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1. Introduction

Abstract. Direct method formalism to determine atomic structures using the electron diffrac-
tion data is here aimed at a general solution of the phase retrieval problem, consequently
combining the electron diffraction (ED) and the high-resolution transmission electron
microscopy (HRTEM) patterns in a “domino” fashion. While there are similarities to what
there is in conventional (kinematical) direct methods, there remain major differences, in par-
ticular, owing to the dynamical effects in the data the ED structure factors prove to be com-
plex and then, the positivity of the reconstructed electron density is no longer a valid con-
straint for ‘dynamical’ direct methods. Besides, due to the dynamical effects heavy atoms need
not dominantly contribute the HRTEM images any more. Thus, the ‘dynamical’ direct meth-
ods concept has to base upon it that the phase retrieval algorithm will utilize both the dy-
namical ED and HRTEM data. Noteworthy is the fact that the fusion of the traditional direct
method technique, which is described here, allows to realize a full phase restoration of com-
plex structure factors. The numerical example, using the dynamical ED and HRTEM data for
(Ga,In),SnO;5 ceramic, shows that the method is capable of yielding unique phase retrieval
solution. The clear sense is that the domino transform algorithm proposed works well and
represents a valuable method for phasing diffraction patterns in electron structural
crystallography using an experiment, which is readily to perform within collecting the ED
and HRTEM data.

Keywords: phase retrieval problem, electron diffraction, high-resolution transmission elec-
tron microscopy.
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pancy is often due to neglecting terms such as sample
vibration or beam tilt. At the same time, under some opti-
mal imaging conditions the HRTEM technique provides

An application of conventional (kinematical) direct meth-
ods and refinements for purposes of electron structure
determination raises some fundamental problems. There
are some simple cases, for instance a surface, where such
refinements are legitimate as a good first approximation,
but even here correct results require the inclusion of dy-
namical effects. It is very well established theoretically
that even one atom layer of a heavy element such as gold
is a ‘dynamical’ scattering unit (see, e.g., [1,2]), so there
are no cases with real samples where the kinematical
approximation is rigorously valid. While exceedingly
thin values such as 2 nm are sometimes reported for sam-
ple thickness used in interpreting experimental high-reso-
lution transmission electron microscopy (HRTEM) im-
ages, the actual thickness is certainly larger; the discre-

real-space information toward crystal structures though
HRTEM images in general do not contain true atom
positions. On the other hand, to obtain true real-space
information concerning atom positions one may explore
the direct methods relying on the diffraction information
alone and extracting the unknown phase information
among the structure factors [3-5]. The most part of ear-
lier combinations of HRTEM and direct methods have
tested disregarding dynamical effects in electron diffrac-
tion (ED) data, namely: the direct methods have been
applied within a kinematical approach [6-10].
Noteworthy is the fact that the first quantitative rela-
tionships being capable to be used for phasing diffrac-
tion patterns via direct methods were Sayre’s equation
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and statistical phase invariants [11,12]. Switching to a
set of structure factors, {U(g)}, the phase set {y(g)} with
w(g) = Im[In[U(g)]] and g a reciprocal lattice vector,
could be determined using the iterative transform algo-
rithm based on the Sayre-Tangent formula as a convolu-
tion equation (namely, y(g) = Im[In[Z;, U(h) U(g —h)]] with
the known set of moduli {|U(g)|}; (see, e.g., [3, 5, 13] for
details). For this, the Sayre-Tangent formula is relatively
exact for pointlike atomic structures as long as the atom-
scatter positions are not overlapped that coincides with
the basic assumption of the ED channeling approxima-
tion [14-16].

At the same time, the phase information is preserved
in the HRTEM images and can be extracted sometimes
using the Fourier transform [17, 18]. Ishizuka et al. (1982)
have developed the resolution improvement and/or phase
correction method first proposed by Hoppe and Gassmann
(1968) [19, 20]. They have combined the information in
the electron micrograph and electron diffraction within
the weak-scattering approximation and have applied the
procedure to the model structure of the crystal of copper
perchlorophthalocyanine for determining the phases
(signs) of the structure factors.

