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We analyze the tunnel coupling between an impurity state located in a δ-layer and the 2D delocalized 
states in the quantum well (QW) located at a few nanometers from the δ-layer. The problem is formulated in 
terms of Anderson–Fano model as configuration interaction between the carrier bound state at the impurity 
and the continuum of delocalized states in the QW. An effect of this interaction on the interband optical tran-
sitions in the QW is analyzed. The results are discussed regarding the series of experiments on the GaAs 
structures with a δ-Mn layer. 

PACS: 75.75.–c Magnetic properties of nanostructures; 
78.55.Cr III–V semiconductors; 
78.67.De Quantum wells. 
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1. Introduction 

The problem of so-called configuration interaction of a 
single bound state with a continuum of states goes back to 
the famous paper by U. Fano [1] rated as one of the most 
relevant works of 20th century [2]. The suggested theoreti-
cal approach often regarded as Fano–Anderson model or 
configuration interaction succeeded in explaining puzzling 
asymmetric resonances observed in various experiments in 
atomic and nuclear physics, condensed matter physics and 
optics [2]. The co-existence of the discrete energy level 
and the continuum states within the same energy range is 
also quite common in low-dimensional semiconductor 
structures [2–5]. Of particular interest nowadays are the 
structures having a quantum well (QW) and a ferromagnet-
ic or paramagnetic layer located in the vicinity of the QW, 
but not penetrating into the QW region. In such structures 
high mobility of the carriers along the QW is combined 
with the magnetic properties provided by the magnetic 
layer. A number of recent experiments show that the Mn 
δ-layer gives rise to circular polarization of the photolumi-
nescence (PL) from the QW in an external magnetic field 
applied perpendicular to the QW plane [6,7]. It was ques-
tioned whether the spin polarization of the carries in the 
QW is due to the electrons tunneling to Mn site or the tun-
nel coupling of the holes at Mn with those in the QW. The 
latter mechanism seemed to lack the proper theoretical 
description. In this paper we try to fill this gap. We show 
that the simple scheme of the holes configuration interac-

tion leads to the opposite sign of the circular polarization 
than that observed in the experiment. The model system 
considered in the present paper consists of a δ-layer of the 
impurities (donors or acceptors) and a QW having one lev-
el of size quantization for the electrons or holes, respec-
tively. The energy level of the impurity bound state lies 
within the range of the 2D states size quantization subband 
in the QW. We will be considering the case of rather deep 
impurity level in the sense that the impurity activation 
energy substantially exceeds the kinetic energy of the 2D 
carriers in the QW. The attracting potential of the impurity 
is assumed spherically symmetric and since it is a deep 
level we treat it with zero radius potential approximation 
[8]. At that we consider both the simple band structure and 
the one of the GaAs valence band type. 

2. Tunneling between impurity and quantum well 

In this section we consider the configuration interaction 
between a single impurity bound state and the continuum 
of 2D states in the QW. The potential barrier separating the 
impurity from the QW is assumed to be weakly transparent 
for the tunneling. Rigorous calculation of the eigenfunc-
tions is rather hard to perform as it requires solving statio-
nary Schrödinger equation in the complicated 3D potential. 
In order to circumvent the explicit solving of the Schrödin-
ger equation for tunneling problems the so-called tunneling 
or transfer Hamiltonian formalism is commonly used as 
originally proposed by Bardeen [9]. The total Hamiltonian 
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is expressed as = ,i QW TH H H H+ +  where iH  is partial 
Hamiltonian having the bound state at the impurity as its 
eigen state. QWH  in the same way corresponds to the QW 
itself, its eigenfunctions λϕ  form nondegenerate conti-
nuum of states characterized by the quantum number(s) .λ  
The term TH  accounts for the tunneling. In the secondary 
quantization representation the total Hamiltonian can be 
written as follows: 

