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Abstract. We develop a detailed formalism to photoconversion efficiency η of 
hydrogenated amorphous silicon ( a-Si:H ) based solar cells with a contact grid. This 

efficient three-dimensional model allows firstly optimization of the p i n   sandwich 

in terms of carrier mobilities, thickness of the layers, doping levels and others. Secondly, 
geometry of the grid fingers that conduct the photocurrent to the bus bars and ITO/SiO2

layers has been optimized, and the effect of non-zero sun beam incidence angles has been 
included as well. The model allows optimization of the amorphous Si based solar cells in 
a wide range of key parameters.
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1. Introduction

Thin film hydrogenated amorphous silicon ( a-Si:H ) is 
widely used for photovoltaic applications. Amorphous 
silicon-based solar cells (SC) are very promising 
because of low production cost, possibility of covering 
large uneven areas, and sufficiently high efficiency.  In 
order to get the best possible performance of the a-Si:H
solar cells, it is important to (i) produce a high quality 
amorphous films with p i n   junction, and 

(ii) optimize the films and solar cells in terms of their 
parameters such as, for instance, p-, i- and n-layer 
thicknesses, their doping levels, electron and hole 
mobilities μn and μp and their lifetime, resistance of p-, i-
and n-layers, contact grid geometry and parameters of 
the transparent conducting and antireflecting layers. In 
this paper, we propose a detailed theory of
photoconversion in the structures of a-Si:H , taking into 
account the dependence of the efficiency of a 
sufficiently large number of physical parameters. 

2. Model of an active region in the a-Si:H solar cell

In the case when no external (irradiation) excitation of 
electrons and holes in a system occurs and electron-hole 
recombination channels are totally absent, the following 
standard continuity equation for carriers in the system is 
valid:

0p

dp

dt
  I , (1)

where p is the particle concentration and Ip – particle flux.
If processes of generation and recombination of 

particles are taken into account, then Eq. (1) takes a 
more complicated form of generation-recombination 
balance equation, namely:

0 1
p p

p

p pdp
g

dt e


    


j (2)

for holes and

0 1
n n

n

n ndn
g

dt e


   


j (3)



Semiconductor Physics, Quantum Electronics & Optoelectronics, 2012. V. 15, N 2. P. 91-116.

© 2012, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine

92

for electrons, where gp and gn are the generation rates 
(gp = gn = g for generation by external irradiation, when 
each absorbed photon with an energy higher than band 
gap energy creates simultaneously an electron in the 
conduction band and a hole in the valence band), p0 and
n0 are the equilibrium hole and electron concentrations 
in a system without external excitation, p and n are the 
hole and electron lifetimes, pj  and nj  are the densities 

of hole and electron currents, which in turn can be 
written as 

( )p p pe p D p   j E (4)

and

( )n n ne n D n   j E , (5)

where E is the electric field, p(n) are the hole (electron) 
mobilities, Dp(n) are the corresponding diffusion 
coefficients. Accounting for Einstein relation 

( ) ( )p n p n

kT
D

e
   and expressing electric field E in the 

system via potential  , E   , Eqs. (4) and (5) take 

up the following form:

h

p

p y p
D

   
i

(6)

and 

e

n

n y n
D

   
i

, (7)

where /y e kT   is the dimensionless potential energy 

of positive charge, /h p ei j  and /e n ei j  are the 

fluxes of positive charges, corresponding to movement 
of holes and electrons in the system. Substituting (6) and 
(7) into (2) and (3), we obtain at steady-state conditions 
(dp/dt = dn/dt = 0) in the case of one-dimensional system 
(which is the subject of our subsequent consideration) 
the following equations:

2 2
0

2 2

( )

p p

p pd p dy dp d y g z
p

L dz dz Ddz dz


     , (8)

2 2
0

2 2

( )

n n

n nd n dy dn d y g z
n

L dz dz Ddz dz


     , (9)

where p p pL D   is the hole diffusion length, 

n n nL D   is the electron diffusion length, z is the 

coordinate in the direction normal to structure surface.
Further, by calculating short-circuit current in the 

system, we consider the active region of a-Si:H  solar 
cell as being formed during its growth by two main 
layers (see Fig. 1), namely: i) doped p+-layer (with the 
layer thickness dp) adjacent to the front surface and 
ii) more deep undoped (or slightly doped with donors)

i(n)-layer with the layer thickness d. Besides, 
technological n+ layer also is formed in practice at rear 
surface to have good rear contact properties, but its 
thickness dn is usually too small to influence the charge 
generation and collection, so in the first approximation it 
can be excluded from the consideration that concerns 
short-circuit current formation. Considering physical 
properties of the active a-Si:H region, it is convenient to 
divide this region into three physically different parts: 
I) p+-layer with the thickness p pd z . It is simply a part 

of technologically formed p+-layer that lies outside the 
SCR arising at ( )p i n  junction. In this region, excess 

electrons contribute to short-circuit current. II) i(n)-layer 
with the thickness nd z . It is i(n)-part of a-Si:H  that 

lies outside SCR region. In this region, excess holes 
form corresponding contribution into short-circuit 
current. III) Third layer is the SCR itself in the vicinity 
of z = dp. The thickness of SCR equals to zp + zn. At 
short-circuit current conditions, the band bending in 
SCR becomes practically the same as in dark conditions 
(i.e. when generation of mobile electrons and holes by 
external irradiation is turned off). For this reason, in the 
SCR rather high electric field exists, so the electrons and 
holes generated in this region are quickly separated from 
each other by the field, and in the first approximation 
their movement can be considered neglecting their 
recombination. Contrary, in layers I and II outside SCR 
region, the electric field is enough low in these 
conditions, so we can neglect it in the first
approximation. 

It follows from the written above that a problem of 
short-circuit current collection in a-Si:H can be solved 
by separately considering the regions 0 < z < p pd z
and dp + zn < z < dp + d with appropriate boundary 
conditions.
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Fig. 1. Schematic view of a-Si:H solar cell structure.
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3. Short-circuit current collection from p+-region in 
a-Si:H layer

In the region I, where excess minor carriers (electrons) 
contribute to the short-circuit current, the equation (9) in 
diffusion approximation (drift terms are small enough as 
compared to the diffusion ones) takes up the following 
form:

2 ( ) ( ) ( )

2 2

( )p s p s p s

nn

d n n g z

Ddz L

 
    , (10)

where ( ) ( )
0( ) ( )p s p sn z n z n   . Superscripts p(s) in the 

generation term g(z) and excess electron concentration 
( )n z  are introduced to account for two possible 

independent polarizations of the incident light because in 
the case of its oblique incidence, when the angle of light 
incidence differs from zero, reflection and transmission 
coefficients for the light polarized in the plane of 
incidence (p-polarized portion of incident light) differ 
from those for light polarized in parallel to SC surface 
(s-polarized portion of incident light). In the generation 
term ( ) ( )p sg z , all the contributions from the total 

spectrum of the incident light are present, so generally it 
is not monochromatic. However, in linear 
approximation, the problem can be considered separately 
for each constituting (monochromatic) part of the total 
spectrum inherent to incident irradiation, and total 
concentrations as well as short-circuit currents can be 
found by summing the contributions from the 
constituting parts of the spectrum. For this reason, we 
consider further a particular case of monochromatic 
irradiation with the wavelength .

Uniform solution of Eq. (10), to which zero right-
hand part of the equation corresponds, can be expressed 
as ( ) ( )

1, 2,exp( / ) exp( / )p s p s
n n n nC z L C z L  . General solution 

of Eq. (10) is a sum of the uniform solution and the 
partial one, defined by the generation term in the right-
hand side of the equation. If possible multiple internal 
reflections of the light transmitted into a-Si:H layer 
from a-Si:H layer boundaries are taken into account, 

then the generation term    ,p sg z   is expressed as 

 

( ) ( )
( ) 0 1 4

( ) ( )
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( )
4 5

(1 ) ( ) ( )
( , )

1 ( ) ( ) exp 2 ( )

exp( ) ( ) exp[ 2 ( )] exp( ) ,

p s p s
p s

p s p s
p n

p s
p n

m I T
g z

R R d d d

z R d d d z

 

  

   

   
  

        

        

(11)

where  is the absorption coefficient of a-Si:H
material at the wavelength , m – relative metallization 
of the front surface by finger electrodes (the part of the 
front SC surface, which is covered by the electrodes, 
produces corresponding shade in active region), 

( )
0 ( )p sI  – irradiating light intensity at the 

wavelength . For simplicity, we denote by indices 1 to 

5 all optically different media, which determine the 
incident irradiation transmission and reflection (see 
Fig. 1) in the SC, so that ( )

1 4 ( )p sT    is the transmission 

coefficient for p(s)-polarized light incident from air 
(medium 1) onto SC front surface, which determines 
corresponding irradiation transmission into active 
a-Si:H region (medium 4) of SC with account of 
multiple intermediate light reflections and transmissions 
at the interfaces 1/2, 2/3 and 3/4, ( )

4 1 ( )p sR    is the 

reflection coefficient for the light incident from a-Si:H
region (medium 4) onto 3/4 interface which accounts for 
the analogous multiple light reflections and 
transmissions at the interfaces 1/2, 2/3 and 3/4, ( )

4 5 ( )p sR  
is the reflection coefficient for the light incident from 
a-Si:H region (medium 4) onto rear metallic contact 
(medium 5). 

In accordance with the explicit form of generation 
term (11), general solution of Eq. (10) takes up the 
following form: 

   
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(12)

where , ( )
1,

p s
nC  and , ( )

2,
p s

nC  are the coefficients, which has 

to be determined from boundary conditions, 
( ) ( )

, ( ) 0 1 4
1, ( ) ( )

4 1 4 5

2

2

, ( ) , ( ) ( )
2, 1, 4 5

(1 ) ( ) ( )

1 ( ) ( ) exp 2 ( )

/
,

1 ( )

( ) exp 2 ( ) .
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n n
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p s p s p s
n n p n
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A

R R d d d

L D

L

A A R d d d

  
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

 
 

   
 

        


 

       

(13)

First boundary condition can be written in the form 
of standard balance equation for excess electron fluxes 
through front a-Si:H surface (interface) at z = 0 (see 
Fig. 1): 

( )
( )

0

0

(0)
p s

p s
n

z

d n
D S n

dz







  , (14)

where S0 is the surface recombination rate for electrons. 
To obtain the second boundary condition at z = p pd z , 

we consider SCR region neglecting electron-hole 
recombination. In this approximation, Eq. (3) takes up 
the following form:

, ( )
( ) ( , )

p s
p sedi

g z
dz



   , (15)
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where flux , ( )p s
ei
  is expressed by formula (7), which in 

1D case can be rewritten as: 

( ) , ( )
( )

p s p s
p s e

n

dn idy
n

dz dz D




  . (16)

In equilibrium conditions, when , ( ) 0p s
ei   , 

solution of the latter equation is the well-known 
equilibrium one:

( )
0( ) ( ) exp[ ( )]p s

nn z n z n y z   , (17)

where nn is the electron concentration in i(n)-region 
beyond SCR layer, where electrons are the majority 
carriers. At irradiation, when , ( ) 0p s

ei   , solution of 

Eq. (16) can be found in the form of 

( ) , ( )( ) ( ) exp[ ( )]p s p s
nn z B z y z

  . (18)

Substituting (18) into Eq. (16), we obtain the 
following equation for the coefficient , ( )p s

nB :

, ( )
, ( )exp[ ( )] ( ) /

p s
n p s

e n

dB
y z i z D

dz


  . (19)

General solution of this equation can be written as

0

, ( ) , ( )
0

1
( ) exp[ ( )] ( )

z
p s p s

n n e
zn

B z B y z i z dz
D

      , (20)

where Bn0 and z0 are two arbitrary constants. Substituting 
(20) into (18), we obtain following expression for 

( ) ( )p sn z  in the SCR region:

( )

, ( )

( )

1
exp[ ( )] exp[ ( )] ( ) ,

p n

p s

z
p s

n e
d zn

n z

y z n y z i z dz
D









       
  



(21)

where explicit values of Bn0 and z0 are chosen to provide 
the right value ( ) ( )p s

nn z n   at z = dp+zn (no 

accumulation of excess electrons is supposed in a-Si:H
i(n)-region beyond SCR layer at short-circuit current 
conditions, i.e. all electrons supplied by p-region in i(n)-
region and generated in i(n)-region pass away to rear 
contact or recombine with holes, so that electron 
concentration in this region remains practically 
equilibrium one).

By substitution Eq. (11) into Eq. (15), the 
following explicit expressions for the flux , ( )p s

ei   in SCR 

can be written:

 
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where 
( ) ( )

, ( ) 0 1 4
1 ( ) ( )

4 1 4 5

(1 ) ( ) ( )

1 ( ) ( ) exp 2 ( )

p s p s
p s

p s p s
p n

m I T
A

R R d d d
 

  

  


        



(23)
and 
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(24)

As it follows from Eq. (21), at the SCR boundary 

p pz d z 

( ) ( )

, ( )

( ) exp( ) ( )

exp( )
exp[ ( )] ( ) ,

p p

p n

p s p s
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e
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 





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
 

(25)

where | ( ) |pn p py y d z   is the absolute value of total 

band bending in the SCR region in kT units ( 0y   in 

i(n)-region of a-Si:H layer at p nz d z  ). Taking into 

account that according to (7) the flux , ( )p s
ei   at the SCR 

boundary p pz d z   in the formula (22) can be 

expressed as

( )
, ( ) ( )

p p

p s
p s

e p p n

z d z

d n
i d z D

dz
 

 


  , (26)

two boundary conditions (14) and (25) can be rewritten 
in the form of the following two explicit algebraic 
equations for the coefficients , ( )

1,
p s

nC   and , ( )
2,

p s
nC  :

, ( ) , ( )
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Thus, calculating the coefficients , ( )
1,

p s
nC  and 

, ( )
2,

p s
nC  from the system of algebraic equations (27) and 

(28), we completely determine the electron component 
of the density of short-circuit current , ( )

,
p s

e SCj  :




, ( ) , ( )
,

, ( ) , ( )
1, 2,

, ( ) , ( )
1, 2,

( )

exp[ ( ) / ] exp[( ) / ]

exp[ ( )] exp[ ( )] .

p s p s
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p s p s
n p p n n p p n

j ei d z

eV C d z L C d z L
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 

 
   

  

      

       

(29)

4. Short-circuit current collection from i(n)-region of 
a-Si:H layer

Analogous consideration can be made for i(n)-region of 
a-Si:H layer (region III), where excess holes contribute 
mainly to the short-circuit current. In diffusion 
approximation, Eq. (8) takes the following form in this 
region:

2 ( ) ( ) ( )

2 2

( )p s p s p s

pp

d p p g z

Ddz L

 
   , (30)

where ( ) ( )
0( ) ( )p s p sp z p z p   . Considering a particular 

monochromatic component of incident irradiation, the 
generation function for which is given by the formula 
(11), a general solution of Eq. (30) analogously to (12) is 
expressed as

   

   

( )

, ( ) , ( )
1, 2,

, ( ) , ( )
1, 2,

( )

/

1 1
exp / exp /

1/ 1/

1 1
exp exp ,

p s

p s p s
p p p p

p p

p s p s
p p

p z

d p dz

C z L C z L
L L

A z A z





 

 
 

 

 
  

   
         

   
          

(31)

where , ( )
1,

p s
pC  and , ( )

2,
p s
pC  are the coefficients, which has 

to be determined from the boundary conditions, 
( ) ( )

, ( ) 0 1 4
1, ( ) ( )

4 1 4 5

2

2

, ( ) , ( ) ( )
2, 1, 4 5

(1 ) ( ) ( )

1 ( ) ( ) exp 2 ( )

/
,

1 ( )

( ) exp 2 ( ) .

p s p s
p s
p p s p s

p n

p p

p

p s p s p s
p p p n

m I T
A

R R d d d

L D

L

A A R d d d

  

  



 
 

   
 

        


 

       

(32)

Like to that of electrons, first boundary condition 
for excess holes can be written in the form of balance 
equation for hole fluxes at rear a-Si:H  surface 
(interface) (see Fig. 1): 

( )
( ) ( )

p

p s
p s

p d p

z d d

d p
D S p d d

dz




 


    , (33)

where Sd is the surface recombination rate for holes. To 
write the second boundary condition for excess holes at 
z = dp+zn, we consider SCR region in the same 
approximation we have used for electrons in the 
paragraph 2, i.e. neglecting electron-hole recombination 
in the SCR layer. In this approximation, Eq. (2) for holes 
takes the following form:

, ( )
( ) ( , )

p s
h p s

d i
g z

dz



  , (34)

i.e. the flux of excess holes can be written as

 
 

, ( ) , ( )

, ( )
1

, ( )
2

( ) ( )

exp[ ( )] 1 exp[ ( )]

exp[ ( )] 1 exp[ ( )] ,

p s p s
h h p n

p s
p n p n

p s
p n p n

i z i d z

A d z z d z

A d z z d z

 


 


 

  

       

      





(35)

where coefficients , ( )
1

p sA   and , ( )
2

p sA   are given by the 

formulae (23) and (24), respectively. Relation between 
the hole flux , ( )p s

hi   and the hole concentration is given 

by Eq. (6), which in 1D case can be rewritten as: 
, ( )( )

( )
p sp s

hp s

p

id p dy
p

dz dz D




   . (36)

Similarly to the case of electrons, at equilibrium, 
when , ( ) 0p s

hi   , solution of the latter equation has the 

following form:
( )

0( ) ( ) exp[ ( ) ]p s
p pnp z p z p y z y     , (37)

where pp is the hole concentration in p+-region beyond 
the SCR layer, where holes are the majority carriers. In 
the case of irradiation, when , ( ) 0

h

p si   , the solution of 

Eq. (36) can be found in the form 

( ) , ( )( ) ( ) exp[ ( )]p s p s
pp z B z y z

   , (38)

where the pre-exponential function , ( ) ( )p s
pB x  is a 

solution of the following differential equation:

, ( )
, ( )exp[ ( )] ( ) /

p s
p p s

h p

dB
y z i z D

dz


  . (39)

A general solution of this equation can be written 
as

0

, ( ) , ( )
0

1
( ) exp[ ( )] ( )

z
p s p s

p p h
zp

B z B y z i z dz
D

      , (40)

where Bp0 and x0 are two arbitrary constants. 
Substituting (40) into (38), we obtain following 
expression for ( ) ( )p sp z  in the SCR region:

( )

, ( )

( )

1
exp[ ( )] exp( ) exp[ ( )] ( ) ,

p p

p s

z
p s

p pn h
d zp

p z

y z p y y z i z dz
D









        
  



(41)
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where values of Bp0 and z0 are chosen to provide right 
( ) ( )p s

pp z p   value at p pz d z   (no accumulation of 

excess holes is supposed in a-Si:H  p+-region beyond the 
SCR layer at short-circuit current conditions, i.e. all the 
holes supplied by i(n)-region to p+-region and generated 
in p+-region pass away to the front surface contact or 
recombine with electrons, so that the hole concentration 
in this region remains practically equilibrium.

