the growth was completed, the inlet capillary 

was blocked by cooling it with liquid nitrogen and the 

samples were annealed for 3–4 h to remove density gra-

dients. The sample characteristics are given in Table 1 and 

Fig. 1. The measurement technique is described in detail in 

Ref. 12. Furan of 99.8% purity was used. The measure-

ment error was 4%. 

Table 1. Molar volumes Vm of samples, temperatures T0 of the 

beginning of meeting the condition V = const in an experiment, and 

the temperature Tm of the onset of melting of a sample 

Sample No. Vm, cm
3
/mole T0, K Tm, K 

1 60.6 174 198 

2 59.9 165 205 

3 58.75 150 220 

 

To visualize the characteristics of the measured samples 

the V–T phase diagram is desirable. Although such data for 

furan are lacking, a schematic phase diagram can be con-

structed on the basis of x-ray data from [6], P–V–T data 

from [13] and the present study. It is shown in Fig. 2. The 

left-hand lines reflect the change in volume of furan with 

temperature at saturated vapor pressure with corresponding 

jumps at I II transition and melting. The right-hand 

curves reflect I II transition lines and melting lines. The 

dashed lines show molar volumes of samples studied. In 

samples of moderate densities the pressure drops to zero at 

a certain characteristic temperature Т0 and the isochoric 

condition is then broken; on further cooling, the sample 

can separate from the walls of the cell. In the case of a 

fixed volume, melting occurs in a certain temperature in-

terval and its onset Тm shifts towards higher temperatures 

with increasing density. 

Fig. 1. Furan molecule. 

Fig. 2. Schematic V–T phase diagram of furan. The dashed lines 

show the molar volumes of the samples studied. 
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The isochoric thermal conductivity of furan is shown in 

Fig. 3 along with the data measured at constant pressure 

[11]. The latter are shown as dashed lines. Thermal con-

ductivity values corresponding to zero pressure were recal-

culated using data on the known pressure dependence of 

the thermal conductivity [11]. Isochoric thermal conductiv-

ities of all three samples increases with temperature in 

phase I. Below the temperature T0, the pressure in the cell 

drops to zero, and there is a kink in the thermal conductivi-

ty curve. For the most dense sample 3 there is a break with 

the subsequent increase in conductivity with decreasing 

temperature below T0, associated with the phase transition 

I II (the arrow pointing up with Tf next to it indicate the 

phase transition temperature I II at zero pressure). Our 

results agree well with the data in [11] reduced to zero 

pressure except for the values below 140 K for sample 3, 

where the sample might peel off from the walls. The 

Bridgman coefficient g = – (∂lnΛ/∂lnV)T calculated from 

our experimental data is 5.1 ± 0.5 in phase I at 180 K. 

The increase in isochoric thermal conductivity with 

increasing temperature was observed by our group earlier 

for cyclic compounds such as benzene C6H6 [3] and the 

―plastic‖ phase of cyclohexane C6H12 [4]. In furan the 

effect is more pronounced, which may be associated with 

a stronger weakening effect of the TO interaction. It has 

been earlier shown that experimental data can be inter-

preted in the approximation of relaxation times within a 

model in which the heat is transported by low-frequency 

phonons and by ―diffusive‖ modes above the phonon mo-

bility edge [1,4]. 

Usually the thermal conductivity can be described with-

in the framework of the Debye model [14]: 
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where v is the sound velocity, D  is the Debye frequency, 
2 1/36 ,D n( )v  ( )l  is the effective phonon mean free 

path determined by the all scattering mechanisms: 
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In molecular crystals, the phonons participating in the 

heat transport are scattered by both phonons and rotational 

excitations. The corresponding mean free path for the Um-

klapp, one- and two-phonon scattering processes are [14,15]. 
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where A is a coefficient responsible for phonon–phonon 

scattering, B and C are constants of noncentral molecular 

interaction, Λrot and Crot are the thermal conductivity and 

the heat capacity of the rotational subsystem, respectively; 

ρ is the density. It is assumed that B = C
2
 in the first ap-

proximation [15]. The thermal conductivity of the rotation-

al subsystem Crot can be calculated from the known gas-

kinetic expression: 2 1
rot rot /3,C a  where a is the in-

termolecular distance, and τ is the characteristic time of the 

site-to-site transport of the rotational energy. It can be es-

timated as a mean period of the librations in furan (we bor-

rowed the value τ = 1.3∙10
–12

 s) in accordance with [7]. 

