Флуктуации спинового состояния 3*d*-ионов вблизи «тройных точек»

Е.С. Житлухина, К.В. Ламонова, С.М. Орел, Ю.Г. Пашкевич

Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина E-mail: lenagit@teor.fti.ac.donetsk.ua

Статья поступила в редакцию 26 января 2012 г., после переработки 24 мая 2012 г.

В рамках полуэмпирической модифицированной теории кристаллического поля исследованы спиновые состояния 3d-иона, помещенного в произвольно деформированный координационный комплекс. Получены спиновые диаграммы для ионов переходных металлов с электронными конфигурациями $3d^4$, $3d^5$ и $3d^6$, помещенных в пирамидальное окружение. На спиновых диаграммах для всех конфигураций обнаружены так называемые «тройные точки», т.е. области, в окрестности которых спиновые состояния смешиваются в равных пропорциях. Исследована эволюция спинового состояния пятикоординированного иона Co^{3+} в редкоземельном слоистом кобальтите $\mathrm{GdBaCo_2O_{5,5}}$. Обнаружено, что состояние с промежуточным спином может быть стабилизировано смещением апексного иона кислорода вдоль оси пирамиды.

У рамках напівемпіричної модифікованої теорії кристалічного поля досліджено спінові стани 3d-іону, який розташовано в довільно деформованому координаційному комплексі. Отримано спінові діаграми для іонів перехідних металів з електронними конфігураціями $3d^4$, $3d^5$ та $3d^6$, які містяться в пірамідальному оточенні. На спінових діаграмах для всіх конфігурацій виявлено так звані «потрійні точки», тобто області, в межах яких різні спінові стани змішуються в рівних пропорціях. Досліджено еволюцію спінового стану п'ятикоординованого іону ${\rm Co}^{3+}$ в рідкісноземельному шаруватому кобальтиті ${\rm GdBaCo_2O_{5,5}}$. Виявлено, що стан з проміжним спіном може бути стабілізовано зміщенням апексного іону кисню вздовж осі піраміди.

PACS: 71.70.Ch Кристаллические поля и поля лигандов;

71.70.Еј Спин-орбитальное взаимодействие, зеемановское и штарковское расщепление, эффект Яна-Теллера:

71.70.Fk Расщепление, индуцированное напряжением;

75.30.Wx Спиновые переходы.

Ключевые слова: теория кристаллического поля, расчеты электронных спектров, спиновые переходы, спин-орбитальное взаимодействие.

1. Введение

Поиск новых многофункциональных материалов, а также их комплексные физико-химические исследования получили мощный толчок в течение последнего десятилетия благодаря потенциальной возможности их применения как основного компонента в запоминающих и сенсорных устройствах молекулярной электроники, в том числе со смешанной электронно-ионной проводимостью. Современный уровень металлоорганической химии дает возможность конструировать супрамолекулярные ансамбли, структурированные посредством молекулярных «строительных» блоков. Мо-

лекулярные блоки представляют собой органические макроциклические соединения и/или относительно большие координационные кластеры, содержащие ионы переходных металлов в качестве комплексообразующих магнитных центров. Объединение металлосодержащих макромолекулярных блоков в упорядоченную рамочную структуру позволяет получать композиции координационных полимеров со специфической сетевой топологией и заданными технологическими свойствами [1,2]. Возможность управления электронными свойствами макромолекулярных блоков обеспечивается высокой чувствительностью их электронных спектров к малейшим изменениям электростатических по-

лей, создаваемых органическим окружением ионакомплексообразователя. Незначительные искажения кристаллического поля, вызванные температурой, давлением либо светом, индуцируют локальные спиновые переходы, таким образом «переключая» спиновые состояния молекулярных блоков. В свою очередь, локальные спиновые переходы изменяют магнитное состояние, цвет и структуру соединения в целом, что открывает широкие возможности для детектирования таких переходов. Исследование условий реализации различных спиновых состояний 3*d*-ионов, изучение поведения спиновой подсистемы ионов в окрестностях точек переходов, а также влияния внешних факторов на устойчивость спинового состояния имеет принципиальное значение для создания материалов с наперед заданными свойствами. Решение задач такого плана, как правило, сопряжено с большим объемом вычислений, требующих значительных компьютерных мощностей. В связи с этим поиск новых подходов и их применение к решению задач об эволюции спинового состояния под влиянием внешних факторов (температура, давление, излучение) имеет фундаментальное значение как для практики, так и для теории.