 *
0= ( ) ,H a a c c d t c a t a c d+ + + +

λ λ λ λ λ λ λε + ε λ + + λ∫ ∫  (1) 

where ,a+  a are the creation and annihilation operators for 
the bound state characterized by its energy 0 ,ε  and ,c+λ  cλ  
are the creation and annihilation operators for a continuum 
state having energy .λε  The energy here and below is 
measured from the level of size quantization of the carriers 
in the QW so that λε  is simply their kinetic energy. The 
expression (1) is rather general, in fact it can be regarded as 
introducing the coupling between two systems into the Ha-
miltonian in the most simple phenomenological way. From 
this viewpoint the coupling parameter tλ  is still to be de-
termined through exact solving of the eigenvalue problem 
for the whole system. Bardeen’s approach suggests a simple 
recipe for calculation of the tunneling parameter for the case 
of weak tunneling through a potential barrier: 

 **= ( ) ,t K K dλ λ λ
Ω

ϕ ψ −ψ ϕ∫ r  (2) 

where integration is performed over the region Ω  to the 
one side of the barrier. Here K  is the kinetic energy ope-
rator:  

 
2

= .
2

K
m

− Δ
=  (3) 

The attraction potential of the impurity is considered 
spherically symmetric, so the whole system (impuri-
ty+QW) has the cylindrical symmetry with z  axis directed 
normally to the QW plane and going through the impurity 
center. Thus for further calculations it will be most conve-
nient to represent the QW states in cylindrical coordinates 
rather than as plane waves. In this case each state is cha-
racterized by the wavenumber k  and the cylindrical har-
monic number :l  

 2= ( ) ( ) e ,
2

il
kl l

mz J k θϕ η ρ
π=

 (4) 

where ( )lJ kρ  is the Bessel function of order ,l  ρ  and θ  
are the polar coordinates in the QW plane, m  is the in-
plane effective mass, ( )zη  is the envelope function of size 
quantization in z  direction. The wavefunction (4) has the 
normalization:  

 | = ( ) ,kl k l ll′ ′ ′′ϕ ϕ δ ε − ε δ  (5) 

where 2 2= /2 .k mε =  The potential barrier separating the 
deep impurity level from the QW in the first approximation 

can be assumed having a rectangular shape. Inside the bar-
rier the function ( )zη  is (z  axis is directed towards the 
impurity, = 0z  corresponds to the QW boundary) 

 1( ) e ,qzz
a

−η ∼  (6) 

where 2
0= 2 / ,q mE =  a  is the QW width, 0E  is the 

binding energy of the bound state, at the same time 0E  
determines the height of the potential barrier. Let us firstly 
consider the simple band case valid for the bound electrons 
at donor impurity coupled to the QW conductance band. 
The spherical potential of the impurity results in the 
ground state of the carrier to be angular independent, there-
fore the efficient tunneling overlap occurs only with the 
zeroth cylindrical harmonic 0 ( ).kϕ ≡ ϕ ε  For the deep im-
purity level one can use zero radius potential approxima-
tion [8] and express the s-type wavefunction as 

 e= 2 .
qr

q
r

−
ψ  (7) 

The volume integral (2) is reduced to the surface integral 
over the surface SΩ  inside the barrier which is more con-
venient to take at the impurity site. This yields for the elec-
trons tunneling between the donor state and the QW:  

 02 2
2= e .

(1 / )
e qd
kt E

aq k q
−π

+
 (8) 

It is clearly seen that as long as the case <<k q  is consi-
dered, the tunneling parameter has very weak dependence 
on .k  

In order to apply the same approach to the holes tunne-
ling in GaAs it has to be generalized for the case of the va-
lence band complex structure. Let us consider InxGa1–xAs 
QW having only one level of size quantization for the 
heavy holes and neglect the light holes being split off due to 
the size quantization. The basis of Bloch amplitudes to be 
used is formed of the states with certain projection of the 
total angular momentum = 3/2J  on z  axis. It would be 
tempting to generalize (2) by treating K  as the kinetic part 
of the Luttinger Hamiltonian ( ,xk= ,yk= zk=  are, as usual, 
the momentum operators along the appropriate axis): 

 

0

0
= ,

0

0
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∗ ∗
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 (9) 