The prospects for least-squares refinement [21] and
direct method technique [22] to decode structural data
from ED experiment was recently reviewed in many cases,
in the most part of which dynamical ED effects have been
ignored. The work [23] has to be drawn out, in which the
direct methods combining with the Fourier transform of
the HRTEM image were attempted to solving the phase
problem on an example of (Ga,In),SnO5 ceramic.

And at once, after that, the two- and three-phase struc-
ture invariants, £j and X,, within the scope of ‘dynami-
cal’ direct methods has been analyzed in the works [24,
25]. It was shown how the relevant success of applying
direct methods to dynamical ED data can be understood
via an “effective kinematical approximation” since each
of both the phase conditional probability X, distribution
defined for a number of (g, —g)-reflection pairs and the
phase conditional probability %, distribution defined for
anumber of (g, h, —g —h)-reflection triplets are proved to
display a strong peak in many cases. The above asser-
tion is obtained using the theoretical probability back-
ground [12] and confirmed by numerical multislice cal-
culations. Particularly noteworthy is the fact that the re-
covered effective dynamical potential may be similar to
the kinematical one but does not have to be and in gen-
eral will not be.

In this paper we push the concept of direct methods
one step further, and apply the lattermost using both the
two-dimensional ED and HRTEM data sets as con-
straints for a phase restoration. To attribute this concept
the iterative transform algorithm, which has at its core
the Gerchberg-Saxton algorithm ([26]; see [27] as well)
and makes the phase retrieval procedure in a domino fash-
ion, is proposed. We believe that no such kind of iterative
transform algorithm for direct phasing of the ED com-
plex structure factors has been earlier reported. A pre-
requisite to solving the problem herein is to elaborate the
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appropriate numerical algorithm that creates a unique phase
restoration. For purposes of this study, some numerical
simulations are given on a sample of (Ga,In),SnOj ce-
ramic, which exhibits a convergence property of the
domino iterative transform algorithm proposed. In par-
ticular, the new algorithm, which is described here, has
been proven to be convergent in the general case of com-
plex structure factors. Noteworthy is the fact that its im-
plication can facilitate a true determination of nanometer-
size crystal structures combining both the ED and
HRTEM data in a sequent domino manner.

2. Problem foundation. Domino iterative trans-
form algorithm combining the ED and HRTEM
data

The problem of phase retrieval is related to

the complex structure factors set { U(g)}

the HRTEM image /(x).

They are formed as a result of the plane wave propa-
gation through an electron optical system consisting of
selected-area apertures and focusing lens taking into ac-
count all likely aberrations (e.g., defocus, spherical ab-
erration and so on).

The focused electron wave is imaged onto the two-
dimensional (2D-) arrays of detectors that specifically
measure intensity either in the back focal or in the image
plane, respectively.

Intensities measured in the back focal plane are
referred to the ED magnitudes {|U(g)|}, with diverse re-
ciprocal lattice vectors g

Intensity distribution /(x) in the image plane is the
modulus squared of the Fourier transform of the complex
structure factors set { U(g)}. The 2D-periodical function
1(x) is the HRTEM image of the crystal structure.

From the mathematical viewpoint the data array of
{|U(g)|} (and the data array {A4(x)} as well, with
A(x) = {/I(x) is non-convex. The nonconvexity of both
the underlying sets, {|U(g)|}, {4(x)} is a main obstacle to
apply the Gerchberg-Saxton-type algorithm for phasing
diffraction patterns directly.