Схема исследования спиновых состояний 3*d*-ионов, предложенная в данной работе, может быть применена для решения подобного класса задач. В ее основе лежит симметрийный анализ искажений исследуемого координационного комплекса и модифицированная теория кристаллического поля (МТКП), основные положения которой изложены в работах [3,4]. Ключевой момент данного подхода — построение диаграмм спиновых состояний (спиновых диаграмм), качественный анализ которых дает возможность моделировать влияние различных искажений координационного комплекса на спиновое состояние иона-комплексообразователя, а также прогнозировать эволюцию спиновой подсистемы.

2. Схема построения спиновых диаграмм

Спиновые диаграммы представляют собой поверхность среднего квадрата полного спина иона металла $\langle S^2 \rangle$, построенную на плоскости параметров «эффективный заряд ядра 3d-иона ($Z_{\rm eff}$) — искажения координационного комплекса (Q)» либо на плоскости двух типов искажений при заданном значении $Z_{\rm eff}$.

Методология расчета электронного спектра свободного многоэлектронного атома, которая лежит в основе МТКП, подробно изложена в работе [5]. Использование данного подхода позволило получить уточненный набор значений эффективного заряда ядра ($\overline{Z}_{\rm eff}$) и одноэлектронных спин-орбитальных констант ($\xi^{\rm teor}_{3d}$) для ионов переходных металлов, которые были использованы в полуэмпирических расчетах уровней энергии 3d-ионов, помещенных в кристаллическое поле [3,4,6].

В отличие от традиционной теории кристаллического поля (ТКП), которая оперирует величиной эффек-

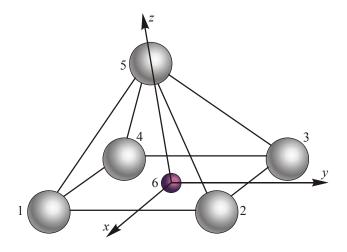
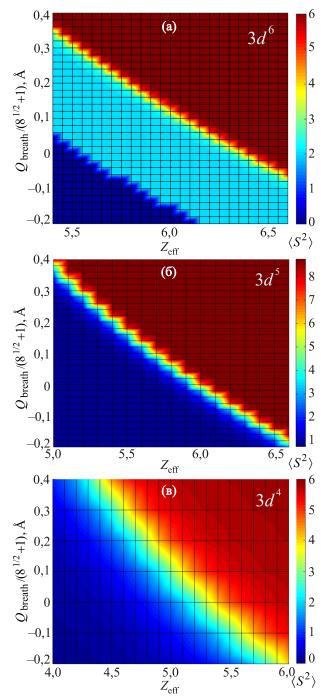

тивного заряда ядра свободного иона $Z_{\rm eff}^{FI}$ [7–15], МТКП использует эффективный заряд ядра иона, помещенного в кристаллическое поле: $Z_{\rm eff}^{CF}=Z_{\rm eff}^{FI}-\sigma^{CF}$ [16–18]. Видно, что $Z_{\rm eff}^{FI}$ и $Z_{\rm eff}^{CF}$ различаются на величину дополнительного экранирования, связанного с кристаллическим полем σ^{CF} , которая зависит от сорта лигандов и симметрии координационного комплекса, а также от его геометрических параметров. Принимая во внимание, что внедрение свободных ионов в кристаллическую среду приводит к понижению величины $Z_{
m eff}^{FI}$ на 10–15% для двухвалентных и 15–20% для трехвалентных ионов [19], можно приближенно определить возможный диапазон изменения $Z_{
m eff}^{CF}$. Варьирование $Z_{\rm eff}^{\it CF}$ в указанных пределах позволяет неявно учесть влияние лигандного окружения на состояние 3d-иона, так как такое понижение отражает изменение степени ковалентности связи, возникающее в результате перераспределения электронной плотности в пространстве комплекса.

Схема построения спиновой диаграммы для иона, помещенного в координационный комплекс, состоит из трех этапов. 1. Прежде всего, необходимо проанализировать кристаллографическую структуру исследуемого комплекса, классифицировать типы и определить величины искажений, присутствующие в структуре комплекса \hat{X} . На практике удобнее выразить смещения через нормальные координаты Q, которые преобразуются по неприводимым представлениям соответствующей точечной группы симметрии комплекса и связаны со смещениями \hat{X} линейным ортогональным преобразованием $\hat{Q} = \hat{R} \cdot \hat{X}$ (где \hat{R} — матрица преобразования смещений ионов в нормальные координаты). 2. Далее необходимо оценить диапазон изменения найденных искажений Q_i , учитывая величины ионных радиусов и длины связей металл-лиганд в комплексе, а также диапазон изменения эффективного заряда ядра металла $Z_{\rm eff}$. 3. Наконец, используя МТКП с учетом спин-орбитального вклада, рассчитать и построить спиновую диаграмму, т.е. поверхность среднего квадрата спина $\langle S^2 \rangle$ на плоскости параметров ($Z_{\rm eff}, Q_i$) либо на плоскости двух типов искажений (Q_i , Q_j) при заданном значении $Z_{\rm eff}$. Величина $\langle S^2 \rangle$ отображается на диаграммах с помощью цветовой шкалы.