 2 2 2= ( 3 ),
2 z
BF Ak k k− − −   

 2 2 2= ( 3 ),
2 z
BG Ak k k− + −   

 = ( ),z x yH Dk k ik−   

 2 23= ( ) .
2 x y x yI B k k iDk k− −  (10) 
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The functions ,αψ  λβϕ  in (2) become now 4-component 
vector functions (also the spin indices α  and β  are added 
here). The explicit expression for the bound hole state 
functions αψ  and the 2D hole states λβϕ  can be found in 
Ref. 10. The important thing about those is while the decay 
length in z  direction of the 2D wavefunctions λβϕ  is con-
trolled by the heavy hole mass 00.5hhm m≈  0(m  is the 
free electron mass), the decay length of radial part of 
the bound state wavefunction αψ  is characterized by 
both heavy hole mass hhm  and the light hole mass 

00.08lhm m≈  [10]. Analogously to the simple band case 
the integration (2) over the whole space is reduced to the 
integration over the surface SΩ  inside the barrier, at that, 
only z  projection of the kinetic energy operator is required. 
The expression for tunneling parameter simplifies into 

( ) * *= ( ) ,h
kl kl kl

S

d dt B A dS
dz dzαβ β α α β

Ω

⎛ ⎞− ϕ ψ −ψ ϕ⎜ ⎟
⎝ ⎠∫  (11) 

where klϕ  is given by (4). 
Regrettably, the above given straightforward generali-

zation of (2) fails to be fully correct. Indeed, the largest 
decay length of the bound state αψ  is determined by the 
light hole mass while the decay length of the QW states is 
governed by the heavy hole. Due to this circumstance the 
result of the surface integration (11) becomes dependent on 
the particular position of the integration surface inside the 
barrier. However, it can be shown that in the case of two 
different masses the exponential dependence of the tunne-
ling parameter on the barrier thickness is determined by the 
smallest mass, but the exact value of the tunneling parame-
ter cannot be correctly obtained within the given approach. 
Now we define 2

0= 2 / ,hhq m E =  = / .lh hhm mβ  The ex-
plicit evaluation of the overlap integrals with account for 

<<k q  shows that the tunneling configuration interaction 
to be accounted for is only between the zeroth cylindrical 
harmonic 0, 3/2k −ϕ  and the bound state 3/2−ψ  as well as 
between 0, 3/2k +ϕ  and 3/2+ψ . Both are governed by the 

same tunneling parameter :h
kt  

 02 2
0 0

= ( / )
/2

h hh hh
k

m mA Bt k q E
aqm m

⎛ ⎞ ′− π
ζ β ×⎜ ⎟⎜ ⎟

⎝ ⎠=
  

 ( )exp ( / ) ,k q qd× −χ β  (12) 

where 1 2,≤ χ ≤  1ζ ∼  are weak dimensionless functions 
of / ,k q  hhm′  is the effective in-plane heavy hole mass. 
The tunneling parameter h

kt  exponentially depends on the 
barrier thickness with the light hole mass entering the ex-
ponent index. The particular expressions for χ  and ζ  de-
pend on the surface one chooses for the integration in (2). 

In both cases for ,e h
k kt t  it is reasonable to assume that the 

tunneling parameter does not depend on k  as weak tunne-
ling implies << .k q  Still, its rapidly decreasing behavior for 

>>k q  has to be kept in mind when it provides conver-
gence for integration over .k  In our estimations the shape of 
the potential barrier separating the QW was assumed rectan-
gular. This is quite reasonable for the estimation at << .k q  
However, the particular shape of the barrier becomes impor-
tant when one is concerned with experimental dependence 
on the distance d  between the impurity and the QW. 