Thus, as it follows from Eq. (41),

( ) ( )

, ( )

( ) exp( ) ( )

1
exp[ ( )] ( ) .

p n

p p

p s p s
p n p pn p n

d z
p s

h
d zp

p d z p y p d z

y z i z dz
D

 






      

  
(42)

According to (6), the flux , ( )p s
hi   at the SCR 

boundary p nz d z   in Eq. (35) can be expressed as

( )
, ( ) ( )

p n

p s
p s

h p n p

z d z

d p
i d z D

dz
 

 


   , (43)

so that two boundary conditions (33) and (42) can be 
rewritten in the form of the following two explicit 
algebraic equations for the coefficients , ( )

1,
p s

pC  and 
, ( )

2,
p s
pC  :

, ( )
1,

, ( )
2,

, ( )
1,

, ( )
2,

exp[ ( ) / ]( )

exp[( ) / ]( )

exp[ ( )]( )

exp[ ( )]( ) ,

p s
p p p d p

p s
p p p d p

p s
p p p p d

p s
p p p p d

C d d L S V

C d d L S V

A d d V L S

A d d V L S






 


 

   

   

     

    

(44)
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, ( )
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2
, ( )
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2
, ( )
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exp[( ) / ] (1 )
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exp[ ( )] 1
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p s
p p n p y
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







   
 

 

 


 

   

   

             
     

   
     

   
,y

 


  
 
  

(45)

where /p p pV D L , exp[ ( )] /
p n

p p

d z

y p
d z

I y z dz L





  , 

exp[ ( ) ] /
p n

p p

d z

y p
d z

I y z z dz L







  , 

exp[ ( ) ] /
p n

p p

d z

y p
d z

I y z z dz L







   . 

Calculating coefficients , ( )
1,

p s
pC  and , ( )

2,
p s
pC  from 

the system of algebraic equations (44) and (45), we 
completely determine the hole component of the density 
of short-circuit current , ( )

,
p s

h SCj  :




, ( ) , ( )
,

, ( ) , ( )
1, 2,

, ( ) , ( )
1, 2,

( )

exp[ ( ) / ] exp[( ) / ]

exp[ ( )] exp[ ( )] .

p s p s
h SC h p n

p s p s
p p p n p p p n p

p s p s
p p n p p p n p

j ei d z

eV C d z L C d z L

A d z L A d z L

 

 

 
   

  

     

       

(46)

5. Calculation of DOS and position 
of Fermi-level in a-Si:H

In the first approximation, the dependence y(x) in SCR at 
short-circuit current conditions is close to the 
equilibrium one, which is realized in dark, when no 
excess carriers are produced by irradiation in the a-Si:H
layer. To calculate y(x) in SCR, first of all we have to 
determine the energy position of Fermi levels in p+- and 
i(n)-regions of a-Si:H layer beyond SCR (i.e. in regions 
I and II). In amorphous silicon a large number of energy 
levels in the band gap exists even without special doping 
of material. These levels have different origin and 
influence substantially the position of Fermi energy level 
in intrinsic material. They are formed by three main 
groups of states. The first group is presented by weak-
bond valence-band-tail states of the donor-like type. If 
the valence band apex is taken as zero energy level, then 
the energy distribution of the one-electron states in this 
group can be approximately described by the following 
formula:

0 0( , ) exp( / )vt vt vN E T N E E  ,  (47)

where 21 3 1
0 (1...3) 10 cm eVvtN     (see, e.g. [1-3]), 

although in the literature larger values up to 
21 3 1

0 7 10 cm eVvtN     also can be found (see, e.g. 

[4, 5]), the characteristic energy Ev0 is a function of 

temperature, 2 2 2
0 0( ) ( *) ( *) ( )v vE T E T kT kT   ,

* 500 KT   is the equilibration temperature [1, 2]. 

Depending on the quality of a-Si:H material, Ev0 can 
vary from 0.04 up to 0.15 eV at T = 300 K. In our 
calculations, the value 0 ( *)vE T = 0.056 eV has been 

used as a parameter to which the value 0 (300 K)vE = 

0.045 eV corresponds. 
Another group of energy levels in the band gap of 

a-Si:H material is formed by conduction-band-tail 
acceptor-like states, energy distribution of which can be 
approximately described by the analogous formula:

0 0( ) exp[( - ) / )]ct ct g cN E N E E E , (48)

where Nct0 varies within the range from 1021 to 
22 3 110 cm eV   [1 5 ]. 

Besides, dangling bond defects exist in a-Si:H
material, which form deep defect states in the a-Si:H
band gap [1, 2]. The density of these states is dependent 
on the position of the Fermi level in the band gap due to 
specific microscopic reactions involving hydrogen [1, 2]. 
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These microscopic reactions lead to formation of deep 
defect states from weak-bond band-tail states (47). As it 
follows from the formulae (20) and (25) of the work [2], 
the contribution ( )tdD E  into the density of deep defect 

states at an energy E from the weak bond states (47) 
with the energies within the range dEt in the vicinity of
Et can be expressed at temperatures T > T* as

SiSi H

( , , )

( ) ( )

1 exp{[ ( / 2) ln ( / ) 2 ] / }

t

vt t t

t

dD E E T

N E dE P E

E kT N N E kT




  

, (49)

where NSiSi is approximately equal to 23 -32 10 cm  and 

defines the total number of electrons in silicon bonding 
states (four electrons per Si atom), NH is the total 
concentration of hydrogen in a-Si:H  material (NH is 

close to 21 -3 5 10 cm  at hydrogen content [H] = 10 at.%), 

P(E) is the defect-pool function (normalized to the unity 
energy distribution function of potential defect sites in 
a-Si:H material, from which deep defect states can be 
formed with the energy E), P(E) is usually taken as 
Gaussian:

2 1/2 2 2( ) (2 ) exp[ ( ) / (2 )]pP E E E     , (50)

where  is the pool width and Ep is the most probable 
potential defect energy. According to Powell and Deane 
[1, 2],  can be determined from the experimentally 
measured energy separation  = 0.44 eV between the 
doubly occupied defect state and empty defect one; 

1/ 2
0[ ( ) ( )]vE T U     , where = 0.2...0.3 eVU  is the 

defect electron correlation energy accounting for 
electron interaction in negatively charged defects, when 
the second electron is placed on the defect; Ep = 1.27 eV 
in material with the band gap Eg = 1.9 eV. As the band 
gap depends on the hydrogen content in a-Si:H , in our 
calculations we have used the value 

( /1.9eV) 1.27 eVp gE E  . For   HgE -dependence, 

we have used the linear approximation Eg = 
(1.58 + 0.017 [H]) eV, which corresponds to the data of 
the work [6]. In practice, the coefficient before the 
hydrogen content [H] can vary from 0.012 up to 0.025 
depending on a-Si:H material quality. The total density
of dangling bond states is thus expressed as

0 SiSi H

( ) ( )
( , )

1 exp{[ ( / 2)ln( / ) 2 ] / }

gE
vt t t

t

N E dE P E
D E T

E kT N N E kT


   .

(51)

This density of states includes contributions from 
neutral, positively and negatively charged defects. If 
charged defects are accounted in the law of mass action 
equations, then, following [2], it is necessary to replace 
the defect energy E in the integrand in the right-hand 
side of Eq. (51) with the defect chemical potential 

0ln[ ( ) / 2]d E kT f E   , where 0 ( )f E  is the neutral 

defect occupation function for amphoteric silicon 
dangling bonds:

0 2exp[( ) / ]
( )

1 2exp[( ) / ] exp[(2 2 ) / ]
F

F F

E E kT
f E

E E kT E E U kT




    
.

(52)

As a result, the density of dangling bond states 
becomes dependent on the position of the Fermi energy 
EF in a-Si:H material. Performing integration in (51), 
the following expression for ( , )D E T  has been obtained 

in [2] for this case:
0/2 2

0
0

2
( , , )

2( )

vkT E

F
v

D E E T P E
Ef E

   
    

   
 , (53)

where

0/4 2 2
0H

0
SiSi 0 00

2 1
exp

2 42

vkT E

v
v p

v vv

EN
N E

N E EE kT

     
                  

.

(54)

All three types of defects can be donor-like, 
characterized by one-electron transitions of the type 
(+/0), and acceptor-like, characterized by one-electron 
transitions of the type ( / 0 ). In accordance with [2], 
the density of one-electron acceptor-like states is 
expressed as 

( , , ) ( ln 2, , )A F Fg E E T D E kT E T  , (55)

while that of donor-like as

( , , ) ( ln 2, , )D F Fg E E T D E U kT E T   . (56)

At temperatures T < T*, the densities of defect 
states do not depend on temperature. During cooling the 
grown material below T*, they leave “frozen-in”, i.e. 

*( , , *) ( , , *)F FD E E T T D E E T   , where *
FE  is the 

Fermi energy calculated at equilibrium temperature T*. 
Remember that the valence-band-tail characteristic 
energy Ev0, as pointed earlier, is also a function of 
temperature, i.e. the value Ev0(T*) = 0.056 eV has to be 

used at ( , , *)FD E E T T  calculations. 

Due to participation of the valence band-tail states 
in deep defect states formation, their density of states 
becomes depleted, i.e. instead of ( )vtN E  in formula 

(47), a depleted density of states 

1/2
0 SiSi H

( , )

( )
( , ) 1

1 ( / ) exp[( 2 ) / ]

g

vt t

E

vt t
t

N E T

P E dE
N E T

N N E E kT



    
   





(57)
has to be used in calculations at T > T* and 

1/2
0 SiSi H

( , ) ( , )

( )
( , *) ,

1 ( / ) exp[( 2 ) / *]

g

vt t vt t

E

vt t
t

N E T N E T

P E dE
N E T

N N E E kT

 


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

(58)
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if ( , ) 0vt tN E T   or ( , ) 0vt tN E T   and if the 

expression in the right-hand side of the formula (58) 
becomes lower than zero at T < T*. 

In addition to above states always present in 
intrinsic a-Si:H , the donor and acceptor states 
introduced by special doping a-Si:H material have to be 
accounted. If doping of a-Si:H with donors is made 
(e.g. by phosphorous), the density of donor states often 
can be characterized by the normal Gaussian distribution 
of the states on their energy:

2

0 2

( )1
( , ) ( ) exp

22

g D
D D

DD

E E E
N E z N z

  
  

    
, (59)

where 0DN  is the concentration of donor states, D  is 

the energy width of the distribution, and ED is the donor 
ionization energy in the maximum of the 
distribution (59). 

Analogous Gaussian distribution can be introduced 
to describe acceptor density of states in the band gap 
(e.g., when doping a-Si:H with boron atoms is made): 

2

0 2

( )1
( , ) ( ) exp

22
A

A A
AA

E E
N E z N z

 
     

, (60)

where 0AN  is the concentration of acceptor states, A –

energy width of the acceptor states distribution, and EA –
acceptor ionization energy in the maximum of the 
distribution (60). 0DN  and 0AN  are constants in i(n)-

and p+-regions, respectively, and change to zero at 
( )p i n   junction. In the case of ideal ( )p i n 

junction, these changes have a step-like character, i.e. 

0AN  and 0DN  turn to zero exactly at z = dp. However, if 

( )p i n   junction is somewhat degraded (e.g., due to 

diffusion of acceptors or/and donors after junction 
formation, or due to pure technological reasons at 

( )p i n  junction growth) they become coordinate 

dependent functions in a thin transition layer at z = dp. 
To account for possible ( )p i n  junction degradation, 

we use the following coordinate dependent functions 

0AN  and 0DN  in our subsequent calculations of band 

bending:

0 ( ) 1 erf
2 2

pA
A

A

z dn
N z

  
       

 , (61)

and

0 ( ) 1 erf
2 2

pD
D

D

z dn
N z

  
       

, (62)

where nA and nD are the concentrations of acceptor and 
donors far from degraded region in p+- and n- parts of 
a-Si:H  (if i-region is doped additionally by donors), A



and D
  are the width of degraded regions at ( )p i n 

junction for acceptors and donors, respectively, erf(z) is 
the “error function”:

2

0

2
erf ( ) exp( )

z

z t dt 

 . (63)

At distances | | ,p A Dz d     
2

2

( )
( , ) ( ) exp

22

g DD
D D

DD

E E En
N E z N E

  
   

    
 ,

(64)

2

2

( )
( , ) ( ) exp

22
A A

A A
AA

n E E
N E z N E

 
      
 . (65)

Fig 2 demonstrates introduced coordinate 
dependences (61) and (62) of acceptor and donor 
concentrations 0AN  and 0DN in thin transition 

technological layer at ( )p i n  junction.

Finally, to write the charge balance equation, from 
which the Fermi energy EF can be found, we have to 
connect correctly (i.e. smoothly and continuously) 
conduction and valence band-tail densities of states with 
the densities of free electron and hole states in 
conduction and valence bands, respectively. Conduction 
band density of states is expressed in a-Si:H as

1/ 2
0( ) ( )c c gN E N E E  , (66)

where 
3/2

0 2 2

3/2

21 3 3/2

0

21

2

6.791 10 cm eV ,

e
c

e

m
N

m

m
 

     

 
   

 


(67)

Analogously, the valence band density of states is 
expressed as

1/2
0( ) ( )v vN E N E  , (68)

where 0vN , like to 0cN , is expressed by the formula 

(67) with the only difference that instead of electron 
effective mass me hole effective mass mh has to be 
substituted to this formula, m0 is the free electron mass.

To connect densities of states in conduction and 
valence bands (66) and (68) with band-tail densities of 
states (48) and (47), we have to find energies, at which 
smooth and continuous relation can be made. At these 
energies

( ) ( )c ctN E N E , (69)

c ctdN dN

dE dE
 . (70)

( ) ( )v vtN E N E , (71)

v vtdN dN

dE dE
 . (72)

Like to that in the work [4], from the system of the 
equations (69) and (70) the corresponding energy 
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0 / 2c g cE E E   can be found, which practically 

coincides with the energy of conduction band bottom. 
The energy 0 / 2v vE E  , practically coinciding with 

the valence band apex, is analogous to the energy in the 
equations (71) and (72). 

To satisfy Eqs. (69)-(72) for physically correct 
values 21 22 3 110 ...10 cm eV   of the band-tail densities of 
states 0vtN  and 0ctN , it turns out that larger effective 

masses of electrons and holes has to be used, than me

close to m0 and 00.5hm m  presented in many 

publications on a-Si:H material. We have used in our 
work the values 02.78em m  and 02.34hm m  from 

the recent publication [7]. It is these effective masses 
that the values 21 3 1

0 2.1 10 cm eVctN     and 
21 3 1

0 2.2 10 cm eVvtN     correspond to. 

In Fig. 3, the calculated densities of states in the 
band gap are shown, which are continuously and 
smoothly related with the densities of free charge states 
in conduction and valence bands.

The concentration nc of free electrons in the 
conduction band for the Fermi level lying inside the 
band gap is expressed as 

( , ) exp F g
c F c

E E
n E T

kT

 
   

 
, (73)

where c is the effective density of states at the 
conduction band bottom 

3/ 2 3/ 23/2

19 3
3

0

2
2.5 10 cm

2 300
e e

c

m kT m T

m K
                

.

(74)

As to free holes in the valence band, their 
concentration is expressed by the analogous formula:

( , ) exp F
v F v

E
n E T

kT
    
 

, (75)

where 
3/ 2 3/ 23/2

19 3
3

0

2
2.5 10 cm

2 300
h h

v

m kT m T

m K
                

. 

(76)

Now it is possible to write the charge balance 
equation: 

0

0

( ) ( ) ( , , )
( , )

1 2exp[( ) / ]

( , ) ( ) ( , , )
( , ) ,

1 2exp[( ) / ]

g

g

E
ct A A F

c F
F

E
vt D D F

v F
F

N E N E g E E T
n E T dE

E E kT

N E T N E g E E T
n E T dE

E E kT

 
 

 

 
 

 







 

(77)

where in the left hand side of the equation the negative 
charge of free electrons in conduction band and of 

electrons captured by acceptor and acceptor-like states 
inside band gap is written, while in the right hand side –
the positive charge of free holes in the valence band and 
holes captured by donor and donor-like states. The 
degeneracy coefficient 2 at the exponents in the 
denominators of integrand expression accounts for right 
statistics of the localized band gap states. 

To calculate Fermi levels in p+- and i(n)-regions of 
a-Si:H layer at T = 300 K, it is necessary to determine 
previously from Eq. (77) the Fermi levels at the 
equilibrium temperature T* = 500 K to find the “frozen-
in” densities of states of dangling bond defects 

*( , , *)A Fg E E T  and *( , , *)D Fg E E T , and then again solve 

Eq. (77) at T = 300 K, but with *( , , *)A Fg E E T  and 
*( , , *)D Fg E E T  densities instead of ( , , )A Fg E E T  and 

( , , )D Fg E E T . The value of Fermi energy 1.05 eV has 

been found from Eq. (77) both at T = 300 K and T* = 
500 K in intrinsic a-Si:H , when no special doping is 
made. In doped a-Si:H , the values of Fermi energy at 
T = 300 K and T* = 500 K can differ remarkably, 
depending on the doping level nA (nD). 

