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We study numerically the form of the critical line in the disorder–magnetic field phase diagram of the p–q 
network model, constructed to study the levitation of extended states at weak magnetic fields. We use one-
parameter scaling, keeping either q (related to magnetic field) or p (related to energy) constant, to calculate two 
critical exponents, describing the divergence of the localization length in each case. The ratio of those two expo-
nents defines the form of the critical line close to zero magnetic field. 

PACS: 72.15.Rn Localization effects (Anderson or weak localization); 
73.20.Fz Weak or Anderson localization; 
73.43.–f Quantum Hall effects. 
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The levitation scenario, describing the divergence of 

extended state energy at zero magnetic field, was proposed 
by Khmelnitskii in 1984 [1]. It was introduced to reconcile 
the result of the scaling theory for 2d systems [2], that 
there are no extended states, and the necessity of a delocal-
ized state for a quantum Hall (QH) transition [3]. Several 
approaches to prove that conjecture were performed during 
last 25 years experimentally, numerically and analytically 
(see [4] and references therein for more details), resulting 
only in establishing the tendency of the extended states 
energy to increase with the decrease of magnetic field. In 
order to describe the motion of electron at really low mag-
netic field one has to allow backscattering which immedi-
ately breaks the chirality of the Chalker–Coddington (CC) 
network model [5], constructed to study inter-plateaux QH 
transitions in strong magnetic field. It was achieved in the 
p–q network model [6] with point contacts on the links 
describing the backscattering by disorder and bend-
junctions at the nodes describing the orbital action of mag-
netic field. It was demonstrated that, in restricted geome-
try, electron motion reduces to two CC networks, with op-
posite directions of propagation along the links, which are 
weakly coupled by disorder. Interplay of backscattering 
and bending results in the quantum Hall transition in a 
non-quantizing magnetic field, which decreases with in-
creasing mobility. This is in accord with scenario of float-
ing up delocalized states. 

The main goal of that model was to separate in space 
the regions with phase action of magnetic field, where it 

affects interference in course of multiple disorder scatter-
ing, and the regions with orbital action of magnetic field, 
where it bends electron trajectories. In p–q model, the dis-
order mixes counter-propagating channels on the links (the 
probability of backscattering is p ), while scattering matri-
ces at the nodes describe exclusively the bending of elec-
tron trajectories (magnetic field is proportional to 
(1/ 2 )q− ). The form of the disorder–magnetic field phase 
diagram was predicted (see Fig. 1) and checked numerical-
ly. This diagram contains the regions with and without 
edge states, i.e., the regions with zero and quantized Hall 
conductivities. Taking into account that, for a given disor-

Fig. 1. (Color online) Critical red lines (1) on the phase diagram 
of the p–q model. Blue arrows (2) show two lines to approach a 
critical point of infinite energy at zero magnetic field, studied in 
this paper. 
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der, the scattering strength scales as inverse electron ener-
gy, the agreement of this phase diagram with levitation 
scenario was found: energy separating the Anderson and 
quantum Hall insulating phases floats up to infinity upon 
decreasing magnetic field. From numerical study, based on 
the analysis of quantum transmission of the network with 
random phases on the links, it was concluded that the posi-
tions of the weak-field quantum Hall transitions on the 
phase diagram are very close to the classical-percolation 
results. It was checked that, in accord with the Pruisken 
theory [7], presence or absence of time reversal symmetry 
on the links has no effect on the line of delocalization tran-
sitions. It was also found that floating up of delocalized 
states in energy is accompanied by doubling of the critical 
exponent of the localization radius. 

In this brief report we study numerically the divergence 
of the localization length when the parameters approach a 
tricritical point = 0, = 1/ 2p q  corresponding to an infi-
nite critical energy at zero magnetic field. We compute the 
normalized localization length /M Mξ  in the same man-
ner as in original CC model [5] for strips of width 

= 16, 32, 64, 128M  with periodic boundary conditions. 
We propose that near this critical point the normalized lo-
calization length /M Mξ  is described by a two-parameter 
scaling function 

 1/ 1// = (|1 / 2 | , )M M f q M pMν μξ −  . (1) 

When there is no backscattering, = 0p  (horizontal blue 
arrow in Fig. 1) the network splits into two independent 
CC networks with electron propagating in the opposite 
directions, producing the standard QH critical exponent 

2.6ν ≈  (see [8]). Numerical results of the renormalized 
localization lengths /M Mξ  as function of parameter p  at 
zero magnetic field, = 1/ 2q  (vertical blue arrow (2) in 
Fig. 1) for different system widths M  are presented in 
Fig. 2. Note, that in a limiting case, 0p →  the data 
strongly fluctuate. For very small values of p  the off-dia-
gonal terms in the transfer matrix are close to 0  (they are 

p∼ ), leading to strong fluctuations in numerical results. 
Physically, enhancement of fluctuations near = 0p  is a 
result of proximity to two critical points, cq  and 1 cq−  
(see Fig. 1), where the doubling of critical exponent takes 
place [6]. Nevertheless, the data satisfies rather convincing 
one-parameter scaling, presented in Fig. 3. Numerical 
analysis shows that the critical exponent along the line 

= 1/ 2q  is 4μ ≈ . This value is in a qualitative agreement 
with arguments on doubling of the critical exponent pre-
sented in [6]. 

On a critical line the values of renormalized localization 
lengths /M Mξ  are expected to be independent on width 
M , and therefore the parameters 1/|1 / 2 |q M ν−  and 

1/pM μ  serve to define a one-parameter curve 

 /|1 / 2 |p q M ν μ−∼  . (2) 

The form of the curve presented in Fig. 1 is indeed de-
scribed by Eq. (2). To summarize, using one-parameter 
scaling, we have studied numerically the critical expo-
nents, describing divergence of localization length along 

= 0p  and = 1/ 2q  lines, and have found that the critical 
line in p–q phase space obtained from these values, is in 
agreement with analytical predictions and direct numerical 
calculations [6]. 
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Fig. 2. Renormalized localization length /M Mξ  as function of
parameter p  at fixed = 1 / 2q  (zero magnetic field). 
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Fig. 3. A one-parameter scaling 1// = ( )M M f pM μξ  of data 
presented in Fig. 2. Critical exponent = 4μ . 
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