In order to overcome the fundamental nonconvexity
limitation and as a result, to avoid numerous redundant
solutions, let us introduce the oblique-angled selected-
area constraint sets of ,,{| U(g)|, 4(x)} for the consecutive
valuesof v=2,3,4,..., N(U(g)g = is assumed to be unity
for any v). The principal idea of our phase retrieval
method is to obtain the phase fit for the complete struc-
ture factors set {U(g)} sequentially step by step, starting
from the first subsets (5){|U(g)|}, and (5){4(x)} up to
U@, A(x)}, and using the standard Gerchberg-
Saxon iteration procedure at every step. Considering the
oblique-angled selected-area array rank n as a fixed it-
eration number, the numerical algorithm scheme takes
the form

WMi+1(X) = (A X)expli(y) Pr(x)]
W\ Uk+1(@)| = |InverseFourier[(,,M+1(X)]|
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) Wi+1(g) = Im([In[InverseFourier{,,M.+1(x)]]]

W Ui+1(8) = | U(@)lexpli(y) Yi+1(8)]

wAi+1(x) = [Fourier[,)Ug+1(g)]l

W) Pic+1(X) = Im[In[Fourier,) Ur+1(g)]1], (D

where (,)Wi(g) is the given phase of the complex structure
factor (,)Ui(g) at the beginning of each cycle k, and
(v)Wi+1(g) 1s the new phases calculated at the end of the
same cycle. After the phase set of (,){yy+1(g)} is calcu-
lated, then it fed back into the cycle iteration fashion
according to the ‘flow’ equation (1). The (k+1)th phase
sets of () { Yi+1(8), Pr+1(x)} is calculated by use of the pre-
ceding k-th ones () { yi(g), Pr(x)}, keeping in mind that
the ED and HRTEM sets of (, {|U(g)|, A(x)} are a priori
fixed and do not depend on the cycle value of k over all
the iteration processes of n (e.g., they are equal to the
‘experimental’ values).

Our main focus is on the fact that some important
restrictions are imposed onto the phase set of (,+1){ yi(g)},
specifically, the phase set of (+1){wi(g)} fixedly contains
the subset of (,){y(g)}, with the array size of nrn, deter-
mined within the preceding iteration of n. And clearly,
the other elements of the phase set of (,+1){ Yi(g)} are cho-
sen to be random in the range of (-7, 7) for the first cycle,
k =1, only.

A ‘domino’ idea of the iterative transform algorithm
is lying on the restriction of the total number of the likely
solutions for the ED and HRTEM input data set of
U@, A(x)}, where v = 2, that launch the general
iteration procedure. It is easy to show that in the case of
the input iteration value of v = 2 there are eight diverse
solutions for the phase set of (5){y(g)}, more precisely,
there are the diverse four pairs of the complex conjugated
structure factors, one of which is referred to as a true
solution (recall that y(g) 4 = o = 0). Going on from the
iteration of v = 2 until the final iteration N via the con-
secutive oblique-angled selected-area iterations the true
phase solution holds on up to some numerical uncertain-
ties depending on the final iteration number N, whereas
other redundant solutions can be readily detected yield-
ing inappropriate values of FOM. Presumably, numeri-
cal uncertainties of the ‘correct’ phases increase with in-
creasing the iteration number (the reflection array rank)
n that might be compensated by enlarging the cycle range
value of K.

The two figures of merit (FOM) related to the recipro-
cal space, RM, and real space, X), are evaluated at each
cycle over k

RYss1 = Vgl U1 @)~ [y U@ gl U@P) 2,
XVt = VE A1 (0) — ) A (Ex () I(x)172, 2

Complementarily, we use the phase consistency check
factor (a ‘correctness’ factor)

CWVssy = 0.5% gy Up+1(8) — (1 U@ % gl 1y U(g)] 3)
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that is calculated in a process of numerical simulations
for all the values of k, and the sum, X', taken over all the
reflections except g = 0. The CV);-factor being calcu-
lated at the each iteration step n as a function of k pro-
vides a means of monitoring the progress of the code dur-
ing the entire iteration procedure. The numerical phase
simulation procedure (see Eqs.(1)-(3)) from v =2 until the
final iteration value of N is iterated guiding the phases
as long as the values of R™) and X™) reduce to the con-
sensual estimates. Note that Eqs.(2) play the role of pen-
alty functions for constraining likely atomic structure
solutions operating with the calculated and a priori
known ED and HRTEM data.