3. Обсуждение результатов расчетов

В данном разделе представлены результаты расчетов спиновых диаграмм ионов металла с электронными конфигурациями $3d^4$, $3d^5$ и $3d^6$, помещенных в пирамидальный комплекс [ML₅], который зачастую является одним из структурных элементов в сложных оксидах переходных металлов (рис. 1).

Исследовано влияние наиболее типичных искажений комплекса $[ML_5]$, возникающих в реальных соединениях (см. Приложение): 1) однородное растяже-


Puc. 1. Пирамидальный комплекс [ML₅].

ние/сжатие координационного комплекса (breathing mode, $Q_{\rm breath} = Q_1 + Q_3$), которое моделирует влияние гидростатического давления либо однородных термических флуктуаций; 2) смещение иона металла вдоль оси пирамиды (Q_4), так называемый эффект нецентральности иона; 3) искажение базовой плоскости пирамиды (Q_8), моделирующее гофрировку плоскости; 4) ромбическое, или ян-теллеровское, искажение структуры комплекса (Q_7). В качестве лигандов взяты двухвалентные ионы кислорода $L = O^{2-}$.

3.1. Влияние равномерного сжатия/растяжения пятикоординированного комплекса [MO₅]^{x+} на эволюцию его спиновой подсистемы

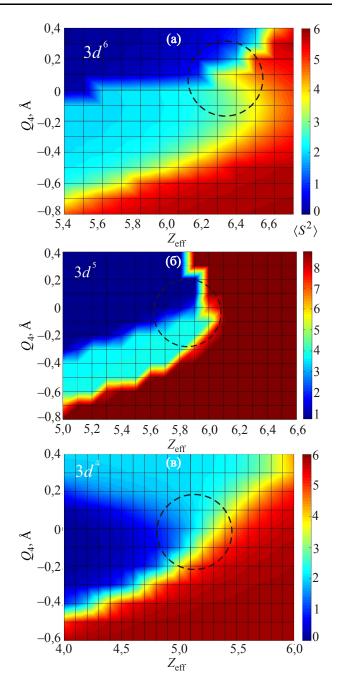
Спиновые диаграммы вида $\langle S^2 \rangle = f(Z_{\rm eff}, Q_{\rm breath})$ (см. рис. 2), рассчитанные для пирамидального комплекса $[{\rm MO_5}]^{\rm x^+}$ с $3d^6$ -, $3d^5$ - и $3d^4$ -ионами в качестве комплексообразователей, демонстрируют области трех спиновых состояний: низкоспиновое (LS: S=0 ($3d^4$, $3d^6$), S=1/2 ($3d^5$), голубой цвет); состояние с промежуточным спином (IS: S=1 ($3d^4$, $3d^6$), S=3/2 ($3d^5$), бирюзовый цвет) и высокоспиновое состояние (HS: S=2 ($3d^4$, $3d^6$), S=5/2 ($3d^5$), красный цвет). Кроме того, на диаграммах видны области «смешанных состояний», HS:IS и/или IS:LS, обусловленные наличием спин-орбитального взаимодействия*.

Величина спина $\langle S^2 \rangle$ отражена на правой панели цветом. Линия $(Z_{\rm eff}\,,\,Q_{\rm breath}=0)$ отвечает основному

Puc. 2. (В цвете см. онлайн) Влияние искажения типа breathing mode на спиновое состояние иона металла с электронной конфигурацией $3d^6$, $3d^5$ и $3d^4$.