6. Band bending in space charge region at p+-i(n) 
junction in a-Si:H layer

After calculating the Fermi levels P
FE  and ( )i n

FE  in 

equilibrium conditions in p+- and i(n)-regions of a-Si:H
layer, respectively, we can determine the total band 
bending ynp (see Eq. 25) at ( )p i n  junction:

( )( ) /i n p
pn F Fy E E kT  . (78)

To find the shape of band bending y(z) in SCR in 
equilibrium conditions (when irradiation is absent) the 
corresponding Poisson equation has to be solved for the 
electrostatic potential. Rewritten in the form of equation 
for y(x) this equation takes up the following form 
(Gaussian CGS system of units is used):

2 2

2

( ) ( )

( )

( )
0

( )

4

exp ( , ) exp ( , )

( ) ( , ) ( , ( , ), )

1 2exp[( ) / ( , )]

( , ) ( , ) ( , ( , ), )

1 2

g

i n i n
F g F

c v

i nE
ct A A F

i n
F

i n
vt D D F

d y e

kTdz

E E E
y z T y z T

kT kT

N E N E z g E E kT y z T T
dE

E E kT y z T

N E T N E z g E E kT y z T T


 


             
     
  

 
  

  








( )
0

,
exp[( ) / ( , )]

gE

i n
F

dE
E E kT y z T




  


(79)

where  is static dielectric permittivity of a-Si:H
material. A solution of this equation has to satisfy two 
boundary conditions. At SCR boundary in i(n)-region of 
a-Si:H , it has tend to zero, while at another SCR 
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boundary in p+-region to pny . To solve numerically 

Eq. (79) and to determine the position of SCR 
boundaries, we consider p+- and i(n)-regions of a-Si:H
as being thick enough not to account for the influence of 
other junctions. Then, by calculating y(z,T) it becomes 
convenient to use new coordinate pz z d   . In the new 

coordinate system starting points z  for Eq. (79) 
numerical solution have to be located in the vicinity of 

0z  . These starting points can differ from 0z   due 

to account of possible ( )p i n   junction degradation 

(see Fig. 2). By numerical solution of Eq. (79), it is 
necessary to assign starting values to y  and /dy dz  at 

z z  . Value ( , )y z T  is directly and unambiguously 

determined from the right-hand side of Eq. (79): 
( , )y z T  is the value, at which right-hand side of 

Eq. (79) (i.e. local charge) turns to zero. Concerning the 
derivative /dy dz  at the starting point z  and the 

starting point z  itself, they are considered as 
parameters, allowing to satisfy above mentioned 
boundary conditions at SCR boundaries. By change of 
z , the starting value of the derivative ( / )dy dz   at this 

point for Eq. (79) numerical solution in i(n)-region 
( 0z  ), and starting value of the derivative ( / )dy dz 

for Eq. (79) numerical solution in p+-region ( 0z  ), we 
find such point z , for which not only both boundary 
conditions at SCR boundary are satisfied, but the 
difference ( / ) ( / )dy dz dy dz    tends to zero, too, i.e. 

smooth and continuous band bending is achieved at 
( )p i n   junction. The equality ( / ) ( / )dy dz dy dz  

at z z   expresses the condition of total neutrality of 
SCR, i.e. that a positive charge in the SCR at z z   is 
completely compensated by a negative charge at z z  .

Cutting off the tail of the calculated y(z)-
dependence in i(n)-region, which is smaller by its 
absolute value than unity (i.e. cutting off the physically 
unresonable potential energies |   | <e kT ), we find thus 

the physical thickness zn of the SCR in i(n)-part of 
a-Si:H . Analogously, cutting off the physically 
unresonable tail of the calculated y(z)-dependence in p+-
region, which differs from pny  by the value less than 

unity, we find the physical thickness zp of the SCR in p+-
part of a-Si:H . 

Analogously to the Fermi energy calculation, to 
obtain the band bending ( , )y z T  at T < T* it is 

necessary first to calculate band bending ( , *)y z T  by 

solving the differential equation (79) at the equilibrium 
temperature * 500 KT  . Thus, the local distributions of 

dangling bond defects ( )* * * *( , ( , ) , )i n
A Fg E E kT y z T T

and ( )* * * *( , ( , ) , )i n
D Fg E E kT y z T T  for every local 

position of the Fermi level ( )* * *( , )i n
FE kT y z T

relatively to the valence band apex can be determined at 

every point z  of SCR. These “frozen-in” distributions 
have to be substituted into Eq. (79) instead of 

( )( , ( , ) , )i n
A Fg E E kT y z T T  and 

( )( , ( , ) , )i n
D Fg E E kT y z T T  by subsequent calculation 

of band bending ( , )y z T  at T < T*.

Fig. 4 demonstrates the calculated band bending in 
a-Si:H  for several types of doping.

Figs. 5 and 6 demonstrate the calculated bending of 
conduction band (upper curves) and valence band (lower 
curves) at ( )p i n   junction in a-Si:H  for material with 

the band gap Eg = 1.75 eV (10% hydrogen content).  
With the found band bending shape y(z) and 

determined thicknesses zn of SCR in i(n)-region and zp in 
p-region, all the integrals in Eqs. (28) and (45) can be 
easily calculated.
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Fig. 2. Used model of degraded p+-i(n) junction in a-Si:H.
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Fig. 3. Density of states in a-Si:H for various positions of the 
Fermi level in the case of a-Si:H material with the band gap 
1.9 eV. Common parameters for all the curves: Ev0 = 45 meV, 
Nvt0 = 2  1021 cm–3eV–1. Dashed vertical lines mark the 
valence band apex (left line) and the conduction band bottom 
(right line). Vertical arrows at energies 0.8, 1.05 and 1.3 eV 
mark three different positions of the Fermi level, for which 
calculations have been fulfilled. Dots show the density of states 
in the band gap, which has been calculated in [2] for the Fermi 
energy position at 1.3 eV. Parameters of the curve 1: 
EF =0.8 eV, Ect0 = 30 meV, Nct0 = 3  1022 cm–3eV–1; curve 2: 
EF = 1.05 eV, Ect0 = 25 meV, Nct0 = 2  1021 cm–3eV–1; curve 3: 
EF =1.3 eV, Ect0 = 30 meV, Nct0 = 3  1022 cm–3eV–1; curve 4:
EF = 1.3 eV, Ect0 = 25 meV, Nct0 = 2  1021 cm–3eV–1.
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Fig. 4. Calculated shapes of band bending at T = 300 K at 
p+ – i(n) junction in a-Si:H. Parameters of acceptor and donor 
distributions: EA = 0.2 eV, A = 0.1 eV, nm5.0A , ED = 

0.3 eV, D = 0.1 eV, nm5.0D . Curve 1: nA = 17 310 cm , 

nD = 0; curve 2: nA = 1018 cm–3, nD = 0; curve 3: nA = 1019 cm–3, 
nD = 0; curve 4: nA = 1019 cm–3, nD = 1017 cm–3.
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Fig. 6. Same as in Fig. 5, but for doping level of p-region 
nA = 1019 cm–3.

7. Light transmission and reflection in the SC 
structure

As known from electrodynamics, for electric and 
magnetic field strengths jE  and jH  in the 

monochromatic electromagnetic waves, spreading in the 
material with the index j ( 1...5j  , see Fig. 1), the 

following wave equations can be written: 

2
2

2
( ) 0j j jc


    E E  , (80)

2
2

2
( ) 0j j jc


    H H  , (81)

where ( ) ( ) ( )j j ji          is the dielectric 

permittivity of the j-material, ( )j
   and ( )j

   are real 

and imaginary parts of the permittivity, c is the light 
velocity in vacuum,  is the frequency,  = 2c/, 
where  is the wavelength. For the incident onto SC 
irradiation is a package of monochromatic plane waves, 
the solutions of Eqs. (80) and (81) inside SC can be 
represented as plane waves, too:

exp( ) exp( )j oj j oj ji i    E E k r E k r , (82)

exp( ) exp( )j oj j oj ji i    H H k r H k r , (83)

where ( )
j
 k  are the wave vectors, squares of which are 

expressed as
2

( ) 2
2

[ ] [ ( ) ( )]j j jk i
c

          . (84)

As it follows from the boundary conditions at front 
surface and interfaces inside the structure, in a general 
case of oblique incidence of monochromatic 
electromagnetic plane waves onto the front surface of 
SC, the x-component of the wave vectors (in the plane of 
incidence) for all electromagnetic waves in all SC layers 
has to be the same as that in vacuum (air), i. e. 

( )
, ( / )sinx j xk k c      , where  is the angle of 

incidence (angle between directions of SC growth and 
electromagnetic wave propagation in vacuum). Thus, for 
z-components of electromagnetic waves in the structure 
the following expression is valid: 

( )
, ,z j z jk k     , (85)

where 
2 2

2
, 2 2
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( ) ( ) sin

( , ) ( , ) ,

z j j j

z j z j

k i
c c

n i
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(86)

,

2 2 2 2

( , )

[ ( ) sin ] ( ) [ ( ) sin ]
,

2

z j

j j j

n   

             


(87)
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,
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2 2 2 2

( , )
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.
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z j

j

j j j
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(88)

Two methods exist to calculate light reflection and 
transmission in the structure. Both give the same result 
in the case of ideal homogeneous surfaces and interfaces 
in the structure. In the first method, multiple reflections 
of the light at surfaces (interfaces) aren’t considered 
explicitly; i.e. amplitudes of all reflected and transmitted 
waves are supposed to be already included in the 
amplitudes at the exponents in Eqs. (82) and (83). In the 
second method, multiple light reflection and 
transmission at each surface (interface) in the structure 
are considered explicitly and total reflection 
(transmission) of the light is calculated as a result of 
summation of all the components of reflected 
(transmitted) light. 

To calculate transmission and reflection 
coefficients, entering Eq. (11) for generation function, it 
is convenient to shift coordinate origin z = 0 to the front 
surface of SC, i.e. to surface air/SiO2 (see Fig. 1). 
Reflection and transmission for two independent 
polarizations of incident light are calculated below. In s-
polarization, the electric field in electromagnetic waves 
is parallel to the SC surface (i.e. only y-components of 
the electric field are present in s-polarized 
electromagnetic waves), while in p-polarization the 
magnetic field is parallel to the SC surface (i.e. only y-
components of the magnetic field are present in p-
polarized electromagnetic waves).

7.1. First method for calculation of light reflection 
(transmission) coefficients 

The first method is the well-known Mueller matrix 
method. The following general expressions for the 
electric and magnetic fields Ey and Hx can be written in 
this case in accordance with the formulae (82), (83) and 
Maxwell equation (1/ ) /c d dt  E H  (Gaussian 

CGS system of units is used) for s-polarized 
electromagnetic waves in materials 1 to 4 (see Fig. 1): 
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(90)

,3 ,3 ,3 2

,3 ,3 2

exp[ ( ) ]

exp[ ( ) ],

y y x z

y x z

E E ik x ik z d i t

E ik x ik z d i t





     

    
(91)

,4 ,4 ,4 2 3exp[ ( ) ]y y x zE E ik x ik z d d i t      , (92)

,1 ,1 ,1 ,1

,1 ,1 ,1

exp[ ]

exp[ ],

x z y x z

z y x z

H N E ik x ik z i t

N E ik x ik z i t





     

   
(93)

,2 ,2 ,2 ,2

,2 ,2 ,2

exp[ ]

exp[ ],

x z y x z

z y x z

H N E ik x ik z i t

N E ik x ik z i t





     

   
(94)

,3 ,3 ,3 ,3 2

,3 ,3 ,3 2

exp[ ( ) ]

exp[ ( ) ],

x z y x z

z y x z

H N E ik x ik z d i t

N E ik x ik z d i t





      

    
(95)

,4 ,4 ,4 ,4 2 3exp[ ( ) ]x z y x zH N E ik x ik z d d i t       , (96)

where 
22 SiOd d , 3 ITOd d  (see Fig. 1), 

, , /z j z jN k c  .

We didn’t account for the light propagating in 
negative z-direction in expressions (92) and (96), 
because multiple internal reflections from rear contact 
are already accounted in the generation function (11) 
inside a-Si:H layer. Actually, electromagnetic field 
presentation in the form of (89)-(96) allows to find the 
intensity 0 1 4( ) ( )s sI T    of light transmitted from 

vacuum into infinitely thick a-Si:H material ( 0 ( )sI  is 

the intensity of incident s-polarized light). In the case of 
finite thickness of a-Si:H layer, 0 1 4( ) ( )s sI T    can be 

considered as the “first-order” light component 
generating a series of higher order light components in 
a-Si:H  due to multiple internal light reflections at 
a-Si:H  boundaries. Sum of all these components gives 
the total intensity of the light in a-Si:H  layer in the 
expression (11) for the generation function. 

From the system of boundary conditions

,t t t tE E H H
   
  (97)

for tangential components of electric and magnetic 
fields at each surface (interface) in the SC structure 
(signs + and – are introduced here to denote two sides of 
the same interface) the following relation between 
amplitudes ,1 ,1,y yE E  in vacuum and ,4yE  in a-Si:H can 

be written:

,1,4

,1

€
0

ysy
s

y

EE
A M

E




 

  
        

, (98)

where the coefficient sA   is expressed as

43 32 211/ ( )s s s
sA t t t  (99)

and matrix €sM   as

11 12

21 22

,3 3 43 ,2 2 32 21

34 23 12

€

exp(2 ) exp(2 ) 1
.

1 1 1

s s
s

s s

s s s
z z

s s s

M M
M

M M

ik d r ik d r r

r r r

 


 

 
  
 

     
             

(100)

The reflection and transmission amplitudes ( )s s
ij jir r

and ( )s s
ij jit t  relate the amplitudes of reflected ,y iE  ( ,y jE  ) 
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and transmitted ,y jE  ( ,y iE  ) waves with the amplitude 

,y iE  ( ,y jE  ) of the incident s-polarized wave in a 

hypothetic case of wave incidence from semi-infinite 
i(j)-material onto the interface with semi-infinite j(i)-
material, but for the waves written in the form used in 
the formulae (89) (92) . In other words, the following 

explicit expressions for the waves in 1 to 4 materials are 
used by calculating ( )s s

ij jir r  and ( )s s
ij jit t  coefficients 

(Fig. 7):

1 ,1 ,1

1 ,1 ,1

exp( ) ,

exp( ) ;

s
y x z

s
y x z

E E ik x ik z i t

E E ik x ik z i t







   

   
(101)

2 ,2 ,2

2 ,2 ,2

exp( ) ,

exp( ) ;

s
y x z

s
y x z

E E ik x ik z i t

E E ik x ik z i t







   

   
(102)

3 ,3 ,3 2

3 ,3 ,3 2

exp[ ( ) ] ,

exp[ ( ) ] ;

s
y x z

s
y x z

E E ik x ik z d i t

E E ik x ik z d i t







    

    
(103)

4 ,4 ,4 2 3

4 ,4 ,4 2 3

exp[ ( ) ] ,

exp[ ( ) ] ;

s
y x z

s
y x z

E E ik x ik z d d i t

E E ik x ik z d d i t







     

     
(104)

1 ,1 ,1 ,1

1 ,1 ,1 ,1

exp[ ] ,

exp[ ] ;

s
z y x z

s
z y x z

H N E ik x ik z i t

H N E ik x ik z i t







    

   
(105)

2 ,2 ,2 ,2

2 ,2 ,2 ,2

exp( ) ,

exp( ) ;

s
z y x z

s
z y x z

H N E ik x ik z i t

H N E ik x ik z i t







    

   
(106)

3 ,3 ,3 ,3 2

3 ,3 ,3 ,3 2

exp[ ( ) ] ,

exp[ ( ) ] ;

s
z y x z

s
z y x z

H N E ik x ik z d i t

H N E ik x ik z d i t







     

    
(107)

4 ,4 ,4 ,4 2 3

4 ,4 ,4 ,4 2 3

exp[ ( ) ] ,

exp[ ( ) ] .

s
z y x z

s
z y x z

H N E ik x ik z d d i t

H N E ik x ik z d d i t







      

     
(108)

From (101)-(108) and boundary conditions at the 
interfaces (97), the following explicit expressions for the 
reflection and transmission amplitudes ( )s s

ij jir r  and 

( )s s
ij jit t  can be obtained:

,s s
i iE H 

x

z
,s s

j jE H  ,s s
j jE H ,s s

j jE H 

,s s
i iE H ,s s

i iE H 

j-material

i-material

Fig. 7. Scheme of electromagnetic wave reflection and 

transmission by calculating the amplitude coefficients )( s
ji

s
ij rr   

and )( s
ji

s
ij tt .

,1 ,1 ,2
12

,1 ,2,1

,2 ,2 ,1
21

,1 ,2,2

,

;

y z zs

z zy

y z zs

z zy

E N N
r

N NE

E N N
r

N NE










 




 



(109)

,2 ,1
12

,1 ,2,1

,1 ,2
21

,1 ,2,2

2
,

2
;

y zs

z zy

y zs

z zy

E N
t

N NE

E N
t

N NE









 


 


(110)

,2 ,2 ,3
23 ,2 2

,2 ,3,2

,3 ,3 ,2
32

,2 ,3,3

exp(2 ) ,

;

y z zs
z

z zy

y z zs

z zy

E N N
r ik d

N NE

E N N
r

N NE










 




 



(111)

,3 ,2
23 ,2 2

,2 ,3,2

,2 ,3
32 ,2 2

,2 ,3,3

2
exp( ),

2
exp( ) ;

y zs
z

z zy

y zs
z

z zy

E N
t ik d

N NE

E N
t ik d

N NE









 


 


(112)

,3 ,3 ,4
34 ,3 3

,3 ,4,3

,4 ,4 ,3
43

,3 ,4,4

exp(2 ) ,

;

y z zs
z

z zy

y z zs

z zy

E N N
r ik d

N NE

E N N
r

N NE










 




 



(113)

,4 ,3
34 ,3 3

,3 ,4,3

,3 ,4
43 ,3 3

,3 ,4,4

2
exp( ),

2
exp( );

y zs
z

z zy

y zs
z

z zy

E N
t ik d

N NE

E N
t ik d

N NE









 


 


(114)

With the formally introduced virtual thickness 
d1 = 0, the expressions (109)-(114) can be rewritten in 
the following more compact form:

, , , 1
, 1 ,

, , 1,

, 1 , 1 ,
1,

, , 1, 1

exp(2 ),

;

y j z j z js
j j z j j

z j z jy j

y j z j z js
j j

z j z jy j

E N N
r ik d

N NE

E N N
r

N NE




 



 

 



 




 



(115)

, 1 ,
, 1 ,

, , 1,

, , 1
1, ,

, , 1, 1

2
exp( ),

2
exp( ).

y j z js
j j z j j

z j z jy j

y j z js
j j z j j

z j z jy j

E N
t ik d

N NE

E N
t ik d

N NE




 





 


 


 


(116)

With the calculated matrix elements 

11 12 21 22, , ands s s sM M M M     of the matrix €sM   in (98), it 

is easy to determine the transmission coefficient 1 4
sT 

in the generation function (11):



Semiconductor Physics, Quantum Electronics & Optoelectronics, 2012. V. 15, N 2. P. 91-116.