3. Numerical simulations. Results and discus-
sion

The test case we consider is a centrosymmetric structure
of'the ceramic (Ga,In),SnOs (Fig. 1). The structure is mono-
clinicwitha=1.169 nm, 5 =0.317 nm, ¢ = 1.073 nm, and
B =99.00°. The atom positions are taken from the work
(Sinkler et al., 1998). The complex structure factors related
to the proper dynamical ED pattern for (Ga,In),SnO5 were
calculated using 1s-state channeling approach (see, e.g.,
[24, 25] for details) for 4.121 nm thickness (Fig. 2) and
7.291 nm thickness (Fig. 3) along the h-axis. The stand-
ard images calculated using the above values of thick-
ness and 0.01 nm resolution are shown in Fig. 2¢ and
Fig. 3a, respectively. It was assumed, that the incident
electron beam propagate along the b-axis, and the accel-
erating voltage is 300 k'V.

gallium

e tin

O indium/gallium

Fig. 1. Structure of (Ga,In),SnO5 viewed along [OTO] .
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Fig. 2. Images of (Ga,In),SnOs-structure (2D- and 3D-plots) showing the phase retrieval solution for the iteration range of N = 20 in
(b) and the phase retrieval solution for the iteration range of N = 40 in (¢) in comparison with the standard gauge image in (a)
calculated for the iteration range of N = 100. The cycle range of K is 1000. The sample thickness along the b-axis is 4.121 nm.

To illustrate the convergent features of the new algo-
rithm guiding the phase determination based upon the
flow equation (1) the data sets of (,){|U(g)|, A(x)} were
explored in a sequent manner from the initial value of
v =2 until the two different final iteration values of N,
namely: N =20 and N = 40, respectively. Fig. 2b,c and
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Fig. 3b,c show the calculated unit cell images, (20)/(x)
and (49)/(x), obtained as the modulus squared of the
Fourier transform of the unique phase-recovered struc-
ture factors sets of (20){U(g)} and (49){U(g)} using the
domino iterative transform algorithm detailed above. It
is interesting that in the case of the iteration number of

500, 6(3), 2003



F.N. Chukhovskii et al.: Domino phase retrieval algorithm for ...

® L = a
> L
* : O
4 @
1/4 12 3/4 2
X
v b
) &> &
3/4 & o
D4 «
Q®
. 0
1/2 ‘ -
<
o o 2
1/4 ®
N , € ¢
0 \& Q . .
0 1/4 1/2 3/4 z
IS o« ¥ ¢
o &
@
°  ° v
@
&
.4 Py
=)
®
® Q
L]
s &
«> v
1/4 1/2 3/4 z

Fig. 3. Images of (Ga,In),SnOs-structure (2D- and 3D-plots) showing the phase retrieval solution for the iteration range of N = 20 in
(b) and the phase retrieval solution for the iteration range of N = 40 in (¢) in comparison with the standard gauge image in (@)
calculated for the iteration range of N = 100. The cycle range K is 100. The sample thickness along the b-axis is 7.291 nm.

N = 20 the real-space unit cell images (see Figs 2b, 3b)
do not keep the centrosymmetry property as a result of
the insufficient spatial resolution of order of 0.05 nm (it
should be noted that the atom positions need not be coin-
cided with nodes of a numerical net) but not to the phase

SQ0, 6(3), 2003

retrieval solution based on the present iteration trans-
form algorithm application.

As an example, Fig. 4 shows the behavior of the cal-
culated parametric plots of the R-FOM versus a ‘correct-
ness’ C-factor (¢f. Egs (2)—(3)). Itis found that in the case

401



F.N. Chukhovskii et al.: Domino phase retrieval algorithm for ...

~nr*”

16

14

—inc*”

12

10

2 4 6 8 10
—nr™”

Fig. 4. Plot of the factor —InR versus a ‘correctness’ factor —InC
calculated within the final set of phase assignment using the two
ranges of structure factors: a — N = 20, b — N = 40 (the cycle range
of K = 100). The sample thickness along the b-axis is 7.291 nm.
The curve parts with feasible large (-InR)- and (-InC)-values
indicate that the present phase retrieval algorithm provides a full
restoration of phases.

of the domino iterative transform algorithm application
to the solution of (Ga,In),SnOj the calculated R-FOM
and C-factor are achieving the appropriate values of or-
der of 10> and 107 for the cycle range of K = 100 used
for the calculated images shown in Fig. 3b,c. It is worth
to notice that in the case of the cycle range value of
K = 1000 taken for the numerical simulation of the real-
space structure images in Fig. 2b,c the corresponding
values of R-FOM and C-factor are practically equal to
zero (less than 10727).