3. Effect on the luminescence spectrum 

The transfer Hamiltonian (1) with known tunneling pa-
rameter ( )t ε  allows one to construct the eigenfunctions Ψ  
of the whole system given those of the bound state ψ  and 
the QW states ( ):ϕ ε  

 0
0

( ) = ( ) ( , ) ( ) ,E E E d
∞

Ψ ν ψ + ν ε ϕ ε ε∫  (13) 

E  denotes the energy of the state .Ψ  Here ( )ϕ ε  are the 
wavefunctions with zeroth cylindrical harmonic, as was 
shown above the other harmonics are not affected by the 
tunneling configuration interaction. Plugging (13) into the 
stationary Schrödinger equation 

 =H EΨ Ψ   

with H  being the effective Hamiltonian (1) one gets the 
following system of equations:  

 0 0 0
0

0

( ) ( ) ( , ) = ( ) ,

( , ) ( ) ( ) = ( , ).

E t E d E E

E t E E E

∞
ν ε + ε ν ε ε ν

ν ε ε + ε ν ν ε

∫  (14) 

In the present work we consider the case of the bound level 
energy lying within the range of the continuum: 2

0 >> .tε  
For this case the solution is obtained as shown in Ref. 1:  

 
2

2
0 2 4 2

0

( )( ) = ,
( ) ( )

t EE
t E E

ν
π + − ε�

  

( )0
( )( , ) = ( ) ( ) ( ) ,tE E P Z E t E E

E
ε⎛ ⎞ν ε ν + δ − ε⎜ ⎟− ε⎝ ⎠

 (15) 

where  

 0
2

( )
( ) = ,

( )
E F E

Z E
t E

− ε −
  

 
2

0

( )( ) = ,
( )
tF E P d
E

∞ ε
ε

− ε∫  (16) 

P  stands for the principal value and 0ε�  is the center of 
configuration resonance, which appears to be slightly 
shifted from 0:ε  

 0 0( ) = ( ).E F Eε ε +�  (17) 

Because of <<k q  it is reasonable to put =t  const eve-
rywhere, except for (16) where decrease of t  at E →∞  is 
necessary for convergence of the integral. 
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In order to analyze the influence of the configuration in-
teraction on the luminescence spectra we have to calculate 
matrix element of operator M̂  describing interband radia-
tive transitions between the hybridized wavefunction 

( )EΨ  and wavefunction of 2D the carrier in the other 
band of the QW which we denote by ,k l′ ′ξ  here k ′  is the 
magnitude of the wavevector, l ′  is the number of cylin-
drical harmonic analogously to (4). If, for instance, one 
considers the acceptor-type impurity then ( )EΨ  is the 
hybridized wavefunction of the 2D holes and k l′ ′ξ  is the 
wavefunction of the 2D electrons in the QW. We assume 
that (a) there are no radiative transitions between the bound 
state wavefunction ψ  and the 2D carrier wavefunction 

k l′ ′ξ  in the other band thus the matrix element for transi-
tions from the bound state:  

 ˆ = 0,k l M′ ′ξ ψ  (18) 

(b) the interband radiative transitions between the free 2D 
states in the QW are direct. According to (4) the wavefunc-
tions ( )ϕ ε  and ( )′ξ ε  corresponding to the zeroth harmonic 
in the cylindrical basis are 

 02( ) = ( ) ( ),
2

mz J kϕ ε η ρ
π=

  

 02( ) = ( ) ( ),
2

mz J k
′

′ ′ξ ε ζ ρ
π=

 (19) 

where 

 2= ,mk ε
=

        2= ,mk
′ ′ε′

=
  

( ), ( )z zη ζ  are the appropriate size quantization functions in 
z  direction, ,m  m′  are the in-plane masses of the electrons 
and holes, respectively, if the donor-type impurity is consi-
dered and vice versa for the acceptor case. Without the tun-
nel coupling the matrix element for the direct optical transi-
tions between the states ( )ϕ ε  and ( )′ξ ε  is given by 

0 2
ˆ( , ) = ( ) ( ) = ( ),k

mmM M u k k
k

′
′ ′ ′ε ε ξ ε ϕ ε δ −

=
 (20) 

where ku  is the appropriate dipole matrix element for the 
Bloch amplitudes. According to the above mentioned con-
siderations it is only this matrix element that is affected by 
the tunnel coupling, while the matrix elements for the tran-
sitions between higher cylindrical harmonic are preserved. 
Denoting by M  the modified matrix element for transi-
tions between the states ( )EΨ  and ( )′ξ ε  with the further 
use of the Fano theory [1] one obtains 