© 2012, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine

104

,4
1 4

,1

2 *
,411 22 12 21

,122

Re

Re ,

s
zs
s

z

s s s s
z

s s
z

S
T

S

NM M M M
A

NM



 

   

 

 
   

 

     
  

(117)

where * *
,4 4, 4, ,4 ,4[ ] / 8 ( ) / 8s s s

z z y xS c E H c  
      E H  is 

z-component of the energy flux (Poynting vector) in the 
transmitted s-polarized electromagnetic wave in a-Si:H
material at the interface (z = d2+d3), 

*
,1 ,1 ,1( ) / 8s

z y xS E H c      is z-component of the energy 

flux in the incident s-polarized electromagnetic wave in 
vacuum (air). We use here and in the following 
expressions like to , ,Re( / )z i z jS S  instead of 

, ,Re( ) / Re( )z i z jS S  written in handbooks, because 

, ,Re( / )z i z jS S  turns out to be more adequate in the case 

of absorbing materials. It becomes especially clear if 
wave transmission and reflection for the wave incidence 
from absorbing material onto the interface with other 
material (even non-absorbing) is considered. The energy 
conservation equality 1R T   (where R is the wave 
reflection coefficient and T is the transmission 
coefficient) is not fulfilled in this case, if expressions 
like to , ,Re( ) / Re( )z i z jS S  are used, while no such 

problems arise with expressions like to , ,Re( / )z i z jS S . 

Analogous consideration can be made for p-
polarized waves and the following connection similar to 
(98) can be written for the amplitudes ,1 ,1,y yH H  in 

vacuum and ,4yH   in a-Si:H :

,1,4

,1

€
0

ypy
p

y

HH
A M

H




 

  
        

. (118)

Expressions for the coefficient pA  , matrix €pM  , 

reflection and transmission amplitudes ( )p p
ij jir r  and 

( )p p
ij jit t , and transmission coefficient 1 4

pT  are 

analogous to those written above for the s-polarized 
wave, with the only difference that the Maxwell 
equation ( / ) /c d dt  H E  has to be used to express 

Ex-components of the electric field in p-polarized waves 
via Hy-components of magnetic field, and thus, 

, , /z j z j jN N    has to be substituted everywhere in the 

formulae (109)-(117) instead of ,z jN .

To calculate in this approach the reflection 
coefficient 4 1

sR  , the electromagnetic field in vacuum 

should be written in a form that corresponds to a 
transmitted wave, while in a-Si:H  material in the form 
of incident and reflected waves, i.e. instead of (89) and 
(93) the following expressions have to be used:

,1 ,1 ,1exp[ ]y y x zE E ik x ik z i t     , (119)

,1 ,1 ,1 ,1exp[ ]x z y x zH N E ik x ik z i t    , (120)

while instead of (92) and (96) 

,4 ,4 ,4 2 3

,4 ,4 2 3

exp[ ( ) ]

exp[ ( ) ]

y y x z

y x z

E E ik x ik z d d i t

E ik x ik z d d i t





      

     
(121)

and

,4 ,4 ,4 ,4 2 3

,4 ,4 ,4 2 3

exp[ ( ) ]

exp[ ( ) ],

x z y x z

z y x z

H N E ik x ik z d d i t

N E ik x ik z d d i t





       

     
(122)

correspondingly. Then the following equation relating 
amplitudes of electric fields in vacuum and in a-Si:H
can be obtained:

,4,1

,4

€
0

ysy
s

y

EE
A M

E




 

  
        

, (123)

where the coefficient sA   is expressed as

34 23 121/ ( )s s s
sA t t t  (124)

and the matrix €sM   as

,2 2 21 ,3 3 3211 12

21 ,2 2 32 ,3 321 22

exp(2 ) exp(2 )€
exp(2 ) 1 exp(2 ) 1

s ss s
z zs

s ss s
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r ik d r ik dM M
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,2 2 21 ,3 3 32 43

21 ,2 2 32 ,3 3 43

exp(2 ) exp(2 ) 1
.

exp(2 ) 1 exp(2 ) 1 1

s s s
z z

s s s
z z

ik d r ik d r r

r ik d r ik d r

         
                  

(125)
The reflection coefficient 4 1

sR   can be expressed 

as:
2

,4 21
4 1

,4 22

Re
s s

zs
s s

z

S M
R

S M

 

  

 
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 
, (126)

where * *
,4 4, 4, ,4 ,4[ ] / 8 ( ) / 8s s s

z z y xS c E H c  
      E H  is 

z-component of the energy flux (Poynting vector) in the 
reflected s-polarized electromagnetic wave in a-Si:H
material at the interface (z = d2+d3), 

* *
,4 4, 4, ,4 ,4[ ] / 8 ( ) / 8s s s

z z y xS c E H c  
      E H  is z-

component of the energy flux in the incident s-polarized 
electromagnetic wave in a-Si:H material at z = d2+d3. 

An analogous expression can be obtained for the 
reflection coefficient 4 1

pR   in the case of p-polarized

electromagnetic waves by using , , /z j z j jN N  

instead of ,z jN  in (125), (126) and other related 

formulae.
The reflection coefficients ( )

4 5
s pR   in (11) for the 

electromagnetic wave reflection from rear contact (j = 5) 
can be expressed as 

2( ) ( )
4 5 45
s p s pR r  , (127)

where
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,4 ,5
45

,4 ,5

,4 4 ,5 5
45

,4 4 ,5 5
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z zs

z z
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N N
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(128)

7.2. Second method for calculation of ( )
4 1
s pR   and ( )

1 4
s pT 

coefficients 

Multiple light reflection and transmission at each surface 
(interface) in the structure are considered explicitly in 
this approach, and total reflection (transmission) of light 
is calculated as a result of summation performed for all 
the components of reflected (transmitted) light. In 
approximation of homogeneous front surface of solar 
cells, the reflection and transmission coefficients ( )

4 1
s pR 

and ( )
1 4

s pT   calculated by this method coincide with 

those obtained by the Mueller matrix method. In the case 
of non-homogeneous surface, the second method (or, 
equivalently, “multiple light reflection method”)
becomes more preferable. For oblique irradiation 
incidence ( 0  ), the method allows to account for 
partial metallization of front surface by finger electrodes 
more exactly, than it is made by introduction of simple 
shadowing coefficient (1 m ) in the generation 

function (11). To calculate ( )
4 1
s pR   and ( )

1 4
s pT   by the 

multiple light reflection method, let us first simplify the 
physical picture of light reflection and transmission in 
the “vacuum – SiO2 layer – ITO” system (see Fig. 8). 

Denote by ( )
13
s pr , ( )

31
s pr , ( )

31
s pt ( )

31
s pt  the amplitudes 

of reflection and transmission in the “vacuum – top SiO2

layer – ITO” structure considering ITO as semi-infinite 
medium. These coefficients relate the amplitudes of 
electric fields (in s-polarized waves) and magnetic fields 
(in p-polarized waves) in reflected and transmitted 
waves with the corresponding amplitudes in the incident 
waves as shown in Fig. 8. It is easy to obtain from 
consideration similar to described in the section 6.1 (or 
by summing the amplitudes of multiple reflected and 
transmitted waves) the following explicit expressions for 
these amplitude coefficients:

ITO

SiO
2

r3mr31

t31

t13

j = 4

j = 2

j = 3

d2

d3

j = 1
r13

Vacuum

Fig. 8. Scheme of light reflection and transmission in the 
“vacuum – SiO2 layer – ITO” structure for determining the 

effective amplitudes sr13
sr31 , st13 , st31 used in our subsequent 

“multiple light reflection method” calculations.
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(129)
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31 ( ) ( )
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 
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(130)

where amplitude coefficients 

12 23 12 23 21 32 21 32, , , , , , ,s s s s s s s sr r t t r r t t  are expressed by the 

formulae (115), (116), the coefficients ,p p
ij ijr t  can be 

obtained from ,s s
ij ijr t  by substituting 

, ( ) , ( ) ( )/z j i z j i j iN N    instead of , ( )z j iN  in (115), (116).

After finding the coefficients ( )
13
s pr , ( )

31
s pr , ( )

31
s pt

( )
31
s pt , the equivalent scheme for calculations by using 

the “multiple light reflections method” in the “vacuum–
a-Si:H ” structure can be reduced to that shown in Fig. 9 
(polarization indices s and p are omitted in the figure and 
some following formulae to make them more compact).

Let FL  be the width of finger electrodes at front 

surface of solar cell (see Fig. 10). Then the distance 
between edges of adjacent finger electrodes in front 
surface of SC can be expressed as (1 ) /FL L m m  , 

where m is the degree of the surface metallization by 
finger electrodes. In the case of oblique incidence of 
irradiation onto SC with finger electrodes on the front 
surface, the light transmission 1 4T   into active a-Si:H

region becomes dependent not only on the angle of 
incidence  (see Fig. 9), but on the angle  between the 
direction along fingers and the projection of light 
incidence direction onto the surface (dashed line in 
Fig. 10), too.

As it follows from Fig. 10, the distance between the 
edges of adjacent electrodes along the in-plane 
projection of the direction of light incidence (dashed 

line) is / sin( )L L   and the width of shadowed finger 

regions in this direction is / sin( )F FL L  , 

respectively. The scheme in Fig. 9 corresponds to a 
cross-section of the SC structure by the plane of light 
incidence. Thus, the distances between the edges of the 
shadowed finger regions in Fig. 9 and the width of these 

regions are just L  and FL , respectively. x-component of 

the wave vector in ITO-layer (j = 3) is 

,3 ,1 ( / ) sinx xk k c    , while real part of z-component 

of the wave vector is ,3 ,3( / ) ( , )z zk c n    , where 

,3 ( , )zn    is expressed by the formula (87). Thus, for a 

tangent of wave propagation angle 3  in ITO-layer (see 

Fig. 9) the following formula is valid:
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,3
3

,3 ,3

sin( )
tan( )

Re( ) ( , )
x

z z

k

k n


  

 
. (131)

The optical path xd along front surface between two 
subsequent reflections from this surface of the ray 
reflected from “ a-Si:H –ITO” interface (see Fig. 9) can 
be expressed as 

3 32 tan( )dx d  . (132)

Thus, within the distance FL  the multiply reflected 

(from a-Si:H -ITO interface) ray undergoes 

integer( / ) 1F F dN L x  (133)

or 1FN   internal reflections from a metallic finger 

(depending on the position of ray incidence on SC 
surface). Let JL be a number of xd-intervals within the 

distance L  between fingers:

integer( / )L dJ L x  . (134)

Let also x = 0 be set at the left edge of the right 
metallic finger in Fig. 9. Then, rays incident from 
vacuum onto the SC surface within intervals 

d djx x jx      , (135)

~
L

~
LF

r34 r34 r34 r34

t34 t34 t34 t34

X




r13 t31 t31

t13 r31 r31 r3m

j = 4

d3

j = 1

xd

Z
Vacuum

a-Si:H

t1 4

ITO
j = 3

Fig. 9. Equivalent scheme of multiple light reflections and 
transmissions in the “vacuum– a-Si:H” structure for 
determining the transmission amplitude t14 and transmission 
coefficient T14.

~
L

LLF

 ~
LF

Fig. 10. Schematic view of front surface with finger electrodes 
(shadowed areas). By dashed line the intersection of the plane 
of light incidence with front surface is shown.

where 1,2,... Lj J  and ( 1)F F d dL N x x    

undergo FN  internal reflections from the right metallic 

finger in Fig. 9 and FN  or 1FN   internal reflections 

from each subsequent finger. However, for the higher 
order reflections from subsequent fingers really give 
small contributions to the partial transmission amplitude 

1 4 ( ,1)t j  of the rays incident in the intervals (135), we 

consider such rays as being reflected FN  times from 

each subsequent finger in the structure to facilitate 
analytical calculations. Then, partial transmission 
amplitudes 1 4 ( ,1)t j  can be written explicitly (see 

Fig. 9) in the following form: 

 2 1
1 4 13 34 34 31 34 31 34 31

1 2
34 31 34 3 34 3 34 3

1 2
34 31 34 3 34 31 34 31 34 31

2 1 2
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(136)

Rays incident in the intervals 

1 ( 1)d djx x j x       , (137)

undergo 1FN   internal reflections from the right 

metallic finger in Fig. 9 and 1FN   or FN  internal 

reflections from each subsequent finger, so that 
analogous approximate formula can be written for partial 
transmission amplitudes 1 4 ( , 2)t j  of such rays:


1 4

2 1
13 34 34 31 34 31 34 31

11 2
34 31 34 3 34 3 34 3

11 2
34 31 34 3 34 31 34 31 34 31
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(138)
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The transmission amplitude 1 4t   can be expressed 

as the average of the partial amplitudes (136) and (138) 
over the distance L dJ x :

1 4 1 4
1

1 4

13 34 3 31 34 3 13 34

34 31 31 34 3 34 31

34 31

1 34 31 34 3

1
3 31 13 34 34 3

31
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(139)

In the case of homogeneous front surface 
( 3 31mr r ), we have from expression (139) 

( ) ( )
( ) 13 34

1 4 ( ) ( )
34 311

s p s p
s p

s p s p

t t
t

r r 


, (140)

which coincides with the result of Mueller matrix 
method. For computer calculations, the formula (139) 
can be directly used. However, it is possible to obtain an 
analytical expression for transmission amplitude 1 4t 

that gives practically the same result under numerical 
calculations. To do this, only lowest order multiple 
internal reflections of the ray from finger electrodes 
(actually, reflections from the first finger electrode 
adjacent to the considered interval of light incidence 

0L dJ x x   ) are accounted. After the first electrode, 

all the internal reflections from front surface are 
considered as those with the reflection amplitude 31r

only. In this approximation, we have instead of (136) 
and (138) the following expressions:


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and 
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(142)

respectively. 
Calculating the sum in (139) with partial 

amplitudes (141) and (142), the following analytical 
expression can be obtained for the transmission 
amplitude 1 4t  :
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(143)
which also transforms into the result of Mueller matrix 
method for homogeneous front surface ( 3 31mr r ).

Transmission coefficients for electromagnetic 
energy fluxes 1 4

sT   and 1 4
pT  , which enter into the 

expression (11) for the generation function, are 
expressed using the above described method of multiple 
light reflections as

2 2,4 ,4
1 4 1 4 1 4 1 4

,1 ,1

Re and Re ,z zs s p p

z z

N N
T t T t
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      




(144)

where , , /z j z j jN N   .

Similar consideration for the electromagnetic 
waves incident from a-Si:H  material onto “vacuum-
ITO” structure allows to obtain the following expression 
for the reflection amplitudes ( )

4 1
s pr   (analog of the 

expression (139) for the transmission amplitudes ( )
1 4
s pt  ):
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The approximate analytical expression for ( )
4 1
s pr  , 

numerical values of which practically coincide with 
those of the more exact expression (145), looks like 

43 31 34
4 1 43

34 31

34 3 34 31
43 31 34 34 3 31

34 3 34 31

3 31 43 31 34 34 3 34 31

3 34 31 34 31

1

1 ( ) 1 ( )1
( )

1 1

( ) 1 ( )1
.

1 1

F L

F L

N J
m

m
m L

N J
m mF

F
m d L

t r t
r r

r r

r r r r
t r t r r r

r r J r r

r r t r t r r r rL
N

r x r r J r r

   


  
     

    
        



(146)
This expression is analogous to the expression 

(143) for the transmission amplitude 1 4t  .

Reflection coefficients for electromagnetic energy 
fluxes ( )

4 1
s pR  , which enter the expression (11) for the 

generation function, are expressed in the method 
described above for multiple light reflections as

2( ) ( )
4 1 4 1
s p s pR r  . (147)

In an extraordinary case of extremely oblique light 
incidence (when LJ  probably can turn to zero), latter 

LJ -containing terms in the formulae (139), (143), (145), 

(146) should be omitted. Thus, in this case reflection and 
transmission become “homogeneous” (i.e. coinciding 
with that of Mueller matrix method) like to that in the 
cases of normal ray incidence or incidence along fingers. 
The reason is that only rare high order 3mr -terms can 

possibly enter the total reflection and transmission sums 
in this case, which practically cannot distort 
“homogeneous” reflection and transmission, described 
by first terms in the above formulae.

The reflection coefficients ( )
4 5
s pR   in (11) are given 

by the formula (127). 

7. Calculation of the angle  of sun rays incidence onto 
SC and the angle  between the direction along fingers 
and projection of the light incidence direction onto SC 
surface as functions of time and SC local orientation 

In a local coordinate system with z-axis directed along 
the line from Earth center (i.e. perpendicularly to 
horizontal Earth surface at the site, where SC is 
mounted), x-axis directed strongly to west and y-axis to 
south (Northern hemisphere is considered) orientation of 
a unit vector se  directed to Sun can be characterized by 

the zenith angle s  (altitude or elevation angle s ) and 

azimuth angle s , see Fig. 11. Time dependence of the 

zenith angle s  (or elevation angle s ) can be expressed 

by the following formula (see [8, 9]):

   
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2
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2
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  

(148)

where 24 hourseT   is the nominal solar day duration, t

is the local daytime starting at midnight ( 0 et T  ),  is 

latitude of a site where SC is mounted ( o0 90   ), 
is the Earth’s declination angle, which, in its turn, is the 
function of the day number T(D) in a year 
(1 ( ) 365T D  ),

 
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o
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23.45
sin 2

365180
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0.40928 cos 0.0172142 10 .
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(149)

In the formula (149), T is the day number starting 
from March 22, while D is the day number starting from 
January 1. 

For each day in a year, sunrise and sunset times t1

and t2 can be determined from the condition cos( ) 0s  :

 
1,2

arccos tan( ) tan( )

2 2
e

e

T
t T
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


 . (150)

Thus, maximal possible period t  of SC operation 
in the day is determined by the difference 2 1t t :

 arccos tan( ) tan( )
et T

  
 


. (151)

If ( , )s t T  is found from (148), the time 

dependence of the azimuth angle ( , )s t T  can be 

determined using the following formula [8, 9]:

 cos( )sin 2 / 2 /
cos( )

sin( )
e e

s
s

t T T      


. (152)

Let mn  be unit vector characterizing SC orientation 

in local coordinate system shown in Fig. 11 ( mn  is 

directed along the normal to SC surface). For the 
following calculations, we introduce new coordinate 
system{ , , }m m mX Y Z , connected with the solar cell and 

characterized by unit vectors 
mxe  (directed along the 

highway in the site of SC mounting), 
mye  (lying in the 

SC plane and perpendicular to 
mxe ) and 

mz me n  (see

Fig. 12).
Components of these unit vectors in the local 

coordinate system shown in Fig. 10 are given by the 
following formulae:

 sin , cos ,0
mx m m   e , (153)

 cos cos , cos sin , sin
my m m m m m       e (154)

 sin cos , sin sin , cos
mz m m m m m     e . (155)

The unit vector se  in the local coordinate system 

{ , , }X Y Z  shown in Fig. 10 has the components 

 sin cos , sin sin , coss s s s s s     e . (156)
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Fig. 11. Local coordinate system and angles characterizing sun 
and solar cell orientations in the local coordinate system.
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Fig. 12. SC-based coordinate system formed by three unit 
vectors 

mxe ,
mye  and

mze .