Taking into account the Eqs. (2), (3), the phonon mean free 

path in the orientationally-disordered phase of molecular 

crystal can be written as 
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When the temperature goes up, the phonon mean free 

path decreases and can become comparable with the wave-

length. It is assumed that the total mean free path is re-

stricted to a distance close to half the phonon wavelength:

/2 / ,v  where α is a numerical factor of the order 

of unity: 
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In this case the vibrational spectrum is subdivided into 

two parts presenting the modes whose mean free paths are 

larger than /2 (phonons) and the ―diffusive‖ modes 

Fig. 3. The isochoric thermal conductivity of three solid furan 

samples of different densities: Vm = 60.6 (N1), 59.9 (N2), 58.75 

(N3) cm
3
/mole. The solid lines show the smoothed values of the 

thermal conductivity. The data measured at constant pressure 

from [11] are shown by dashed lines. 
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whose mean free paths reached /2. The value of 0 fol-

lows from Eqs. (4) and (5): 
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The integral (1) splits into two parts describing the con-

tributions to the thermal conductivity from low-frequency 

phonons and high-frequency ―diffusive‖ modes: 

 ph dif , (8) 
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The results were fitted to smoothed values of the ther-

mal conductivity for the highest-density sample with Vm = 

= 58.76 cm
3
/mole. The Debye temperature (99 K) and the 

sound velocity (1520 m/s) have been evaluated from the 

low-temperature heat capacity data [5] in the assumption 

that only translational modes contribute to it below 18 K. It 

was assumed that Crot varies linearly from 3R to 1.5R dur-

ing over the orientationally disordered phase. The best 

agreement with the experimental results was achieved with 

α = 1.82, A = 1.01∙10
–17

 s/K, B = 4.16 and C = 1.73. 

The curve fitted to the smoothed values the experimen-

tal thermal conductivity and the contributions to the ther-

mal conductivity from low-frequency phonons Λph and 

―diffusive‖ modes Λdif calculated by Eqs. (9) are shown in 

Fig. 4. The contribution of ―diffusive‖ modes immediately 

after the phase transition is about twice as large as that of 

phonons. As the temperature goes up, the contribution of 

―diffusive‖ modes decreases and that of phonons increases, 

because the scattering of phonons by short-range orienta-

tional order fluctuations becomes weaker due to decreasing 

the TO interaction. 

Conclusions 

The isochoric thermal conductivity of solid furan has 

been investigated on three samples of different densities in 

the temperature interval from 140 K to the onset of melt-

ing. As temperature increases, isochoric thermal conduc-

tivity ΛV  in phase I increases gradually, while the isobaric 

one decreases smoothly. In cyclic hydrocarbons at premelt-

ing temperatures such behavior has been previously ob-

served in benzene C6H6 [3] and cyclohexane C6H12 [4]. 

The increase in isochoric thermal conductivity is most 

clearly expressed in furan, where the atoms in the ring 

plane are not equivalent. The effect can be associated with 

a stronger weakening of the TO interaction in furan as 

compared with C6H6 and C6H12. The experimental results 

are described within the Debye model of thermal conduc-

tivity in the approximation of the corresponding relaxation 

times and allow for the fact that the mean free path of pho-

nons cannot become smaller than half the phonon wave-

length. On this consideration the heat is transported by 

both phonons and ―diffusive‖ modes. 
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