 

2 4
2 2

0 2 4 2
0

( , ) = ( , ) 1 .
( )

tM E M E
t E

⎡ ⎤π′ ′ε ε −⎢ ⎥
π + − ε⎢ ⎥⎣ ⎦�

 (21) 

We proceed further with the Fermi’s Golden Rule for the 
transition probability:  

 2( ) =W π
ω ×=

=
  

2

0 0
( , ) ( ) ( ) ( ) ,gM E f f E E E dEd

∞∞
′ ′ ′ ′ ′× ε ε δ + ε + − ω ε∫ ∫ =  (22) 

where gE  is the QW bandgap, ω=  is the energy of the 
radiated photon, ,f f ′  are the energy distribution func-
tions for the carriers in the hybridized and intact bands, 
respectively. Substituting (20) and (21) into (22) one 
should treat correctly the delta-function for the wavenumb-
ers of the zeroth cylindrical harmonic. It can be shown that 

 2
3/2( ) = ( ),Sk k k k′ ′δ − δ −
π

  

where S  is the area of the QW. Then we arrive at 

 
2 2 4

1/2 2 2 4 2
0

( ) 2( ) = 1 ,
( )g

u f E mS tW
E t E

ω

ω

⎛ ⎞π
ω −⎜ ⎟⎜ ⎟ω−π π + − ε⎝ ⎠

�
=

= �=
  

  (23) 
where  

1( ) = ( ) ( ),f E f E f E−
ω ω ω′ α       1= ,

1
gE

Eω −

ω−

+α

=
 

 
= ,mmm

m m
′
′+

�      = ,m
m
′

α  (24) 

while for the all cylindrical harmonics altogether the un-
perturbed optical transition rate yields:  

 
2

0 2
2 ( )

( ) = .
u f E mW Sωπ ⎛ ⎞

ω ⎜ ⎟
⎝ ⎠

�
=

= =
 (25) 

The result (23) obtained for a single impurity can be ap-
plied to an ensemble of impurities provided their interac-
tion is weak compared to the tunnel coupling with the QW. 
In this case the sample area S  should be replaced with the 
inverse sheet concentration of the impurities in the delta-
layer 1.n−  After normalization by the area of the QW from 
(23), (25) we finally get the spectral density of the lumi-
nescence intensity: 

2 4

0 0 0 2 4 2
0

( , ) = ( ) 1 ( ) ,
( )

tI I a n
t Eω

⎛ ⎞π
ω ε ω − ε⎜ ⎟⎜ ⎟π + − ε⎝ ⎠
� �= =

�
 (26) 
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where  

 0 3/2 1
0

( ) = ,
2 (1 )

a
m −

ε
π ε + α

=�
��

  

 
2

0 3
2( ) = ( ).u mI f Eω
π

ω
�

=
=

  

4. Polarization of the spectra 

It follows from (26) that the bound state lying within 
the energy range of the continuum causes a dip in the lu-
minescence spectra emitted from the QW. If then for any 
reason the bound state is split the luminescence spectra 
will show the appropriate number of the dips shifted by the 
splitting energy .Δ  If one considers the splitting in the 
magnetic field applied along z  each of the split sublevels 
is characterized by certain projection of spin and interacts 
with only one of the 2D carriers spin subbands characte-
rized by the same projection of spin. Thus, for each of the 
two circular polarizations ,+σ  −σ  of the light emitted 
from the QW one would expect one dip, its spectral posi-
tion being different for +σ  and −σ  in accordance with the 
splitting energy .Δ  As an example let us consider the 
GaAs-based QW and 2D heavy holes interacting via the 
tunneling configuration interaction with the bound state at 
an acceptor. This case is shown schematically in Fig. 1. 
The 2D holes with the projections of total angular mo-
mentum = 3/2j +  and = 3/2j −  recombine emitting, 
respectively, right- ( +σ ) and left- ( −σ ) circularly pola-
rized light. In Sec. 2 it was shown that the heavy holes 