Using (155) and (156), we can find now the time 
dependence (t,T) of the angle of incidence of (direct) 
solar rays onto SC surface at local geographical site and 
for local SC orientation (reflection and transmission 
coefficients, calculated in Sec. 6, depend just on this 
angle):

| | | | cos cos

sin cos sin cos

sin sin sin sin cos cos .

m mz s z s

m m s s

m m s s m s

     

     

       

e e e e

(157)

The daytime 1t ( 1 1 2t t t  ) at which irradiation of 

SC front surface by direct solar rays starts and the 
daytime 2t ( 1 2 2t t t   ) at which the direct irradiation 

falls to zero (and, respectively, period 2 1t t   of SC 

functioning in this day) can be found from the condition 
cos 0  .

Let  be the angle characterizing orientation of 
finger electrodes on SC front surface relatively to 

mxe

direction (see Fig. 12). To determine the angle between 

mX -axis and the plane of light incidence (or, in other 

words, between mX -axis and projection of light 

propagation direction onto the SC surface), we consider 
the vector product

[ ] | | | | sin sin
m mz s z s sm vm sm vm     v e e e e e e , (158)

where sm  is the angle between unit vectors 
mze  and 

se . It is evident that both 
mze  and se  vectors lie in the 

plane of light incidence. For this reason, the vector v
and unit vector /vm ve v  lie in the SC plane that is 

normal to the plane of light incidence. Using 
decomposition (155) of the unit vector 

mze  over the unit 

vectors i,j,k (see Fig. 11) and analogous decomposition 
(156) for the unit vector se , we have from (158)

(sin sin cos cos sin sin )

(cos sin cos sin cos cos )

(sin cos sin sin sin sin sin cos ) .

x y z

m m s m s s

m s s m m s

m m s s m m s s

v v v   

        
        

         

v i j k

i

j

k

(159)

Thus, 

2 2 2sin sm x y zv v v v     , (160)

where explicit expressions for the components xv , yv

and zv  are written in the formula (159). Analogously, 

for the unit vector /vm ve v  the following formula is 

valid 

, , ,

(sin sin cos cos sin sin ) /sin

(cos sin cos sin cos cos ) / sin

(sin cos sin sin sin sin sin cos ) /sin .

vm vm x vm y vm z

m m s m s s sm

m s s m m s sm

m m s s m m s s sm

e e e   

         
         

          

e i j k

i

j

k

(161)

The angle 
mvx  between vme  and 

mxe  vectors lying 

in the SC plane can be easily found from the well-known 
formula for the scalar product of vectors:

| | | | cos( ) cos( )
m m mvm x vm vm vx vx    e e e e . (162)

Using (153) and (161), we find that

, ,cos( ) sin cos
mvx m vm x m vm ye e      , (163)

where explicit expressions for the components ,vm xe  and 

,vm ye  are written in the formula (161). As the vector vme

is perpendicular to the plane of light incidence, the angle 

sx  between the mX -axis and projection of light 

incidence direction onto the SC surface is expressed as 
follows:

/ 2
msx vx    . (164)
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The angle  between the direction along fingers 
and the light incidence direction projection onto the SC 
surface is expressed, respectively, as 

sx    . (165)

The reflection and transmission coefficients 
calculated in Sec. 6.2 by using the “multiple reflection 
method” depend just on this angle.

9. Optical constants of materials in SC structure

Optical constants of materials in the structure can be 
presented in the form of complex dielectric permittivity 

( ) ( ) ( )j j ji         , or complex refractive index 

( ) ( ) ( ) ( )j j j jN n i         . It is evident that 

between ( ) , ( )j j
      and ( ) , ( )j jn     values, 

relations 2 2
j j jn     and 2j j jn    exist. So, if we 

have data describing ( )jn   and ( )j   dependences, 

we can easily find ( )j
   and ( )j

  dependences and 

vice versa. In the cases, when the wavelength  is 
argument of the optical constants instead of the 
frequency  , the dependences ( )j   and ( )jN   can be 

easily obtained using the relationship 2 /c   
between the photon frequency and wavelength or, 
equivalently, 2 /c      between the photon energy 
  and wavelength. The latter relationship can be 

rewritten in the well-known numerical form 
1.239842 / 1.24 /      for the case of energy 

expressed in electronvolts and the wavelength 
expressed in micrometers.

9.1. Dielectric permittivity of the top SiO2 layer

We have used for fused SiO2 material permittivity 
Sellmeier analytic function from the work [10]:

2

2
2

SiO 2 2

0.61497
( ) 1.4923 0.01059

(0.115)


     

 
, (166)

where the wavelength  is expressed in micrometers. As 
noted in [10], this analytical formula gives very precise 
values of the SiO2 permittivity in the energy range below 
5.8 eV, practically coinciding with tabulated 
experimental values in Palic’s handbook [11].

9.2. Refraction index of the indium tin oxide (ITO) layer

Data of the work [12] for real (n) and imaginary () parts 
of ITO refraction index have been used. Wavelength 
dependences of n and  in ITO in the actual wavelength 
range are shown in Fig. 13. Points represent data of the 
work [12], solid curves are splines constructed and used 
in our program.

9.3. Permittivity of the a-Si:H layer

Data of the work [13] for real and imaginary parts of 
a-Si:H  material permittivity have been used. Energy 

dependences of  and   in the actual energy range 

(plotted on the base of these data) are shown in Fig. 14 
(for comparison, filled squares for ( )E -dependence at 

[H] = 0 are the data of the work [13]). As it clear from 
the figure, permittivity in this case depends on the 
hydrogen content [H], too. For this reason, in our 
program two-dimensional splines (i.e. on energy and 
hydrogen content) based on the data of the work [13] 
have been constructed and used for numerical 
calculations. The absorption coefficient   of a-Si:H

material in the generation function (11) is expressed as 

,42 ( , ) /z c      , where ,4 ( , )z    is given by the 

formula (88) (j = 4 in this formula corresponds to 
a-Si:H  layer in our notation, see Fig. 1). In band 
bending calculations (see Eq. (79)), we have used the 
value 16.5 0.3 [H]     for static permittivity of 

a-Si:H , where [H]  is hydrogen content (in %) in 

a-Si:H . This ([H]) -dependence corresponds to data of 

the work [14].

9.4. Dielectric permittivity of metal contact electrodes 
on SC surfaces

Aluminum was considered as a metal, from which 
contact electrodes on back and front surface of SC are 
formed. In our calculations, we have used the 
wavelength dependences of real and imaginary parts of 
the permittivity for pure aluminum presented in [11, 15], 
see Fig. 15.
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Fig. 13. Real (n) and imaginary () parts of the complex 
refractive index of indium tin oxide (ITO).
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10. Solar radiation spectra

In our calculations, we have used standard solar 
radiation spectra AM0 corresponding to space conditions 
outside Earth atmosphere and standard (ASTM G-173) 
reference solar radiation spectra of sunlight at the Earth 
surface AM1.5D and AM1.5G (at AM1.5 conditions 
length of the path of light through the atmosphere is 
1.5 times that of the shorter path when the sun is directly 
overhead) [16]. The spectrum AM1.5D corresponds to 
direct radiation from Sun and AM1.5G to “global” 
radiation, which includes both direct and diffuse 
radiation. These spectra are shown in Fig. 16. 

11. Solar cell efficiency and other related parameters

To calculate the efficiency and other parameters of 
a-Si:H  solar cells in different time moments, to which 
different light incidence angles  and “finger-plane of 
incidence” angles  correspond (see Figs 9 and 10), or 
to calculate SC parameters averaged over different time 
intervals (daytime, year, etc.), we have to know solar 

spectra for arbitrary positions of Sun, i.e. for arbitrary 
atmosphere masses AM. In principle, it can be done 
using the data of the work by Christian Gueymard [17]. 
In the applied FORTRAN program, SC efficiencies and 
other parameters can be calculated only for the case of 
normal light incidence onto SC surface for irradiation 
conditions AM0 and AM1.5. Nevertheless, the general 
formulae are written below, accounting for possible s-
and p-polarized parts of incident light in the case of 
oblique incidence. 

The total density of short-circuit current, as pointed 
earlier, can be calculated by summing the contributions 
from all vanishingly small (i.e. practically 
monochromatic) parts of solar spectra ( )I   shown in 

Fig. 16:  

   
0

, , , ,
, , , ,

1
( )

2
m

s s p p
SC e SC h SC e SC h SCj j j j j d


   



         , (167)

where m is the shortest wavelength in solar spectrum, at 
which light penetration into active region of SC still 
occurs (m = 0.31 µm value corresponding to the energy 
4.0 eV has been used in the calculations, for sign 
conversion of the real part of a-Si:H  permittivity at the 
energy close to 4.0 eV, see Fig. 14), 0 is the wavelength 
corresponding to the a-Si:H  bandgap energy Eg (or, 
more exactly, to mobility edge energy Em, which can be 
somewhat lower than Eg due to possible electron and 
hole transport via conduction and valence band tail 
states), ( ) ( ) / ( ) / (2 )I I c           is the spectral 

density of photons, incident onto unit area, , ( )
,

s p
e SCj   and 

, ( )
,

s p
h SCj   are the considered in Sections 2 and 3 electron 

and hole contributions into the short-circuit current from 
monochromatic light with the wavelength . Unit light 
intensities ( )

0 ( )p sI   in the formulae (11), (13) and (32) 

have to be used by calculating the current densities 
, ( )

,
s p

e SCj   and , ( )
,

s p
h SCj   for the integrand expression in (167). 

Instead of ( )
0 ( )p sI   in (11), (13) and (32) the intensity 

( ) / 2d    for s-polarized part of light and the same 

( ) / 2d    intensity for p-polarized part of the light 

appears in (167). 
The photocurrent density under SC circuit loading 

can be expressed as a sum of the irradiation-induced 
short-circuit current density SCj  and the density of 

exponential diode current flowing in the opposite 
direction:

 ( ) exp( / ) 1ph SC sj V j j eV rkT   , (168)

where V is the voltage drop across the load, saturation 
current density sj  and non-ideality factor r are the diode 

characteristics of ( )p i n  junction in a-Si:H . Values 

js = -1210 A/cm  and r = 1.5 have been used in our 
calculations [18]. 
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Fig. 16. Standard solar radiation spectra I() in the actual range 
of wavelengths.

The open-circuit voltage Voc can be found from 
(168) by using the condition ( ) 0ph ocj V  :

ln 1SC
oc

s

jrkT
V

e j

 
  

 
. (169)

11.1. SC parameters in an ideal case of zero internal 
resistance

In a hypothetic case of ideal SC possessing zero internal 
resistivity, the power generated by the unit area of solar 
cell is expressed as

( ) [exp( / ) exp( / )]ph s ocW V j V V j eV rkT eV rkT   .

(170)

The consumed power achieves maximal value Wm

at an optimal load, when condition 

0
mV V

dW

dV 

 (171)

is fulfilled. As it follows from (170) and (171), the 
voltage Vm in the optimal regime can be found from the 
equation 

exp 1 1 0m oc meV eV eV

rkT rkT

   
     

   
. (172)

The optimal density of photocurrent in this case is 
expressed as 

expm m
m s

eV eV
j j

rkT rkT
   
 

, (173)

and the optimal power generated by the unit area of SC 
as

2

expm m
m m m s

eV eV
W V j j

rkT rkT
    
 

. (174)

The product of optimal load resistance Rm on SC 
area S is expressed, respectively, as

expm m
m

m s

V eVrkT
R S

j ej rkT
    
 

. (175)

We characterize SC by three types of its efficiency. 
The efficiency a is the relation of power Wm collected 
from the unit SC area in an optimal regime (174) to the 
power absorbed inside active a-Si:H  layer of the SC Wa

(this absorbed power is only a part of the total solar 
irradiation power incident on SC due to above described 
limitations of the spectral range as well as due to partial 
reflection of light and its absorption in metallic contacts 
and non-active layers of the SC structure):

m
a

a

W

W
  . (176)

The absorbed power can be easily calculated by 
integrating the sum of generation functions (11) 

( , ) ( , )s pg z g z    (with ( ) / 2I d   instead of 0 ( )pI 

and 0 ( )sI  ) over the thickness of active a-Si:H  layer and 

over the spectral range 0...m   like to that in (167).

The efficiency p is the relation of the power Wm

collected from the unit SC area in an optimal regime to 
the incident irradiation power Wp within the spectral 
interval 0...m   (due to this limitation of the spectral 

range, Wp is only a part of total solar irradiation power 
incident on SC):

m
p

p

W

W
  . (177)

By its definition, the power Wp by the can be 
calculated as

0

( )
m

pW I d




   . (178)

Finally, the efficiency  is the relation of power Wm

collected from the unit SC area in an optimal regime to 
the incident irradiation power W within the whole 
spectral range of solar irradiation:

mW

W
  , (179)

where the power W can be calculated analogously 
to Wp:

0

( )W I d


   . (180)

In practice, l = 0.28 µm can be used instead of 
zero as the lower edge of solar spectrum in the integral 
(180) and u = 4 µm as the upper edge, because 
electromagnetic waves outside this spectral region 
practically do not contribute to the total power W. 
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Once more parameter, characterizing SC, is the 
filling factor F defined as

m

oc SC

W
F

V j
 . (181)

11.2. SC parameters with an account of SC series 
photoresistance and ohmic power losses at the contact 
finger grid on the front SC surface 

Consider active a-Si:H  region of SC as a series of 
vanishingly small parts with a length dz. Each of such 
parts can be characterized by the resistance dR

( )

dz
dR

z S



, (182)

where S is the solar cell area, ( )z  is the conductivity 

depending on the free carrier concentrations p(z) and 
n(z) in valence and conduction bands, respectively:

( ) [ ( ) ( ) ( ) ( )]n pz e n z z p z z      , (183)

where ( )n p are the hole (electron) mobilities. In our 

approach, the mobilities are considered as parameters of 
the model. They are supposed to be constants across p-
or i(n)- region of a-Si:H  (but probably having different 
values in these regions). I.e., we characterize p-region by 
the electron and hole mobilities ( )p

n  and ( )p
p  as well as 

i(n)-region by ( )i n
n  and ( )i n

p , respectively.

For the i(n)-part of a-Si:H  layer beyond space 
charge region, we can write

( ) ( ) , ( ) ,n nn z n z n p z p    (184)

where nn is an equilibrium concentration of major 
carriers (electrons) in i(n)-region, which in accordance 
with (73) and (74) is expressed as 

( )

exp
i n

F g
n c

E E
n

kT

 
    

 
. (185)

The energy ( )i n
FE  in (185) is the Fermi level energy

counted from the valence band edge in i(n)-region in the 
absence of irradiation. This energy has been determined 
earlier under band bending calculations (as well as the 
Fermi level energy p

FE  in p-region of a-Si:H layer), see 

Sections 4 and 5. The concentration ( )n z of 

photoelectrons in i(n)-region can be expressed as a sum 
of all contributions from vanishingly small 
monochromatic parts of the incident irradiation spectra:

0
( ) ( , ) ( , )

( ) ( )
2

m

s p
i n
n

g z g z
n z d





  
      , (186)

where ( )i n
n  is the lifetime of photoelectrons in this 

region, ( )s pg  are the generation functions (11) with the 

unit intensities ( )
0 ( )s pI   (actually, in the formula (186) 

the intensity ( ) / 2d    appears instead of the 

monochromatic intensities 0 ( )pI   and 0 ( )sI   in the 

formula (11)). This expression for the concentration of 
excess major carriers in i(n)-region is a consequence of 
the generation-recombination balance equation 

( )
( )

( )

( , )
( , )

s p
s p

i n
n

n z
g z

 
 


. (187)

As compared with the analogous balance equation 
(10) for photoelectrons in p-region, the diffusion term is 
absent in (187) because electrons generated in i(n)-
region don’t contribute to the diffusion photocurrent 
(they cannot overcome ( )p i n  junction barrier and are 

left i(n)-region, thus increasing the conductivity of this 
region). Non-equilibrium excess holes in this region 
form corresponding part of the diffusion photocurrent 
(see Sec. 3). Actually, they serve as an external source of 
current (in addition to non-equilibrium excess electrons 
in p-region) and for this reason should be excluded from 
the system of carriers responsible for ohmic losses in 
this region. Thus, according to (75) and (76) we can 
write the following expression for equilibrium part of the 
hole concentration in i(n)-region contributing to the 
conductivity in z-direction in this region: 

( )

( ) exp
i n
F

n v

E
p z p

kT

 
    

 
. (188)

Analogously, for the p-part of a-Si:H layer beyond 
space charge region we can write

( ) , ( ) ( ) ,p pn z n p z p p z    (189)

where pp is the equilibrium concentration of major 
carriers (holes) in p-region, which in accordance with 
(75) and (76) is expressed as 

exp
p

F
p v

E
p

kT

 
   

 
. (190)

The energy p
FE  in (190) is the Fermi level energy 

counted from the valence band edge in p-region in 
absence of irradiation. The concentration ( )p z  of 

excess photoholes in p-region can be expressed like to 
(186) as

0
( ) ( , ) ( , )

( ) ( )
2

m

s p
p

p

g z g z
p z d





  
      , (191)

where ( )p
p  is the lifetime of excess photoholes in this 

region. According to (73) and (74), we can write the 
following expression for the electron concentration that 
contributes to the conductivity in p-region: 

( ) exp
p

F g
p c

E E
n z n

kT

 
     

 
. (192)

As to the space charge region at ( )p i n  junction, 

we somewhat simplify our consideration and evaluate its 
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contribution into the internal SC series resistance using 
equilibrium values of carrier concentrations (i.e. 
corresponding to the case when irradiation is absent and 
no voltage drops at an external load) instead of the total 
carrier concentrations that can be obtained using the 
formulae (21) and (41): 

( ) exp[ ( )] , ( ) exp[ ( ) ]n p pnn z n y z p z p y z y    , (193)

where concentrations nn  and pp  are expressed by the 

formulae (185) and (190). Thus, we overestimate the 
contribution of SCR to the total internal resistance, 
because under irradiation and an external load the SCR 
thickness will be less than p nz z  (thickness in the 

equilibrium case) and the carrier concentrations in SCR 
will be higher. However, due to relatively small 
contribution of SCR into the total series resistance in 
many practical cases (because of smallness of the SCR 
thickness as compared with the total a-Si:H thickness) 
this overestimation would not be too critical. Thus, SC 
efficiencies would be somewhat larger than those 
calculated within this approximation. 