Thus, what is referred to as trends of the R-FOM re-
duction observed as well as confirmed by the C-factor
reduction behavior, the domino iteration transform al-
gorithm by consequently combining the ED and HRTEM
data indicates a good convergent skill in a process of the
phase retrieval procedure. It should be noted that depend-
ing on the initial random phases of an input phase set of
complex structure factors for the initial iteration value of
v =2 the numerical code proposed generates the redun-
dant solutions too. Fortunately, they can be effectively
discriminated by imposing the ‘break’-condition incor-
porated within complete iteration procedure, namely: for
instance, by choosing inappropriate barrier values of R-
FOM being equal to 0.01.
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4. Concluding remarks

In this paper, the goal of our study is to justify the appli-
cation of the domino iterative transform algorithm de-
tailed above for phasing diffraction patterns. The main
point of the new numerical code is that the latter provides
the robust unambiguous iterative procedure, at least, for
two-dimensional phasing problems by operating with the
ED and HRTEM data as the physically measured con-
straints. Specifically, what is referred to as a general
phase retrieval problem the present domino method can
be considered as a synthesis of the diverse direct meth-
ods, which are widely explored for electron structure de-
termination [6, 22]. Numerical simulations of the crystal
model structure show that unlike the direct methods ear-
lier utilized the routine algorithm by using the composite
input ED and HRTEM data sets in a domino fashion is
reasonable from the physical viewpoint and does not de-
pend on any assumptions (e.g., the weak-scattering ap-
proximation) and primary models of the crystal structure
in question to restore phases of the complex structure fac-
tors. Generally, the present algorithm code is proven to
be convergent and successful for solving phase retrieval
problems (at least in the case of the two-dimensional data
sets). It seems likely that even complicated crystal struc-
tures, for which some part of reflections are not available
to be measured, can be solvable in this way by extending
the feasible complex structure factors to unmeasurable
ones by means of the Sayre equation.

A few final comments are appropriate here about the
implementation of the present algorithm code to the prac-
tical structural analysis using the ED and HRTEM data.
As is pointed out, the ED dynamical effects were taken
into consideration within the scope of a 1s electron
channeling approach for the input ED data. It needs to
be remembered that the validity and application pros-
pect of the domino phase retrieval algorithm presented
are closely related to the ED being dominated by 1s
channeling states. That is only true for moderate values
of sample thickness and atomic numbers. In addition to
sample thickness, accelerating voltage is another adjust-
able parameter. As the voltage becomes higher, there are
more strongly bound states (e.g., 2s, 3s), which compli-
cate the ED [24]. Yet, there are many structures where
2p-states are important if the sample is tilted off the zone
axis. The question of whether the domino phase retrieval
algorithm has any validity in these cases remains topics
for future research.

Besides, in view of testing with the present algorithm
code we didn’t include the aberration phase distortions
of electron optical system, the values of which are in gen-
eral known a priori to form relevant HRTEM images (cf.
[2]) and ignored a possible thickness variation within the
sample area selected, albeit the latter might be minimized
using the convergent-beam patterns.

With these confines of the input ED and HRTEM
data sets, we do not claim anything except that the domino
algorithm code for the phase retrieval of structure factors
is really convergent and works well. How well it will work
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in practice, particularly using the input experimental ED
and HRTEM data, remains to be seen and is then of a
special interest for future work.

It should once more be stated in conclusion that the
convergent feature and feasibility of the numerical solu-
tion of the crystal model structure tested in the general
case of complex structure factors imply that the direct
methods may be properly modified to facilitate further
the practical electron structure analysis, particularly, by
applying the domino iterative transform algorithm tech-
nique, a good topic of future work.
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