with = 3/2( = 3/2)j j− +  interact basically with the bound 
states 3/2 3/2( ).− +ψ ψ  An external magnetic field applied 
along z  would cause Zeeman splitting of the bound state 
energy level 0ε  into 0 0= /2+ε ε + Δ  and 0 0= /2.−ε ε − Δ  
The splitting 0 0= + −Δ ε − ε  may also originate from ex-
change interaction of the holes with spin-polarized accep-
tor ions. Let us refer to the case of Mn ions having posi-
tive g-factor ( 3,g ≈  see Ref. 11). The hole is coupled to 
Mn in antiferromagnetic way thus the level 0

+ε  corres-
ponds to = 3/2j −  and 0

−ε  to = 3/2.j +  As follows from 
(17), (24) the difference in the positions of the resonances 
(dips) E+

ω  and E−
ω  corresponding to the bound state sub-

levels 0
+ε  and 0

−ε  is given by 

 2= = ln 1 .E E t
E

+ −
ω ω −

ω

⎛ ⎞Δ
Δ − Δ + +⎜ ⎟⎜ ⎟

⎝ ⎠

��  (27) 

Unless the positions of the resonances are too close to the 
band edge the last term in (26) can be neglected and 

0 0= = .+ −Δ Δ ε − ε�  With account for the energy distribution 
functions for the holes and electrons the shifted positions 
of the resonances lead to the difference in the lumines-
cence intensity for the opposite circular polarizations. In 
the discussed example of the antiferromagnetic alignment 
of the hole the luminescence spectra 0( , ),I + +ω ε�=  

0( , )I − −ω ε�=  having the resonance positions at 0
+ε  and 0

−ε  
correspond to the circular polarizations −σ  and ,+σ  re-
spectively. As can be seen from (26) the difference in the 
resonance positions 0 0= + −Δ ε − ε� �  leads to the integral pola-
rization of the spectra if the distribution function ( )f E  
significantly varies in the vicinity of 0 .ε  This is illustrated 
in Fig. 2. The functions I −  and I+  are shown by blue and 
red solid lines, respectively. The integral polarization is 
naturally defined as 
 

Fig. 1. (Color online) Mechanism of polarization of the lumines-
cence for the acceptor type impurity. The localized hole levels
split in magnetic field. Each of them effectively couples with the
2D holes having certain projection of angular momentum. Shifted
positions of the resonances with account for temperature distribu-
tion of the holes cause the difference in intensities of circular
polarizations ,+σ  .−σ  The scheme also shows the simple elec-
trostatic model described in the text. 
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�
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�

Fig. 2. (Color online) Modification of the luminescence spectrum 
by tunneling configuration interaction. The integral polarization 
occurs when the carriers distribution function (dashed line) 
strongly varies in the vicinity of the configuration resonances. 

0ω  is the position of the resonance without bound level splitting.
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( ) ( )=
( ) ( )

P PP
P P

+ −

+ −
σ − σ

≈
σ + σ

0

( ) ( ) ( ) ( )

.

2 ( ) ( )

E Eg g

Eg

I d I d

I d

∞ ∞
− +

∞

ω ω − ω ω

ω ω

∫ ∫

∫

= = = =

= =

 
With use of (26) this yields: 

 

2 2
2 0 0

2 4 2 2 4 2
0 00

0

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
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2 ( )

a t E a t E
t E f E dE

t E E t E E
P n

f E dE

∞ + −

+ −

∞

⎡ ⎤ε π ε π
π −⎢ ⎥

π + − ε π + − ε⎢ ⎥⎣ ⎦−
∫

∫

� �
� �

 (28) 

_______________________________________________

The slow varying functions ( )f E  and 0 ( )Eε�  in the 
integral may be assumed as constants taken at 0 0, ,− +ε ε� �  the 
tunneling parameter will be treated as a constant in the 
whole range of interest 2 2( ) .t E t≡  

Then treating the expression in brackets as delta-func-
tions we obtain 

1/2 1/22
0 0 0 0

3/2

0

( )( ) ( )( )
= .