Substituting (184), (189) or (193) into (183) and 
integrating (182) over a-Si:H thickness, we obtain thus 
the following internal series resistance (photoresistance) 
of the a-Si:H layer of SC:

0

1

( ) ( ) ( )

p p p n p

p p p n

d z d z d d

d z d z

dz dz dz
R

S z z z

  

 

 
   

    
   . (194)

Besides a-Si:H layer, the ITO layer with the contact 
grid also should contribute to the ohmic losses. 
According to the results of works [19, 20], the ITO-
contact grid resistance can be expressed in the following 
form: 

2
1 tan

2
oc c

g
SC c

V L L
R

S j L L

  
   

   
, (195)

where (1 ) /FL L m m   is the distance between fingers 

in the contact grid (see Fig. 10), LF – width of finger 
electrodes, m – degree of front surface metallization by 
electrodes, Lc – characteristic effective length of hole 
collection by electrodes:

 1/2
/ITO ITO

c p p ITO oc SCL e n d V j  . (196)

In the formula (196), ITO
p  is the hole mobility in 

ITO, ITO
pn – hole concentration in ITO (as high values as 
18 39.61 10 cm  are reported for the hole concentration in 

ITO [21]), 3ITOd d – ITO layer thickness (see Fig. 1).

Thus, the total internal series resistance of solar cell 
RSC can be expressed as  

SC gR R R  . (197)

With an account of internal ohmic losses, the 
expression (168) for the photocurrent takes up the 
following form:

( )
( ) exp 1

( )
exp exp ,

ph SC
ph SC s

ph SCoc
s

eV ej V SR
j V j j

rkT

eV ej V SReV
j

rkT rkT

         
   

             

(198)

where V is the a voltage drop at an external load. 
For the net power consumed by the external load, 

we have now the following expression instead of (170):

( )

( )
exp exp .

ph

ph SCoc
s

W Vj V

eV ej V SReV
V j

rkT rkT

 

             

(199)

The net power achieves its maximal value at a 
voltage Vm, which can be found from the evident 
condition 

( ) 0ph
ph

d jdW
j V V

dV dV
   . (200)

Going to dimensionless quantities / ocv V V , 

0/phi j j , 0/ ( ) ( )ocw W j V v i v   , 

0 / ( )SCej R S rkT   and /ocu eV rkT , where 

0 exp[ / ( )]s ocj j eV rkT , we can rewrite formulae (198) 

and (200) in the form of the following system of two 
transcendental equations for the dimensionless current 
density i and voltage v dropping at optimal external load:

1( , ) exp[ ( 1)] 1 0f i v i u v i       , (201)

2 ( , ) ( ) 0
d w di

f i v i v v
dv dv

    . (202)

It follows from (201) that 

1 1
1 0

df df
df di dv

di dv
   , (203)

i.e.

1

1

/ exp[ ( 1)]

/ exp[ ( 1)] 1

df dvdi u i u v

dv df di i u v

  
   

    
. (204)

Substituting (204) into (202), we obtain 

2 ( , ) ( )

( ) exp[ ( 1)]
0.

exp[ ( 1)] 1

di
f i v i v v

dv
i uv i u v i

i u v

  

     
 

    

(205)

For exp[ ( 1)] 0i u v    , we can divide both parts 

of Eq. (201) by this exponential function. Analogously, 
as both the photocurrent density i and denominator 

exp[ ( 1)] 1i u v      in (205) differ from zero, we can 

divide both parts of Eq. (205) by these values, too. Thus, 
the following two equations can be used to determine the 
optimal photocurrent and net voltage instead of (201)
and (205):
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Fig. 17. Schematic graphical solution of Eqs.(206) and 
(207).

1

1
( , ) 1 0

exp[ ( 1)]

i
f i v

i u v


  

  
 , (206)

2

( )
( , ) exp[ ( 1)] 1 0

uv i
f i v i u v

i


      . (207)

Finding the intersection point of the solution 

1( )v i of (206) with the solution 2 ( )v i  of (207) (see 

Fig. 17), we determine the dimensionless optimal 
photocurrent density im and dimensionless net 
voltage vm.

Knowing the optimal photocurrent density 

0m mj j i  and optimal net voltage m oc mV V v , we can 

calculate all the parameters characterizing SC (using the 
formulae (174)-(181)) with account for internal series 
photoresistance and contact grid resistance. 

12. Conclusions

In this paper, we presented a detailed theory of
photoconversion in structures based on a-Si:H . Its use
helps to illustrate the dependence of the photoconversion 
efficiency on the key physical parameters and to 
optimize the value of photovoltaic parameters. This 
allows to obtain high values of the efficiency of the 
discussed solar cells.
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Abstract. We develop a detailed formalism to photoconversion efficiency η of hydrogenated amorphous silicon (
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) based solar cells with a contact grid. This efficient three-dimensional model allows firstly optimization of the 
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 sandwich in terms of carrier mobilities, thickness of the layers, doping levels and others. Secondly, geometry of the grid fingers that conduct the photocurrent to the bus bars and ITO/SiO2 layers has been optimized, and the effect of non-zero sun beam incidence angles has been included as well. The model allows optimization of the amorphous Si based solar cells in a wide range of key parameters.
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1. Introduction 

Thin film hydrogenated amorphous silicon (

[image: image4.wmf]a-Si:H


) is widely used for photovoltaic applications. Amorphous silicon-based solar cells (SC) are very promising because of low production cost, possibility of covering large uneven areas, and sufficiently high efficiency.  In order to get the best possible performance of the 
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 solar cells, it is important to (i) produce a high quality amorphous films with 
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 junction, and (ii) optimize the films and solar cells in terms of their parameters such as, for instance, p-, i- and n-layer thicknesses, their doping levels, electron and hole mobilities μn and μp and their lifetime, resistance of p-, i- and n-layers, contact grid geometry and parameters of the transparent conducting and antireflecting layers. In this paper, we propose a detailed theory of photoconversion in the structures of 
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, taking into account the dependence of the efficiency of a sufficiently large number of physical parameters. 

2. Model of an active region in the a-Si:H solar cell


In the case when no external (irradiation) excitation of electrons and holes in a system occurs and electron-hole recombination channels are totally absent, the following standard continuity equation for carriers in the system is valid:
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where p is the particle concentration and Ip – particle flux.


If processes of generation and recombination of particles are taken into account, then Eq. (1) takes a more complicated form of generation-recombination balance equation, namely:
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for electrons, where gp and gn are the generation rates (gp = gn = g for generation by external irradiation, when each absorbed photon with an energy higher than band gap energy creates simultaneously an electron in the conduction band and a hole in the valence band), p0 and n0 are the equilibrium hole and electron concentrations in a system without external excitation, (p and (n are the hole and electron lifetimes, 
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 are the densities of hole and electron currents, which in turn can be written as 
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where E is the electric field, (p(n) are the hole (electron) mobilities, Dp(n) are the corresponding diffusion coefficients. Accounting for Einstein relation 
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 and expressing electric field E in the system via potential 
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, Eqs. (4) and (5) take up the following form:
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and 
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where 
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 is the dimensionless potential energy of positive charge, 
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 are the fluxes of positive charges, corresponding to movement of holes and electrons in the system. Substituting (6) and (7) into (2) and (3), we obtain at steady-state conditions (dp/dt = dn/dt = 0) in the case of one-dimensional system (which is the subject of our subsequent consideration) the following equations:




[image: image23.wmf]22


0


22


()


pp


pp


dpdydpdygz


p


LdzdzD


dzdz


-


-++=-


,
(8)




[image: image24.wmf]22


0


22


()


nn


nn


dndydndygz


n


LdzdzD


dzdz


-


---=-


,
(9)


where 
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 is the hole diffusion length, 
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 is the electron diffusion length, z is the coordinate in the direction normal to structure surface.


Further, by calculating short-circuit current in the system, we consider the active region of 
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 solar cell as being formed during its growth by two main layers (see Fig. 1), namely: i) doped p+-layer (with the layer thickness dp) adjacent to the front surface and ii) more deep undoped (or slightly doped with donors) i(n)-layer with the layer thickness d. Besides, technological n+ layer also is formed in practice at rear surface to have good rear contact properties, but its thickness dn is usually too small to influence the charge generation and collection, so in the first approximation it can be excluded from the consideration that concerns short-circuit current formation. Considering physical properties of the active 
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 region, it is convenient to divide this region into three physically different parts: I) p+-layer with the thickness 
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 junction. In this region, excess electrons contribute to short-circuit current. II) i(n)-layer with the thickness 
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. It is i(n)-part of 
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 that lies outside SCR region. In this region, excess holes form corresponding contribution into short-circuit current. III) Third layer is the SCR itself in the vicinity of z = dp. The thickness of SCR equals to zp + zn. At short-circuit current conditions, the band bending in SCR becomes practically the same as in dark conditions (i.e. when generation of mobile electrons and holes by external irradiation is turned off). For this reason, in the SCR rather high electric field exists, so the electrons and holes generated in this region are quickly separated from each other by the field, and in the first approximation their movement can be considered neglecting their recombination. Contrary, in layers I and II outside SCR region, the electric field is enough low in these conditions, so we can neglect it in the first approximation. 


It follows from the written above that a problem of short-circuit current collection in 
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 can be solved by separately considering the regions 0 < z < 
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 and dp + zn < z < dp + d with appropriate boundary conditions.
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Fig. 1. Schematic view of a-Si:H solar cell structure.


3. Short-circuit current collection from p+-region in a-Si:H layer


In the region I, where excess minor carriers (electrons) contribute to the short-circuit current, the equation (9) in diffusion approximation (drift terms are small enough as compared to the diffusion ones) takes up the following form:
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where 
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. Superscripts p(s) in the generation term g(z) and excess electron concentration 

[image: image38.wmf]()


nz


D


 are introduced to account for two possible independent polarizations of the incident light because in the case of its oblique incidence, when the angle of light incidence differs from zero, reflection and transmission coefficients for the light polarized in the plane of incidence (p-polarized portion of incident light) differ from those for light polarized in parallel to SC surface (s-polarized portion of incident light). In the generation term 
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, all the contributions from the total spectrum of the incident light are present, so generally it is not monochromatic. However, in linear approximation, the problem can be considered separately for each constituting (monochromatic) part of the total spectrum inherent to incident irradiation, and total concentrations as well as short-circuit currents can be found by summing the contributions from the constituting parts of the spectrum. For this reason, we consider further a particular case of monochromatic irradiation with the wavelength (.


Uniform solution of Eq. (10), to which zero right-hand part of the equation corresponds, can be expressed as 
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. General solution of Eq. (10) is a sum of the uniform solution and the partial one, defined by the generation term in the right-hand side of the equation. If possible multiple internal reflections of the light transmitted into 
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where (( is the absorption coefficient of 
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 material at the wavelength (, m – relative metallization of the front surface by finger electrodes (the part of the front SC surface, which is covered by the electrodes, produces corresponding shade in active region), 
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 – irradiating light intensity at the wavelength (. For simplicity, we denote by indices 1 to 5 all optically different media, which determine the incident irradiation transmission and reflection (see Fig. 1) in the SC, so that 
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In accordance with the explicit form of generation term (11), general solution of Eq. (10) takes up the following form: 
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where 
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First boundary condition can be written in the form of standard balance equation for excess electron fluxes through front 
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 surface (interface) at z = 0 (see Fig. 1): 
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where S0 is the surface recombination rate for electrons. To obtain the second boundary condition at z = 
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, we consider SCR region neglecting electron-hole recombination. In this approximation, Eq. (3) takes up the following form:




[image: image60.wmf],()


()


(,)


ps


ps


e


di


gz


dz


l


=-l


,
(15)


where flux 
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 is expressed by formula (7), which in 1D case can be rewritten as: 
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In equilibrium conditions, when 
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where nn is the electron concentration in i(n)-region beyond SCR layer, where electrons are the majority carriers. At irradiation, when 
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Substituting (18) into Eq. (16), we obtain the following equation for the coefficient 
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General solution of this equation can be written as
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where Bn0 and z0 are two arbitrary constants. Substituting (20) into (18), we obtain following expression for 
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where explicit values of Bn0 and z0 are chosen to provide the right value 
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 at z = dp+zn (no accumulation of excess electrons is supposed in 
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 i(n)-region beyond SCR layer at short-circuit current conditions, i.e. all electrons supplied by p-region in i(n)-region and generated in i(n)-region pass away to rear contact or recombine with holes, so that electron concentration in this region remains practically equilibrium one).


By substitution Eq. (11) into Eq. (15), the following explicit expressions for the flux 
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where 
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and 
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As it follows from Eq. (21), at the SCR boundary 
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where 
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 is the absolute value of total band bending in the SCR region in kT units (
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two boundary conditions (14) and (25) can be rewritten in the form of the following two explicit algebraic equations for the coefficients 

[image: image87.wmf],()


1,


ps


n


C


l


 and 

[image: image88.wmf],()


2,


ps


n


C


l


:




[image: image89.wmf],(),()


1,02,0


,(),()


1,02,0


()()


()(),


psps


nnnn


psps


nnnn


CSVCSV


ADSADS


ll


ll


ll


++-=


=-a++a-



(27)




[image: image90.wmf],()


1,


,()


2,


2


,()


1,


2


,()


2,


exp[()/](1)


exp[()/](1)


1()


exp[()]1


1()


exp[()]1


ps


nppny


ps


nppny


y


ps


n


nppy


nn


y


ps


n


nppy


nn


CdzLI


CdzLI


I


L


AdzI


LL


I


L


AdzI


LL


l


l


l


-


l


-


-


a-


l


l


l-


ll


-


a


l


l


l-


ll


---+


+-+=


ìü


éù


-a


ïï


=-a---+


íý


êú


aa


ïï


ëû


îþ


éù


-a


+-a-++


êú


aa


ëû


,


+


ìü


ïï


íý


ïï


îþ



(28)


where 
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Thus, calculating the coefficients 
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4. Short-circuit current collection from i(n)-region of a-Si:H layer


Analogous consideration can be made for i(n)-region of 
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 layer (region III), where excess holes contribute mainly to the short-circuit current. In diffusion approximation, Eq. (8) takes the following form in this region:
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where 
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. Considering a particular monochromatic component of incident irradiation, the generation function for which is given by the formula (11), a general solution of Eq. (30) analogously to (12) is expressed as
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where 
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Like to that of electrons, first boundary condition for excess holes can be written in the form of balance equation for hole fluxes at rear 
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 surface (interface) (see Fig. 1): 
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where Sd is the surface recombination rate for holes. To write the second boundary condition for excess holes at z = dp+zn, we consider SCR region in the same approximation we have used for electrons in the paragraph 2, i.e. neglecting electron-hole recombination in the SCR layer. In this approximation, Eq. (2) for holes takes the following form:
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i.e. the flux of excess holes can be written as
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where coefficients 
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Similarly to the case of electrons, at equilibrium, when 
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, solution of the latter equation has the following form:
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where pp is the hole concentration in p+-region beyond the SCR layer, where holes are the majority carriers. In the case of irradiation, when 
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where the pre-exponential function 
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[image: image119.wmf],()


,()


exp[()]()/


ps


p


ps


hp


dB


yzizD


dz


l


l


=-


.
(39)


A general solution of this equation can be written as
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where Bp0 and x0 are two arbitrary constants. Substituting (40) into (38), we obtain following expression for 
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where values of Bp0 and z0 are chosen to provide right 
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 p+-region beyond the SCR layer at short-circuit current conditions, i.e. all the holes supplied by i(n)-region to p+-region and generated in p+-region pass away to the front surface contact or recombine with electrons, so that the hole concentration in this region remains practically equilibrium.


Thus, as it follows from Eq. (41),
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According to (6), the flux 
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so that two boundary conditions (33) and (42) can be rewritten in the form of the following two explicit algebraic equations for the coefficients 
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where 
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Calculating coefficients 
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 from the system of algebraic equations (44) and (45), we completely determine the hole component of the density of short-circuit current 
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5. Calculation of DOS and position 
of Fermi-level in a-Si:H

In the first approximation, the dependence y(x) in SCR at short-circuit current conditions is close to the equilibrium one, which is realized in dark, when no excess carriers are produced by irradiation in the 
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 layer. To calculate y(x) in SCR, first of all we have to determine the energy position of Fermi levels in p+- and i(n)-regions of 
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 layer beyond SCR (i.e. in regions I and II). In amorphous silicon a large number of energy levels in the band gap exists even without special doping of material. These levels have different origin and influence substantially the position of Fermi energy level in intrinsic material. They are formed by three main groups of states. The first group is presented by weak-bond valence-band-tail states of the donor-like type. If the valence band apex is taken as zero energy level, then the energy distribution of the one-electron states in this group can be approximately described by the following formula:
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where 
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 also can be found (see, e.g. [4, 5]), the characteristic energy Ev0 is a function of temperature, 
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 is the equilibration temperature [1, 2]. Depending on the quality of 
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 material, Ev0 can vary from 0.04 up to 0.15 eV at T = 300 K. In our calculations, the value 
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Another group of energy levels in the band gap of 
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 material is formed by conduction-band-tail acceptor-like states, energy distribution of which can be approximately described by the analogous formula:
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where Nct0 varies within the range from 1021 to 
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Besides, dangling bond defects exist in 
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 material, which form deep defect states in the 
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 band gap [1, 2]. The density of these states is dependent on the position of the Fermi level in the band gap due to specific microscopic reactions involving hydrogen [1, 2]. These microscopic reactions lead to formation of deep defect states from weak-bond band-tail states (47). As it follows from the formulae (20) and (25) of the work [2], the contribution 
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where NSiSi is approximately equal to 

[image: image160.wmf]23-3


210cm


×


 and defines the total number of electrons in silicon bonding states (four electrons per Si atom), NH is the total concentration of hydrogen in 
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 at hydrogen content [H] = 10 at.%), P(E) is the defect-pool function (normalized to the unity energy distribution function of potential defect sites in 
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 material, from which deep defect states can be formed with the energy E), P(E) is usually taken as Gaussian:
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where ( is the pool width and Ep is the most probable potential defect energy. According to Powell and Deane [1, 2], ( can be determined from the experimentally measured energy separation ( = 0.44 eV between the doubly occupied defect state and empty defect one; 
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 is the defect electron correlation energy accounting for electron interaction in negatively charged defects, when the second electron is placed on the defect; Ep = 1.27 eV in material with the band gap Eg = 1.9 eV. As the band gap depends on the hydrogen content in 
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 material quality. The total density of dangling bond states is thus expressed as
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This density of states includes contributions from neutral, positively and negatively charged defects. If charged defects are accounted in the law of mass action equations, then, following [2], it is necessary to replace the defect energy E in the integrand in the right-hand side of Eq. (51) with the defect chemical potential 
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As a result, the density of dangling bond states becomes dependent on the position of the Fermi energy EF in 
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 material. Performing integration in (51), the following expression for 
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where
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All three types of defects can be donor-like, characterized by one-electron transitions of the type (+/0), and acceptor-like, characterized by one-electron transitions of the type (
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). In accordance with [2], the density of one-electron acceptor-like states is expressed as 
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while that of donor-like as
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At temperatures T < T*, the densities of defect states do not depend on temperature. During cooling the grown material below T*, they leave “frozen-in”, i.e. 
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 is the Fermi energy calculated at equilibrium temperature T*. Remember that the valence-band-tail characteristic energy Ev0, as pointed earlier, is also a function of temperature, i.e. the value Ev0(T*) = 0.056 eV has to be used at 
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Due to participation of the valence band-tail states in deep defect states formation, their density of states becomes depleted, i.e. instead of 
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 in formula (47), a depleted density of states 
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has to be used in calculations at T > T* and 
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if 
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 and if the expression in the right-hand side of the formula (58) becomes lower than zero at T < T*. 

