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Abstract. The electron energy spectrum in a quantum dot (QD) with smooth 
dependences of the quasiparticle potential energy and the effective mass at the interface 
between semiconductor media is calculated in the effective mass approximation. It is 
shown that the electron energy corrections due to the tailing of the interface are 
nonmonotonous functions of the QD radius, the increasing of which brings to the rapid 
increasing of shifts, reaching their maxima, and slowly decreasing for the QDs of big 
sizes. The calculations prove that the relative corrections for the different electron energy 
levels in a spherical QD are placed closer to each other with increase in the radius. The 
growth of the parameter of interface tailing leads to the proportional increase in the 
corrections to electron energy spectra. Numerical calculations are performed for 
HgS/CdS and GaAs/AlxGa1-xAs QDs, all dependences being qualitatively similar. 
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1. Introduction 

The wide perspectives of the utilization of semi-
conductor nanoheterosystems in laser and nano-
scheme computer technique determine the intensive 
development of the physics of quantum wells, wires, 
and dots, though the physical phenomena in such 
objects are often essentially different from those 
having place in bulk crystals. Therefore, the 
investigation of nanoheterosystems is of great interest 
for the scientists. 

The great number of theoretical and experimental 
researches has been performed in this branch of physics 
till now. The modern technological methods allow one 
to produce the high-quality nanoheterostructures of 
various shapes created of different semiconductor 
materials. The experimental investigations stimulate the 
intensive theoretical study of physical phenomena in 
such nanosystems. 

Problems of the establishment of a theory 
describing the physical phenomena in nanohetero-
systems are related to the fact that these objects are so 
small that the size quantization becomes essential. 
Nevertheless, the microscopic approach taking into 
account the atomic-molecular structure of a 
heterosystem is very complicated for such systems; it is 

used only for the nanocrystals containing several 
hundreds of atoms. At the same time, the effective mass 
approximation and the dielectric continuum model 
introduced for the description of physical processes 
running in bulk semiconductor crystals are often used in 
nanophysics after some modifications.  

The skiplike rectangular potential or the parabolic 
one of a harmonic oscillator (see Fig. 1) (for which there 
are the exact solutions of the Schrödinger equation) is 
usually used in the calculations of quasiparticle energy 
spectra in spherical quantum dots (QDs). Nevertheless, 
the simplicity of the solutions has some disadvantages in 
the description of potentials. 

The main disadvantage of parabolic potential is the 
neglect of the difference between the quasiparticle 
effective mass inside a QD and in the external medium. 
Moreover, it is impossible to obtain the continuum 
energy spectrum of quasiparticles with high energies due 
to the fact that this potential is not confined at infinity. 
The authors of [1], taking into account the above-
mentioned disadvantages of the classical parabolic 
potential, used a model potential. It is equal to the 
parabolic one inside the QD, and it is constant in the 
external medium. The calculation of the energy spectrum 
is rather difficult and performed within some 
approximations. 
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Fig. 1. Geometrical scheme of spherical quantum dots and 
schemes of the skiplike rectangular potential and the potential 
of a harmonic oscillator. 
 
 
 

The other disadvantage of the rectangular 
potential model is the unphysical skiplike behavior of 
the potential energy and the effective mass at the 
interface of semiconductor media. The same unphysical 
features are observed in the research of electrostatic 
image forces due to the skiplike varying of the 
dielectric constant at the media interface. In works [2, 
3], the potential of image forces and corrections to the 
electron binding energies were calculated by using the 
smooth functions for the dielectric constants such as 
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In work [2], it was shown that the chosen form of 
the diffuse tailing of the interface of media is proved by 
experiment. In the approach proposed in [3-5] for the 
interface between a spherical quantum dot and the 
external medium, the smooth functions 
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where L is the parameter characterizing the interface 
tailing width, were used.  