2
( )

f ft nP
m

f E dE

+ + − − − −

∞
ε ε − ε επ

−

∫

=
 (29) 

Note that for the considered example the polarization de-
gree appears to be negative. The positive sign would have 
appeared if the ferromagnetic coupling between the accep-
tor ion and the hole had been assumed. 

5. The electrostatic effect 

Because of the tunneling involved in the polarization of 
the luminescence one might reasonably expect very strong 
dependence of the polarization degree on the distance d  
between the δ-layer and the QW (i.e., the thickness of the 
spacer). However, the purely exponential dependence of 
the polarization on the barrier thickness appears to be wea-
kened due to the electrostatic effect shown in Fig. 1 and 
explained below. Let us for simplicity consider the elec-
trons distribution function being nearly constant within the 
configuration resonances. The holes are considered to have 
Fermi distribution function characterized by the chemical 
potential μ  and the temperature .T  In the absence of ex-
ternal optical pumping the holes in the QW are in thermo-
dynamic equilibrium with the acceptors in the δ-layer, 
therefore they have the same chemical potential. Under 
low-pumping conditions the already large concentration of 
the holes in the QW is not strongly violated, so it is rea-
sonably to assume that the quasi-Fermi levels of the holes 
at the acceptors and in the QW coincide, it means that 

0 = .ε μ  Strictly speaking, this is valid for a single bound 
level, if the level is split so that 0 0 = ,+ −ε − ε Δ  one should 

probably assume 0 = .−ε μ  From (29) we get the following 
simplified expression:  

 
2

5/2 3/2= tanh .
22 hh

t nP
kTm

π Δ
−

′ μ

=  (30) 

As we will show below both t  and μ  contribute to the 
dependence of the integral polarization P  on the spacer 
thickness d  and the QW depth 0.U  The holes in the QW 
provide an electrical charge density estimated as = ,eNσ μ  
where e  is the elementary charge, N  is the 2D density of 
states. The positively charged plane of the QW and nega-
tively charged δ-layer of partly ionized acceptors separated 
by a distance d  produce an electric field  

 4= ,eNF π μ
ε

 (31) 

ε  being dielectric constant of the material. Due to the elec-
tric field F  the valence band edge at position of the im-
purities delta-layer appears to be shifted from the valence 
band edge just outside of the QW by F⋅ d. Because the qua-
si-Fermi level of the acceptors exceeds the local position of 
the valence band edge by the binding energy 0 ,E  the 
equality of the quasi-Fermi levels leads to a simple equa-
tion (see Fig. 1):  

 0 0= ,U E eFdμ + +  (32) 

where 0U  is the QW depth and μ  is the chemical poten-
tial of the holes in the QW. With (31) one gets 

 0 0 0 0( )
= .

1 4 / 4
U E U E

Ned Ned
− − ε

μ ≈
+ π ε π

 (33) 

In order to estimate the dependence of the tunneling para-
meter t  on the QW and spacer parameters we consider the 
WKB tunneling through trapezoid barrier as seen in Fig. 1. 
With taking into account (12) and (33) this leads to the 
following expression (we assume 0 ):Uμ�  

 2 exp( ),t d−κ∼  (34) 
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where  

 3/2 3/2
0 0

0 0

4 2
= ( ).

3 ( )
lhm

U E
U E

κ −
−=

 (35) 

From (20), (33)–(35) follows the dependence of integral 
polarization on the spacer thickness: 

 3/2 exp ( ).P d d−κ∼  (36) 

Note that electrostatic effect results in the dependence of 
μ  on d  which leads to the dependence of P  on d  being 
not purely exponential but weakened by the pre-expo-
nential factor 3/2.d  While the correction is pre-expo-
nential, it appears to be quite impotant up to 2–3dκ ≈  
which is typical for the experimental situation. 