In addition to above states always present in intrinsic 
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, the donor and acceptor states introduced by special doping 
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 material have to be accounted. If doping of 
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 with donors is made (e.g. by phosphorous), the density of donor states often can be characterized by the normal Gaussian distribution of the states on their energy:
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where 
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 is the concentration of donor states, 
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 is the energy width of the distribution, and ED is the donor ionization energy in the maximum of the distribution (59). 


Analogous Gaussian distribution can be introduced to describe acceptor density of states in the band gap (e.g., when doping 
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 with boron atoms is made): 
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where 
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 is the concentration of acceptor states, 
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 – energy width of the acceptor states distribution, and EA – acceptor ionization energy in the maximum of the distribution (60). 
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and
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where nA and nD are the concentrations of acceptor and donors far from degraded region in p+- and n- parts of 
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At distances 
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Fig 2 demonstrates introduced coordinate dependences (61) and (62) of acceptor and donor concentrations 
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 in thin transition technological layer at 
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Finally, to write the charge balance equation, from which the Fermi energy EF can be found, we have to connect correctly (i.e. smoothly and continuously) conduction and valence band-tail densities of states with the densities of free electron and hole states in conduction and valence bands, respectively. Conduction band density of states is expressed in 
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 as
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where 
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Analogously, the valence band density of states is expressed as
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where 
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To connect densities of states in conduction and valence bands (66) and (68) with band-tail densities of states (48) and (47), we have to find energies, at which smooth and continuous relation can be made. At these energies
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Like to that in the work [4], from the system of the equations (69) and (70) the corresponding energy 
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To satisfy Eqs. (69)-(72) for physically correct values 
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In Fig. 3, the calculated densities of states in the band gap are shown, which are continuously and smoothly related with the densities of free charge states in conduction and valence bands.


The concentration nc of free electrons in the conduction band for the Fermi level lying inside the band gap is expressed as 
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where (c is the effective density of states at the conduction band bottom 
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As to free holes in the valence band, their concentration is expressed by the analogous formula:
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where 
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Now it is possible to write the charge balance equation: 
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 (77)


where in the left hand side of the equation the negative charge of free electrons in conduction band and of electrons captured by acceptor and acceptor-like states inside band gap is written, while in the right hand side – the positive charge of free holes in the valence band and holes captured by donor and donor-like states. The degeneracy coefficient 2 at the exponents in the denominators of integrand expression accounts for right statistics of the localized band gap states. 


To calculate Fermi levels in p+- and i(n)-regions of 
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 layer at T = 300 K, it is necessary to determine previously from Eq. (77) the Fermi levels at the equilibrium temperature T* = 500 K to find the “frozen-in” densities of states of dangling bond defects 
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6. Band bending in space charge region at p+-i(n) junction in a-Si:H layer

After calculating the Fermi levels 
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 layer, respectively, we can determine the total band bending ynp (see Eq. 25) at 
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To find the shape of band bending y(z) in SCR in equilibrium conditions (when irradiation is absent) the corresponding Poisson equation has to be solved for the electrostatic potential. Rewritten in the form of equation for y(x) this equation takes up the following form (Gaussian CGS system of units is used):
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where ( is static dielectric permittivity of 
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 material. A solution of this equation has to satisfy two boundary conditions. At SCR boundary in i(n)-region of 
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 as being thick enough not to account for the influence of other junctions. Then, by calculating y(z,T) it becomes convenient to use new coordinate 
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[image: image289.wmf]()


pin


+


-


 junction. The equality 

[image: image290.wmf](/)(/)


dydzdydz


+-


¢¢


=


 at 

[image: image291.wmf]zz


¢¢¢


=


 expresses the condition of total neutrality of SCR, i.e. that a positive charge in the SCR at 

[image: image292.wmf]zz


¢¢¢


>


 is completely compensated by a negative charge at 

[image: image293.wmf]zz


¢¢¢


<


.


Cutting off the tail of the calculated y(z)-dependence in i(n)-region, which is smaller by its absolute value than unity (i.e. cutting off the physically unresonable potential energies 
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Analogously to the Fermi energy calculation, to obtain the band bending 
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Fig. 4 demonstrates the calculated band bending in 
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 for several types of doping.


Figs. 5 and 6 demonstrate the calculated bending of conduction band (upper curves) and valence band (lower curves) at 
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 for material with the band gap Eg = 1.75 eV (10% hydrogen content).  

With the found band bending shape y(z) and determined thicknesses zn of SCR in i(n)-region and zp in p-region, all the integrals in Eqs. (28) and (45) can be easily calculated.
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Fig. 2. Used model of degraded p+-i(n) junction in a-Si:H.
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Fig. 3. Density of states in a-Si:H for various positions of the Fermi level in the case of a-Si:H material with the band gap 1.9 eV. Common parameters for all the curves: Ev0 = 45 meV, Nvt0 = 2 ( 1021 cm–3eV–1. Dashed vertical lines mark the valence band apex (left line) and the conduction band bottom (right line). Vertical arrows at energies 0.8, 1.05 and 1.3 eV mark three different positions of the Fermi level, for which calculations have been fulfilled. Dots show the density of states in the band gap, which has been calculated in [2] for the Fermi energy position at 1.3 eV. Parameters of the curve 1: EF =0.8 eV, Ect0 = 30 meV, Nct0 = 3 ( 1022 cm–3eV–1; curve 2: EF = 1.05 eV, Ect0 = 25 meV, Nct0 = 2 ( 1021 cm–3eV–1; curve 3: EF =1.3 eV, Ect0 = 30 meV, Nct0 = 3 ( 1022 cm–3eV–1; curve 4: EF = 1.3 eV, Ect0 = 25 meV, Nct0 = 2 ( 1021 cm–3eV–1.
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Fig. 4. Calculated shapes of band bending at T = 300 K at 
p+ – i(n) junction in a-Si:H. Parameters of acceptor and donor distributions: EA = 0.2 eV, (A = 0.1 eV, 
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Fig. 5. Calculated conduction (C) and valence (V) band bending at 
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Fig. 6. Same as in Fig. 5, but for doping level of p-region nA = 1019 cm–3.


7. Light transmission and reflection in the SC structure


As known from electrodynamics, for electric and magnetic field strengths 
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 in the monochromatic electromagnetic waves, spreading in the material with the index j (
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, see Fig. 1), the following wave equations can be written: 
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where 
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 is the dielectric permittivity of the j-material, 
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 are real and imaginary parts of the permittivity, c is the light velocity in vacuum, ( is the frequency, ( = 2(c/(, where ( is the wavelength. For the incident onto SC irradiation is a package of monochromatic plane waves, the solutions of Eqs. (80) and (81) inside SC can be represented as plane waves, too:
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where 
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 are the wave vectors, squares of which are expressed as
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As it follows from the boundary conditions at front surface and interfaces inside the structure, in a general case of oblique incidence of monochromatic electromagnetic plane waves onto the front surface of SC, the x-component of the wave vectors (in the plane of incidence) for all electromagnetic waves in all SC layers has to be the same as that in vacuum (air), i. e. 
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, where ( is the angle of incidence (angle between directions of SC growth and electromagnetic wave propagation in vacuum). Thus, for z-components of electromagnetic waves in the structure the following expression is valid: 
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where 
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Two methods exist to calculate light reflection and transmission in the structure. Both give the same result in the case of ideal homogeneous surfaces and interfaces in the structure. In the first method, multiple reflections of the light at surfaces (interfaces) aren’t considered explicitly; i.e. amplitudes of all reflected and transmitted waves are supposed to be already included in the amplitudes at the exponents in Eqs. (82) and (83). In the second method, multiple light reflection and transmission at each surface (interface) in the structure are considered explicitly and total reflection (transmission) of the light is calculated as a result of summation of all the components of reflected (transmitted) light. 


To calculate transmission and reflection coefficients, entering Eq. (11) for generation function, it is convenient to shift coordinate origin z = 0 to the front surface of SC, i.e. to surface air/SiO2 (see Fig. 1). Reflection and transmission for two independent polarizations of incident light are calculated below. In s-polarization, the electric field in electromagnetic waves is parallel to the SC surface (i.e. only y-components of the electric field are present in s-polarized electromagnetic waves), while in p-polarization the magnetic field is parallel to the SC surface (i.e. only y-components of the magnetic field are present in p-polarized electromagnetic waves).


7.1. First method for calculation of light reflection (transmission) coefficients 


The first method is the well-known Mueller matrix method. The following general expressions for the electric and magnetic fields Ey and Hx can be written in this case in accordance with the formulae (82), (83) and Maxwell equation 
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where 
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We didn’t account for the light propagating in negative z-direction in expressions (92) and (96), because multiple internal reflections from rear contact are already accounted in the generation function (11) inside 
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 layer. Actually, electromagnetic field presentation in the form of (89)-(96) allows to find the intensity 
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 layer in the expression (11) for the generation function. 


From the system of boundary conditions
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for tangential components of electric and magnetic fields at each surface (interface) in the SC structure (signs + and – are introduced here to denote two sides of the same interface) the following relation between amplitudes 
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where the coefficient 
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and matrix 
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The reflection and transmission amplitudes 

[image: image368.wmf]()


ss


ijji


rr


 and 

[image: image369.wmf]()


ss


ijji


tt


 relate the amplitudes of reflected 

[image: image370.wmf],


yi


E


-


(

[image: image371.wmf],


yj


E


+


) and transmitted 

[image: image372.wmf],


yj


E


+


(

[image: image373.wmf],


yi


E


-


) waves with the amplitude 

[image: image374.wmf],


yi


E


+


(

[image: image375.wmf],


yj


E


-


) of the incident s-polarized wave in a hypothetic case of wave incidence from semi-infinite i(j)-material onto the interface with semi-infinite j(i)-material, but for the waves written in the form used in the formulae 

[image: image376.wmf](89)(92)


-


. In other words, the following explicit expressions for the waves in 1 to 4 materials are used by calculating 

[image: image377.wmf]()


ss


ijji


rr


 and 

[image: image378.wmf]()


ss


ijji


tt


 coefficients (Fig. 7):




[image: image379.wmf]1,1,1


1,1,1


exp(),


exp();


s


yxz


s


yxz


EEikxikzit


EEikxikzit


+


+


-


-


=+-w


=--w



(101)




[image: image380.wmf]2,2,2


2,2,2


exp(),


exp();


s


yxz


s


yxz


EEikxikzit


EEikxikzit


+


+


-


-


=+-w


=--w



(102)




[image: image381.wmf]3,3,32


3,3,32


exp[()],


exp[()];


s


yxz


s


yxz


EEikxikzdit


EEikxikzdit


+


+


-


-


=+--w


=---w



(103)




[image: image382.wmf]4,4,423


4,4,423


exp[()],


exp[()];


s


yxz


s


yxz


EEikxikzddit


EEikxikzddit


+


+


-


-


=+---w


=----w



(104)




[image: image383.wmf]1,1,1,1


1,1,1,1


exp[],


exp[];


s


zyxz


s


zyxz


HNEikxikzit


HNEikxikzit


+


+


-


-


=-+-w


=--w



(105)




[image: image384.wmf]2,2,2,2


2,2,2,2


exp(),


exp();


s


zyxz


s


zyxz


HNEikxikzit


HNEikxikzit


+


+


-


-


=-+-w


=--w



(106)




[image: image385.wmf]3,3,3,32


3,3,3,32


exp[()],


exp[()];


s


zyxz


s


zyxz


HNEikxikzdit


HNEikxikzdit


+


+


-


-


=-+--w


=---w



(107)




[image: image386.wmf]4,4,4,423


4,4,4,423


exp[()],


exp[()].


s


zyxz


s


zyxz


HNEikxikzddit


HNEikxikzddit


+


+


-


-


=-+---w


=----w



(108)


From (101)-(108) and boundary conditions at the interfaces (97), the following explicit expressions for the reflection and transmission amplitudes 
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Fig. 7. Scheme of electromagnetic wave reflection and transmission by calculating the amplitude coefficients 
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With the formally introduced virtual thickness d1 = 0, the expressions (109)-(114) can be rewritten in the following more compact form:




[image: image398.wmf],,,1


,1,


,,1


,


,1,1,


1,


,,1


,1


exp(2),


;


yjzjzj


s


jjzjj


zjzj


yj


yjzjzj


s


jj


zjzj


yj


ENN


rikd


NN


E


ENN


r


NN


E


-


+


+


+


+


+


++


+


-


+


+


-


==


+


-


==


+



(115)




[image: image399.wmf],1,


,1,


,,1


,


,,1


1,,


,,1


,1


2


exp(),


2


exp().


yjzj


s


jjzjj


zjzj


yj


yjzj


s


jjzjj


zjzj


yj


EN


tikd


NN


E


EN


tikd


NN


E


+


+


+


+


+


-


+


+


-


+


+


==


+


==


+



(116)


With the calculated matrix elements 
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where 

[image: image404.wmf]**


,44,4,,4,4


[]/8()/8


sss


zzyx


ScEHc


+++


++


=´p=×p


EH


 is z-component of the energy flux (Poynting vector) in the transmitted s-polarized electromagnetic wave in 

[image: image405.wmf]a-Si:H


 material at the interface (z = d2+d3), 

[image: image406.wmf]*


,1,1,1


()/8


s


zyx


SEHc


+++


=×p


 is z-component of the energy flux in the incident s-polarized electromagnetic wave in vacuum (air). We use here and in the following expressions like to 

[image: image407.wmf],,


Re(/)


zizj


SS


 instead of 

[image: image408.wmf],,


Re()/Re()


zizj


SS


 written in handbooks, because 

[image: image409.wmf],,


Re(/)


zizj


SS


 turns out to be more adequate in the case of absorbing materials. It becomes especially clear if wave transmission and reflection for the wave incidence from absorbing material onto the interface with other material (even non-absorbing) is considered. The energy conservation equality 

[image: image410.wmf]1


RT


+=


 (where R is the wave reflection coefficient and T is the transmission coefficient) is not fulfilled in this case, if expressions like to 

[image: image411.wmf],,


Re()/Re()


zizj


SS


 are used, while no such problems arise with expressions like to 

[image: image412.wmf],,


Re(/)


zizj


SS


. 


Analogous consideration can be made for p-polarized waves and the following connection similar to (98) can be written for the amplitudes 

[image: image413.wmf],1,1


,


yy


HH


+-


 in vacuum and 

[image: image414.wmf],4


y


H


+


 in 

[image: image415.wmf]a-Si:H


:



[image: image416.wmf],1


,4


,1


ˆ


0


y


p


y


p


y


H


H


AM


H


+


+


+


+


-


æö


æö


=


ç÷


ç÷


ç÷


èø


èø


.
(118)


Expressions for the coefficient 
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while instead of (92) and (96) 
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and
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correspondingly. Then the following equation relating amplitudes of electric fields in vacuum and in 
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where the coefficient 
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and the matrix 
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The reflection coefficient 
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where 
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7.2. Second method for calculation of 
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 the amplitudes of reflection and transmission in the “vacuum – top SiO2 layer – ITO” structure considering ITO as semi-infinite medium. These coefficients relate the amplitudes of electric fields (in s-polarized waves) and magnetic fields (in p-polarized waves) in reflected and transmitted waves with the corresponding amplitudes in the incident waves as shown in Fig. 8. It is easy to obtain from consideration similar to described in the section 6.1 (or by summing the amplitudes of multiple reflected and transmitted waves) the following explicit expressions for these amplitude coefficients:
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Fig. 8. Scheme of light reflection and transmission in the “vacuum – SiO2 layer – ITO” structure for determining the effective amplitudes 
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where amplitude coefficients 
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After finding the coefficients 

[image: image474.wmf]()


13


sp


r


, 

[image: image475.wmf]()


31


sp


r


, 

[image: image476.wmf]()


31


sp


t


 

[image: image477.wmf]()


31


sp


t


, the equivalent scheme for calculations by using the “multiple light reflections method” in the “vacuum–
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The optical path xd along front surface between two subsequent reflections from this surface of the ray reflected from “
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Thus, within the distance 
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or 
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Let also x = 0 be set at the left edge of the right metallic finger in Fig. 9. Then, rays incident from vacuum onto the SC surface within intervals 
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Fig. 9. Equivalent scheme of multiple light reflections and transmissions in the “vacuum– a-Si:H” structure for determining the transmission amplitude t1(4 and transmission coefficient T1(4.
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Fig. 10. Schematic view of front surface with finger electrodes (shadowed areas). By dashed line the intersection of the plane of light incidence with front surface is shown.
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Rays incident in the intervals 
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undergo 
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The transmission amplitude 
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 can be expressed as the average of the partial amplitudes (136) and (138) over the distance 
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In the case of homogeneous front surface (
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which coincides with the result of Mueller matrix method. For computer calculations, the formula (139) can be directly used. However, it is possible to obtain an analytical expression for transmission amplitude 
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 that gives practically the same result under numerical calculations. To do this, only lowest order multiple internal reflections of the ray from finger electrodes (actually, reflections from the first finger electrode adjacent to the considered interval of light incidence 
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) are accounted. After the first electrode, all the internal reflections from front surface are considered as those with the reflection amplitude 
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 only. In this approximation, we have instead of (136) and (138) the following expressions:




[image: image526.wmf]{


14


21


1334343134313431


12


3431343343343


12


343134334313431


1


343134


3431343


3431


1334


(,1)


1()...()


()()...()


()()()...


1()1(


()()


1


F


F


j


N


j


mmm


N


j


m


j


j


m


tj


ttrrrrrr


rrrrrrrr


rrrrrrrr


rrrr


rrrr


rr


tt


®


-


-


-


-


»


»+++++


éù


+++++


ëû


éù


+++=


ëû


--


+


-


=


3


343


3431343


3431


)


1


()()


1


F


N


m


m


j


m


rr


rrrr


rr


ìü


+


ïï


-


ïï


íý


ïï


+


ïï


-


îþ




(141)


and 
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respectively. 