In works [4, 5], it was shown that the results of 
calculations of energy spectra are less sensitive to the 
form of the approximating  function than to the width of 
the transition layer L.  

In this paper, the corrections to the energies of 
spherically symmetric stationary states of an electron 
which arise due to accounting the tailing of the potential 
energy and the effective mass functions at the interface 
of the QD are calculated. The functional dependences of 
the potential energy of an electron and its effective mass 
on the distance from the center of a spherical QD are 
assumed to be as follows: 
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Here, m1 and m2 are, respectively, the electron 
effective masses in a QD and in the external medium, 
and V is some parameter.  

Using the smooth functions m(r) and U(r) is more 
physical because, in addition to the presence of the 
transition layer at the interface, the macroscopic 
parameters – effective mass (m) and potential energy (U) 
– at a fixed point of the nanosystem are the results of the 
averaging which cannot be skiplike. 

The energy spectrum of a quasiparticle with the 
effective mass (6) in the potential well (5) is found from 
the solution of the Schrödinger equation 
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It is obvious that this equation cannot be solved 
exactly; therefore, we have to use some approximating 
methods. For example, the ground state energy can be 
calculated in the framework of the variational method, 
but the problem becomes quite difficult for the energies 
of excited states. 

We propose to solve Eq. (7) by using the 
approximation of the smooth functions (5) and (6) by the 
skiplike functions shown in the Fig. 1. These functions 
give the opportunity to obtain the exact solution of the 
respective Schrödinger equation. When the number of 
skips is big enough, the obtained solutions will be 
sufficiently close to the solutions of Eq. (7) with the 
smooth functions (5) and (6). Thus, the smooth interface 
is substituted by several imaginary intermediate layers 
with effective masses mi and potentials Vi. Then the 
calculations are carried out on the base of the conditions 
of equality of the areas under the smooth functions (5) 
and (6) and the corresponding skiplike functions which 
are shown in Fig. 2. The problem of solving the 
Schrödinger equation (7) is the same as the problem to 
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find electron energy spectra in complicated spherical 
semiconductor  nanoheterosystems [6, 7]. 

2. Solution of the Schrödinger equation 

Taking into account the spherical symmetry of the 
problem and the skiplike functions for the effective mass 
m(r) and the potential U(r) chosen as  
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it is convenient to write the radial part of the wave 
function as 
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From the Schrödinger equation (7), we obtain the 
system of N + 1 equations for the radial wave functions 
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Every of them contains the constant potential 
energy Vi and the constant effective mass mi. The 
solutions of Eqs. (10) are the linear combinations of 
Bessel spherical functions of the first and second orders  
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The conditions of continuity of the wave function 
and its probability current density at all points ri bring to 
the system of 2(N + 1) equations  
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Inserting representation (11) into the system of 
equations (13), we obtain the system of linear equations 
for the determination of the coefficients ii BA , , 

[ ]

[ ]















=+−

−+

=−

−−+

++++
+

++

++

0)()(
1

)()(
1

0)(

)()()(

11
'
011

'
0

1

'
0

'
0

110

0
1100

iiiiii
i

iiiiii
i

iii

iiiiiiiii

BrknArkj
m

BrknArkj
m

Brkn

ArkjBrknArkj

,              (14) 

where 

)(
)(

)( 1
0'

0 iii

rr

i
ii rkjk

dr

rkjd
rkj

i

−==
=

,                     (15) 

)(
)(

)( 1
0'

0 iii

rr

i
ii rknk

dr

rkdn
rkn

i

−==
=

.                     (16) 

Using the condition that the wave function should 
be finite at ∞→→ rr and0 , two unknown 
coefficients are fixed as: 
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The other unknown 2(N+1) coefficients are 
determined from the system of equations (14) and the 
normalizing condition 
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Herein, the system of linear equations for the 
coefficients Ai and Bi has the nontrivial solutions when 
the determinant built from Bessel functions of the first 
and second orders and their derivatives is equal to zero. 
Thus, we arrive at the dispersion equation for the 
determination of the electron energy spectrum in a 
quantum dot with smooth interface.  