6. Discussion 

In the proposed theory the polarization of light emitted 
from the QW originates from the splitting of the impurity 
bound state and therefore may exceed the polarization de-
gree expected from an intrinsic g-factor of the 2D carriers 
located in the QW. The sign of the polarization deserves 
special discussion. As was shown above, the tunnel coupl-
ing causes a dip in the luminescence spectra. This means 
that in the considered scheme the polarization of the lumi-
nescence from the QW is expected to be of the opposite 
sign than that due to the optical transitions between the 
bound state and the free carriers inside the barrier. In par-
ticular, the configuration interaction between the 2D heavy 
holes and Mn δ-layer considered in Sec. 4 leads to the neg-
ative sign of the polarization (a mistake made in Ref. 10 
has mislead to the positive sign). Such result contradicts 
the known experimental data [12,13], where the polariza-
tion is shown to be positive. This might suggest that re-
garding these particular experiments the polarization is not 
due to the holes configuration interaction but rather due to 
polarization of the electrons as suggested in Ref. 13. The 
other possibility might be that the relevant bound state of 
the hole at Mn is more complex and does not resemble the 
simple antiferromagnetic exchange coupling with Mn ion. 

Let us estimate the expected magnitude of the circular 
polarization degree due to the tunnel configuration interac-
tion. We assume the deep impurity level 0 =E  100 meV, 
the barrier thickness =d  5 nm, the QW width =a  10 nm. 
Taking the effective mass as that of the electrons in GaAs 

0= 0.06m m  for the simple band case described by (8) 
one gets for the tunneling parameter 2( )et ≈  2 meV. The 
estimation for the holes tunneling parameter appears to be 
far less, taking 0= 0.5 ,hhm m  0= 0.15hhm m′  from (12) 
one gets 2( ) 0.01ht ∼  meV. The polarization degree is to be 
estimated using (29). We take =Δ  1 meV, = =e hT T 20 K, 
the sheet concentration of the impurities =n 1013 cm–2. 
Then for the case of the donor impurity = ,et t  0 =ε  
= 4 meV, =hμ  –1 meV, 0= ,e

−μ ε  one gets | | 40%,P ≈  

for the acceptor impurity = ,ht t  =eμ  –1 meV, 0ε =  
= 2 meV, 0=h

−μ ε  gives | | 0.5%.P ≈  An illustration of 
the luminescence spectra for the two circular polarizations 
is presented Fig. 3. For this we used an intermediate value 
for the tunneling parameter 2 =t 0.3 meV (| | 0.15%)P ≈  
and accounted for inhomogeneous broadening of the spec-
tra by normal distribution of the bandgap gE  with the dis-
persion = 3σ  meV (corresponds to the fluctuation of the 
QW width by half a monolayer). 

7. Summary 

The presented theory describes the tunnel coupling be-
tween a continuum of states in the QW and an impurity 
bound state located outside of the QW. We utilized the 
well known Fano approach for calculation of the matrix 
elements for the direct interband optical transitions in the 
QW. For such transitions the tunnel coupling of the 2D 
QW states with the impurity states leads to the drop of the 
luminescence spectral density at the frequency correspond-
ing to the configuration resonance. This modification of 
the spectra leads to an integral circular polarization of the 
light emitted from the QW provided the bound hole state is 
split in the projection of the hole angular momentum. The 
key advantage of the approach used in the present study is 
that the unknown eigenfunctions of the system are ex-
pressed through those of the uncoupled states. Given the 
expansion (13) any effects on the localized state can be 
translated into effects for the whole coupled system. For 
this reason it is capable of describing other effects ex-
pected in such systems like anisotropy of the holes g-factor 
in the QW induced by the paramagnetic impurity or the 
indirect exchange interaction between the bound states 
provided by the 2D free carriers in the QW. 

Fig. 3. (Color online) An example of calculated luminescence 
spectra for the two circular polarizations. The case of antiferro-
magnetic coupling implies I−  corresponds to +σ  polarization 
while I+  to −σ  polarization. The parameters used in calcula-
tions are given in the text. 
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