Calculating the sum in (139) with partial amplitudes (141) and (142), the following analytical expression can be obtained for the transmission amplitude 
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which also transforms into the result of Mueller matrix method for homogeneous front surface (
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Transmission coefficients for electromagnetic energy fluxes 
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, which enter into the expression (11) for the generation function, are expressed using the above described method of multiple light reflections as
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where 
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Similar consideration for the electromagnetic waves incident from 
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 material onto “vacuum-ITO” structure allows to obtain the following expression for the reflection amplitudes 
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The approximate analytical expression for 
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, numerical values of which practically coincide with those of the more exact expression (145), looks like 
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This expression is analogous to the expression (143) for the transmission amplitude 
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Reflection coefficients for electromagnetic energy fluxes 
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, which enter the expression (11) for the generation function, are expressed in the method described above for multiple light reflections as
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In an extraordinary case of extremely oblique light incidence (when 
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 probably can turn to zero), latter 
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-containing terms in the formulae (139), (143), (145), (146) should be omitted. Thus, in this case reflection and transmission become “homogeneous” (i.e. coinciding with that of Mueller matrix method) like to that in the cases of normal ray incidence or incidence along fingers. The reason is that only rare high order 
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The reflection coefficients 
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 in (11) are given by the formula (127). 


7. Calculation of the angle ( of sun rays incidence onto SC and the angle ( between the direction along fingers and projection of the light incidence direction onto SC surface as functions of time and SC local orientation 


In a local coordinate system with z-axis directed along the line from Earth center (i.e. perpendicularly to horizontal Earth surface at the site, where SC is mounted), x-axis directed strongly to west and y-axis to south (Northern hemisphere is considered) orientation of a unit vector 
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where 
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In the formula (149), T is the day number starting from March 22, while D is the day number starting from January 1. 


For each day in a year, sunrise and sunset times t1 and t2 can be determined from the condition 
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Thus, maximal possible period 
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 of SC operation in the day is determined by the difference 
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If 
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 is found from (148), the time dependence of the azimuth angle 
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Let 
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 be unit vector characterizing SC orientation in local coordinate system shown in Fig. 11 (
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 is directed along the normal to SC surface). For the following calculations, we introduce new coordinate system

[image: image570.wmf]{,,}


mmm


XYZ


, connected with the solar cell and characterized by unit vectors 

[image: image571.wmf]m


x


e


 (directed along the highway in the site of SC mounting), 

[image: image572.wmf]m


y


e


 (lying in the SC plane and perpendicular to 

[image: image573.wmf]m


x


e


) and 

[image: image574.wmf]m


zm


=


en


 (see Fig. 12).

Components of these unit vectors in the local coordinate system shown in Fig. 10 are given by the following formulae:
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The unit vector 
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Fig. 11. Local coordinate system and angles characterizing sun and solar cell orientations in the local coordinate system.
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Fig. 12. SC-based coordinate system formed by three unit vectors 
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Using (155) and (156), we can find now the time dependence ((t,T) of the angle of incidence of (direct) solar rays onto SC surface at local geographical site and for local SC orientation (reflection and transmission coefficients, calculated in Sec. 6, depend just on this angle):
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The daytime 
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Let ( be the angle characterizing orientation of finger electrodes on SC front surface relatively to 

[image: image593.wmf]m


x


e


 direction (see Fig. 12). To determine the angle between 

[image: image594.wmf]m


X


-axis and the plane of light incidence (or, in other words, between 

[image: image595.wmf]m


X


-axis and projection of light propagation direction onto the SC surface), we consider the vector product




[image: image596.wmf][]||||sinsin


mm


zszssmvmsmvm


=´=q=q


veeeeee


,
(158)


where 
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Thus, 
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where explicit expressions for the components 
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The angle 

[image: image613.wmf]m


vx


j


 between 

[image: image614.wmf]vm


e


 and 

[image: image615.wmf]m


x


e


 vectors lying in the SC plane can be easily found from the well-known formula for the scalar product of vectors:
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Using (153) and (161), we find that
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where explicit expressions for the components 
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The angle ( between the direction along fingers and the light incidence direction projection onto the SC surface is expressed, respectively, as 
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The reflection and transmission coefficients calculated in Sec. 6.2 by using the “multiple reflection method” depend just on this angle.


9. Optical constants of materials in SC structure


Optical constants of materials in the structure can be presented in the form of complex dielectric permittivity 

[image: image625.wmf]()()()


jjj


i


¢¢¢


ew=ew+ew


, or complex refractive index 

[image: image626.wmf]()()()()


jjjj


Nni


w=ew=w+kw


. It is evident that between 

[image: image627.wmf](),()


jj


¢¢¢


ewew


 and 

[image: image628.wmf](),()


jj


n


wkw


 values, relations

[image: image629.wmf]22


jjj


n


¢


e=-k


 and 

[image: image630.wmf]2


jjj


n


¢¢


e=k


 exist. So, if we have data describing 

[image: image631.wmf]()


j


n


w


 and 

[image: image632.wmf]()


j


kw


 dependences, we can easily find 

[image: image633.wmf]()


j


¢


ew


 and 

[image: image634.wmf]()


j


¢¢


ew


 dependences and vice versa. In the cases, when the wavelength ( is argument of the optical constants instead of the frequency 
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9.1. Dielectric permittivity of the top SiO2 layer


We have used for fused SiO2 material permittivity Sellmeier analytic function from the work [10]:
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where the wavelength ( is expressed in micrometers. As noted in [10], this analytical formula gives very precise values of the SiO2 permittivity in the energy range below 5.8 eV, practically coinciding with tabulated experimental values in Palic’s handbook [11].

9.2. Refraction index of the indium tin oxide (ITO) layer


Data of the work [12] for real (n) and imaginary (() parts of ITO refraction index have been used. Wavelength dependences of n and ( in ITO in the actual wavelength range are shown in Fig. 13. Points represent data of the work [12], solid curves are splines constructed and used in our program.


9.3. Permittivity of the a-Si:H layer


Data of the work [13] for real and imaginary parts of 
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 material permittivity have been used. Energy dependences of 
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-dependence at [H] = 0 are the data of the work [13]). As it clear from the figure, permittivity in this case depends on the hydrogen content [H], too. For this reason, in our program two-dimensional splines (i.e. on energy and hydrogen content) based on the data of the work [13] have been constructed and used for numerical calculations. The absorption coefficient 

[image: image648.wmf]l


a


 of 

[image: image649.wmf]a-Si:H


 material in the generation function (11) is expressed as 

[image: image650.wmf],4


2(,)/


z


c


l


a=kwqw


, where 

[image: image651.wmf],4


(,)


z


kwq


 is given by the formula (88) (j = 4 in this formula corresponds to 
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9.4. Dielectric permittivity of metal contact electrodes on SC surfaces

Aluminum was considered as a metal, from which contact electrodes on back and front surface of SC are formed. In our calculations, we have used the wavelength dependences of real and imaginary parts of the permittivity for pure aluminum presented in [11, 15], see Fig. 15.



[image: image658.wmf]0.3


0.4


0.5


0.6


0.7


0.8


0.9


1.4


1.5


1.6


1.7


1.8


1.9


2.0


2.1


2.2


2.3


0.3


0.4


0.5


0.6


0.7


0.8


0.9


0.00


0.01


0.02


0.03


0.04


0.05


0.06


n


l


, 


m


m


 


l


, 


m


m


 


k




Fig. 13. Real (n) and imaginary (() parts of the complex refractive index of indium tin oxide (ITO).
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Fig. 14. Real and imaginary parts of the complex dielectric permittivity of hydrogenated amorphous silicon. Hydrogen content in % is marked for each curve.
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Fig. 15. Real and imaginary parts of the complex dielectric permittivity of pure aluminum.

10. Solar radiation spectra


In our calculations, we have used standard solar radiation spectra AM0 corresponding to space conditions outside Earth atmosphere and standard (ASTM G-173) reference solar radiation spectra of sunlight at the Earth surface AM1.5D and AM1.5G (at AM1.5 conditions length of the path of light through the atmosphere is 1.5 times that of the shorter path when the sun is directly overhead) [16]. The spectrum AM1.5D corresponds to direct radiation from Sun and AM1.5G to “global” radiation, which includes both direct and diffuse radiation. These spectra are shown in Fig. 16. 

11. Solar cell efficiency and other related parameters


To calculate the efficiency and other parameters of 
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 solar cells in different time moments, to which different light incidence angles ( and “finger-plane of incidence” angles ( correspond (see Figs 9 and 10), or to calculate SC parameters averaged over different time intervals (daytime, year, etc.), we have to know solar spectra for arbitrary positions of Sun, i.e. for arbitrary atmosphere masses AM. In principle, it can be done using the data of the work by Christian Gueymard [17]. In the applied FORTRAN program, SC efficiencies and other parameters can be calculated only for the case of normal light incidence onto SC surface for irradiation conditions AM0 and AM1.5. Nevertheless, the general formulae are written below, accounting for possible s- and p-polarized parts of incident light in the case of oblique incidence. 


The total density of short-circuit current, as pointed earlier, can be calculated by summing the contributions from all vanishingly small (i.e. practically monochromatic) parts of solar spectra 
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 shown in Fig. 16:  



[image: image663.wmf](


)


(


)


0


,,,,


,,,,


1


()


2


m


sspp


SCeSChSCeSChSC


jjjjjd


l


llll


l


éù


=Ál+++l


ëû


ò


,
(167)


where (m is the shortest wavelength in solar spectrum, at which light penetration into active region of SC still occurs ((m = 0.31 µm value corresponding to the energy 4.0 eV has been used in the calculations, for sign conversion of the real part of 
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 permittivity at the energy close to 4.0 eV, see Fig. 14), (0 is the wavelength corresponding to the 
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 bandgap energy Eg (or, more exactly, to mobility edge energy Em, which can be somewhat lower than Eg due to possible electron and hole transport via conduction and valence band tail states), 
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 is the spectral density of photons, incident onto unit area, 
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 are the considered in Sections 2 and 3 electron and hole contributions into the short-circuit current from monochromatic light with the wavelength (. Unit light intensities 
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 in the formulae (11), (13) and (32) have to be used by calculating the current densities 
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 in (11), (13) and (32) the intensity 
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 intensity for p-polarized part of the light appears in (167). 


The photocurrent density under SC circuit loading can be expressed as a sum of the irradiation-induced short-circuit current density 
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 and the density of exponential diode current flowing in the opposite direction:
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where V is the voltage drop across the load, saturation current density 
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 and non-ideality factor r are the diode characteristics of 
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. Values js = 
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 and r = 1.5 have been used in our calculations [18]. 
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Fig. 16. Standard solar radiation spectra I(() in the actual range of wavelengths.


The open-circuit voltage Voc can be found from (168) by using the condition 
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11.1. SC parameters in an ideal case of zero internal resistance

In a hypothetic case of ideal SC possessing zero internal resistivity, the power generated by the unit area of solar cell is expressed as
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The consumed power achieves maximal value Wm at an optimal load, when condition 
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is fulfilled. As it follows from (170) and (171), the voltage Vm in the optimal regime can be found from the equation 
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The optimal density of photocurrent in this case is expressed as 
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and the optimal power generated by the unit area of SC as
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The product of optimal load resistance Rm on SC area S is expressed, respectively, as




[image: image689.wmf]exp


mm


m


ms


VeV


rkT


RS


jejrkT


æö


==-


ç÷


èø


.
(175)


We characterize SC by three types of its efficiency. The efficiency (a is the relation of power Wm collected from the unit SC area in an optimal regime (174) to the power absorbed inside active 
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 layer of the SC Wa (this absorbed power is only a part of the total solar irradiation power incident on SC due to above described limitations of the spectral range as well as due to partial reflection of light and its absorption in metallic contacts and non-active layers of the SC structure):
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The absorbed power can be easily calculated by integrating the sum of generation functions (11) 
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) over the thickness of active 
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 layer and over the spectral range 
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The efficiency (p is the relation of the power Wm collected from the unit SC area in an optimal regime to the incident irradiation power Wp within the spectral interval 
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 (due to this limitation of the spectral range, Wp is only a part of total solar irradiation power incident on SC):
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By its definition, the power Wp by the can be calculated as
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Finally, the efficiency ( is the relation of power Wm collected from the unit SC area in an optimal regime to the incident irradiation power W within the whole spectral range of solar irradiation:
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where the power W can be calculated analogously to Wp:
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In practice, (l = 0.28 µm can be used instead of zero as the lower edge of solar spectrum in the integral (180) and (u = 4 µm as the upper edge, because electromagnetic waves outside this spectral region practically do not contribute to the total power W. 


Once more parameter, characterizing SC, is the filling factor F defined as
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11.2. SC parameters with an account of SC series photoresistance and ohmic power losses at the contact finger grid on the front SC surface 

Consider active 
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 region of SC as a series of vanishingly small parts with a length dz. Each of such parts can be characterized by the resistance dR
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where S is the solar cell area, 
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 is the conductivity depending on the free carrier concentrations p(z) and n(z) in valence and conduction bands, respectively:
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where 
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are the hole (electron) mobilities. In our approach, the mobilities are considered as parameters of the model. They are supposed to be constants across p- or i(n)- region of 
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 (but probably having different values in these regions). I.e., we characterize p-region by the electron and hole mobilities 
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For the i(n)-part of 
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 layer beyond space charge region, we can write
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where nn is an equilibrium concentration of major carriers (electrons) in i(n)-region, which in accordance with (73) and (74) is expressed as 
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The energy 
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 in (185) is the Fermi level energy counted from the valence band edge in i(n)-region in the absence of irradiation. This energy has been determined earlier under band bending calculations (as well as the Fermi level energy 
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 layer), see Sections 4 and 5. The concentration 
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of photoelectrons in i(n)-region can be expressed as a sum of all contributions from vanishingly small monochromatic parts of the incident irradiation spectra:
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where 

[image: image722.wmf]()


in


n


t


 is the lifetime of photoelectrons in this region, 
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 in the formula (11)). This expression for the concentration of excess major carriers in i(n)-region is a consequence of the generation-recombination balance equation 
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As compared with the analogous balance equation (10) for photoelectrons in p-region, the diffusion term is absent in (187) because electrons generated in i(n)-region don’t contribute to the diffusion photocurrent (they cannot overcome 
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 junction barrier and are left i(n)-region, thus increasing the conductivity of this region). Non-equilibrium excess holes in this region form corresponding part of the diffusion photocurrent (see Sec. 3). Actually, they serve as an external source of current (in addition to non-equilibrium excess electrons in p-region) and for this reason should be excluded from the system of carriers responsible for ohmic losses in this region. Thus, according to (75) and (76) we can write the following expression for equilibrium part of the hole concentration in i(n)-region contributing to the conductivity in z-direction in this region: 
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Analogously, for the p-part of a-Si:H layer beyond space charge region we can write
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where pp is the equilibrium concentration of major carriers (holes) in p-region, which in accordance with (75) and (76) is expressed as 
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The energy 
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 in (190) is the Fermi level energy counted from the valence band edge in p-region in absence of irradiation. The concentration 
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where 
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 is the lifetime of excess photoholes in this region. According to (73) and (74), we can write the following expression for the electron concentration that contributes to the conductivity in p-region: 
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As to the space charge region at 
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 junction, we somewhat simplify our consideration and evaluate its contribution into the internal SC series resistance using equilibrium values of carrier concentrations (i.e. corresponding to the case when irradiation is absent and no voltage drops at an external load) instead of the total carrier concentrations that can be obtained using the formulae (21) and (41): 
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where concentrations 
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 are expressed by the formulae (185) and (190). Thus, we overestimate the contribution of SCR to the total internal resistance, because under irradiation and an external load the SCR thickness will be less than 

[image: image742.wmf]pn


zz


+


 (thickness in the equilibrium case) and the carrier concentrations in SCR will be higher. However, due to relatively small contribution of SCR into the total series resistance in many practical cases (because of smallness of the SCR thickness as compared with the total 
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 thickness) this overestimation would not be too critical. Thus, SC efficiencies would be somewhat larger than those calculated within this approximation. 


Substituting (184), (189) or (193) into (183) and integrating (182) over 
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 thickness, we obtain thus the following internal series resistance (photoresistance) of the 
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 layer of SC:
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Besides a-Si:H layer, the ITO layer with the contact grid also should contribute to the ohmic losses. According to the results of works [19, 20], the ITO-contact grid resistance can be expressed in the following form: 
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where 
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 is the distance between fingers in the contact grid (see Fig. 10), LF – width of finger electrodes, m – degree of front surface metallization by electrodes, Lc – characteristic effective length of hole collection by electrodes:




[image: image749.wmf](


)


1/2


/


ITOITO


cppITOocSC


LendVj


=m


.
(196)


In the formula (196), 

[image: image750.wmf]ITO


p


m


 is the hole mobility in ITO, 

[image: image751.wmf]ITO


p


n


 – hole concentration in ITO (as high values as 

[image: image752.wmf]183


9.6110cm


-


×


 are reported for the hole concentration in ITO [21]), 
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Thus, the total internal series resistance of solar cell RSC can be expressed as  
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With an account of internal ohmic losses, the expression (168) for the photocurrent takes up the following form:
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(198)


where V is the a voltage drop at an external load. 


For the net power consumed by the external load, we have now the following expression instead of (170):
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The net power achieves its maximal value at a voltage Vm, which can be found from the evident condition 
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Going to dimensionless quantities 
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, we can rewrite formulae (198) and (200) in the form of the following system of two transcendental equations for the dimensionless current density i and voltage v dropping at optimal external load:
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It follows from (201) that 
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i.e.
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Substituting (204) into (202), we obtain 
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For 
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, we can divide both parts of Eq. (201) by this exponential function. Analogously, as both the photocurrent density i and denominator 
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 in (205) differ from zero, we can divide both parts of Eq. (205) by these values, too. Thus, the following two equations can be used to determine the optimal photocurrent and net voltage instead of (201) and (205):
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Fig. 17. Schematic graphical solution of Eqs.(206) and (207).
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Finding the intersection point of the solution 
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 of (207) (see Fig. 17), we determine the dimensionless optimal photocurrent density im and dimensionless net voltage vm.


Knowing the optimal photocurrent density 
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, we can calculate all the parameters characterizing SC (using the formulae (174)-(181)) with account for internal series photoresistance and contact grid resistance. 


12. Conclusions


In this paper, we presented a detailed theory of photoconversion in structures based on 
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. Its use helps to illustrate the dependence of the photoconversion efficiency on the key physical parameters and to optimize the value of photovoltaic parameters. This allows to obtain high values of the efficiency of the discussed solar cells.
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