The same electron energy spectrum can be found 
using the system of equations (13) with a radial wave 
function written in the form (12). Using the relation 
S0 = 1, we obtain the expression for the S-matrix (SN+1), 
whose poles define the energy of stationary states in the 
nanosystem [8, 9]. 

3. Analysis of the results  

The greater the number of skips, the closer are the 
approximating functions to functions (5) and (6), and the 
solution of Eq. (7) becomes more exact. In order to 
define the optimal number of skips (N) in the 
approximating functions U(r) and m(r), we performed 
the calculation of the electron energy in spherically 
symmetric states for various values of N.  

In Fig. 2, we present the dependences of the 
electron effective mass and the potential energy in 
quantum dots HgS/CdS and GaAs/AlxGa1-xAs on the 
distance along the radial coordinate at the fixed number 
of skips N = 10 and the tailing parameter L = 1. 
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Fig. 2. Dependence of the electron potential energy and the 
effective mass on the radius r in the HgS/CdS (a) and 
GaAs/AlxGa1-xAs (b) quantum dots. The solid curves are the 
model skiplike function with N = 10, and the dashed ones are 
m(r) and U(r) by formulas (5) and (6). 

 
 
Parameters of the materials used in the numerical 

calculations are shown in Table 1. 
 
 

Table. Parameters of the materials. 

Material  ( )0mme  *)    )A(
o

a    ( )eVeV  

    HgS 0.036 5.851 0 
    CdS 0.2 5.818 1.35 
    GaAs 0.067 5.65 0 
Al0.4Ga0.6As  0.1  0.387 

 
* )     0m  – bare mass of an electron.  
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Fig. 3. Dependences of the absolute corrections to the energy 
levels E10, E20, E30 on N in HgS/CdS (a) and GaAs/AlxGa1-xAs 
(b) QDs with the radius r0 = 15. 

 
 
 
 
In Fig. 3, we show the results of calculations of the 

absolute corrections to the electron energy in spherically 
symmetric states, 

1
000 n

N
nn EE −=∆  ,                              (19) 

where N
nE 0  – the energies of electron stationary states in a 

model potential with N skips, and 1
0nE  – the energies of 

electron stationary states in a rectangular potential (1 skip). 
One can see from Fig. 3 that, as the number N 

increases, the magnitudes of the absolute corrections are 
saturated. Herein, for the higher excited states, the 
saturation is observed at great numbers of skips. The sa-
turation is observed at N = 7-8 for a HgS/CdS QD and at 
N = 10-11 for a GaAs/AlxGa1-xAs QD. The satisfactory 
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exactness (2-3 %) for all states for both types of 
quantum dots and for the tailing parameter L = 1aHgS (a 
HgS/CdS QD) and L = 1aGaAs (a GaAs/Al0.4Ga0.6As QD) 
is reached at N = 10. For the greater value of L, the 
corresponding bigger values of corrections and the 
electron energy are observed. Therefore, the relative 
corrections stay the same. Since, the further calculations 
were performed with the model skiplike functions of the 
potential and the effective mass at N = 10. 

In Fig. 4, we display the dependence of the electron 
spectrum on the size of a quantum dot at the different 
magnitudes of the tailing parameter of the interface. It is 
seen that the tailing of the interface does not influence 
the qualitative shape of the dependence of the energy 
spectrum on the size of a QD.  
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Fig. 4. Dependence of the electron energy in spherically 
symmetric states (l = 0) with n = 1, 2, 3 on the radius of 
HgS/CdS (a) and GaAs/AlxGa1-xAs (b) QDs. Solid curves – 
without the interface tailing, dashed curves – at L = 1 aHgS, and 
doted curves – at L = 2 aHgS . 

In order to evaluate the quantitative influence of the 
smooth interface between the media on three lowest 
electron energy levels, we present the results of 
calculations of the relative corrections to the energies of 
spherically symmetric states at various values of the 
parameter L in Fig. 5: 
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Fig. 5. Dependences of the relative corrections to the energies 
1
0nE  at n = 1, 2, 3 on the size of HgS/CdS (a) and GaAs/ 

AlxGa1-xAs (b) QDs for different values of the tailing 
parameter L. 
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Figures 4 and 5 prove that the absolute corrections 
to the ground energy level are the smallest but the 
relative correction is the biggest. The calculations show 
that the relative correction to the energies of spherically 
symmetric states increase with the QD size, and then 
they decrease and become closer to one another. Such a 
dependence is understandable because the tailed 
potential well is thinner near the bottom, and it is wider 
at the great energies than the respective rectangular well. 
Therefore, at the small sizes of QDs, the corrections to 
the energy levels located in the region of energies, where 
the tailed potential well is wider than that for the 
rectangular potential, can be negative. The increase in 
the QD size leads to a decrease of the energies of 
discrete levels shifted into the region of the potential 
well where it is thinner than the respective rectangular 
one, which is accompanied by the increase in the 
respective energy corrections. The further increase of the 
QD radius causes a decrease of the influence of the 
interface tailing, because the probability of the 
quasiparticle location at the heterointerface decreases 
rapidly. As a result, the relative corrections for great-size 
QDs are not sensitive to their radius.  

The double increase of the tailing parameter causes 
the increase of the relative correction by two times. For 
big QDs, it is somewhat bigger than two. 

The account for the smooth behavior of the 
potential energy and the effective mass at the interface 
between a QD and the external medium brings to a shift 
of the energy levels. Its magnitude has the nonmo-
notonous dependence on the QD size. For rather big 
QDs, the energy levels are shifted into the region of high 
energies. Herein, the magnitudes of relative corrections 
for the different energies of spherically symmetric states 
are equal. The increase of the tailing parameter causes 
the proportional increase of relative corrections to the 
energy levels. All dependences for HgS/CdS and 
GaAs/AlxGa1-xAs quantum dots are qualitatively similar, 
the quantitative differences are caused by the different 
values of the effective masses and the different depths of 
potential wells. 
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Fig. 6. Dependences of the electron ground state energy on the 
tailing parameter L in an AlxGa1-xAs QD at a fixed radius 
R = (10, 15, 20) aGaAs. 

In order to study the influence of the interface 
tailing on the electron energy spectrum, we calculated 
the electron ground state energy as a function of the 
tailing parameter L at various values of the quantum dot 
radius. The results of calculations are presented in Fig. 6. 
As seen, with increase in the tailing parameter, the 
location of the electron ground energy level is shifted 
into the region of great energies. Herein, the interface 
tailing influence is stronger for the quantum dots of 
small radii. For quantum dots with R > 15 aGaAs, the 
energies of the ground state show almost a linear 
dependence on the tailing parameter L.  

4. Conclusions 

The results of studies allow us to draw the following 
conclusions.  

The skiplike potential at the interface of media used 
instead of the smooth one gives the opportunity to solve 
the Schrödinger equation and to calculate the corrections 
to the energy spectrum obtained with the rectangular 
potential and to take the diffuse tailing of the interface 
into the account. 

The introduction of the smooth functions m(r) and 
U(r) for HgS/CdS quantum dots with R > 15 aHgS and 
GaAs/Al0.4Ga0.6 QDs with the radii R > 20 aGaAs causes a 
shift of all energy levels into the region of higher 
energies. 

It is established that the corrections to three lowest 
spherically-symmetric energy levels become closer to 
one another with increase in the size of QDs and weakly 
depend on the radii of big quantum dots.  

The increase of the tailing parameter causes the 
increase of the corrections to the energy spectrum of an 
electron in a quantum dot. 
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