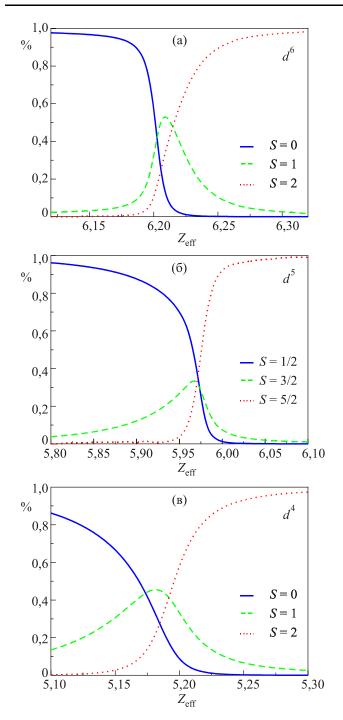
Спиновые диаграммы строятся с учетом спин-орбитального взаимодействия, которое приводит к отмене правил отбора, запрещающих взаимодействие состояний с различной мультиплетностью. Таким образом, энергетические уровни описываются волновыми функциями, содержащими полный, для данной электронной конфигурации, набор многоэлектронных детерминантных функций, а собственные значения квантовых операторов \hat{S}_z и \hat{S}^2 не сохраняются, т.е. становятся «плохими квантовыми числами». Тем не менее квантовые числа S_z и $\langle S^2 \rangle = S(S+1)$ могут характеризовать спиновое состояние иона, если принять, что оно определяется максимальным суммарным весом детерминантных функций с определенным спином. Таким образом, под однородным спиновым состоянием мы понимаем состояние, у которого суммарный вес детерминантных функций с одним из возможных значений спинов наибольший. Под «смешанными» состояниями подразумевают состояния, у которых суммарные веса функций, отвечающих различным значениям спина, примерно одинаковы.

спиновому состоянию правильного пирамидального комплекса $[MO_5]^{x+}$ со средней длиной связи «металл–лиганд» $\langle R_M^{x+} - O^{2-} \rangle = 1,95 \,\text{Å}$.


Характерная особенность пирамидального комплекса с $3d^6$ -ионом — наличие довольно широкой полосы IS состояния (рис. 2(a)). Это означает, что для любого заданного значения $Z_{\rm eff}$ состояние с промежуточным спином может быть достигнуто посредством соответствующего однородного расширения/сжатия комплекса. В то же время в пирамидальных комплексах с $3d^4$ -и $3d^5$ -ионами в качестве комплексообразователей области промежуточных спиновых состояний представляют собой узкие полосы, которые не могут быть стабильными, поскольку незначительные искажения структуры инициируют спиновые переходы либо в высокоспиновое, либо в низкоспиновое состояние (рис. 2(6) и 2(8)).

3.2. Спиновые переходы, вызванные смещением иона металла вдоль оси пирамиды. Эффект нецентральности иона

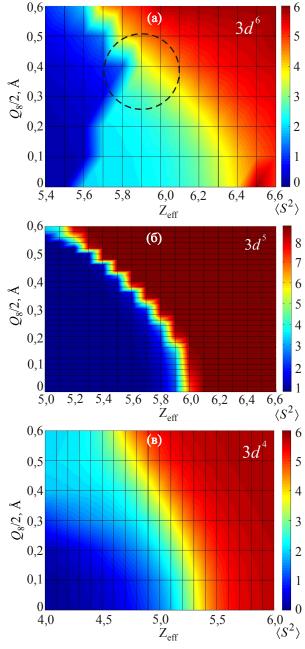
Проблема нецентральности ионов характерна не только для примесных ионов в твердых растворах [20,21], но и для перовскитоподобных кобальтсодержащих соединений, сравнительно недавно синтезированных и в настоящее время широко исследуемых. Смещение центрального иона комплекса из положения равновесия описывается нормальной координатой $z_M = Q_4$, которая преобразуется по неприводимому представлению A_1 точечной группы симметрии $C_{4\nu}$ (см. табл. 1 в Приложении). При смещении иона вдоль оси z в том или ином направлении симметрия кристаллического поля не изменяется, однако изменяются длины и углы связей M— O^2 —, что приводит к перераспределению электронной плотности в пространстве комплекса и, в конечном итоге, к спиновым переходам.


Направление смещения 3d-иона определяет характер изменения кристаллического поля. При смещении иона вовнутрь пирамиды кристаллическое поле, действующее на ион, увеличивается, смещение иона в обратном направлении приводит к его ослаблению. Например, если основное спиновое состояние является промежуточным (IS), то в зависимости от направления смещения иона следует ожидать реализации спиновых переходов типа $IS \leftrightarrow HS$ и $IS \leftrightarrow LS$. Области с промежуточным спином достаточно обширны и могут быть стабилизированы путем смещения центрального иона вдоль оси пирамиды.

В отличие от спиновых диаграмм, построенных для октаэдрических комплексов [6], спиновые диаграммы пирамидальных комплексов демонстрируют довольно широкие области смешивания спиновых состояний или переходные области. Кроме того, спиновые диаграммы на рис. 3 обнаруживают области смешивания трех различных спиновых состояний (области на рис. 3, отме-

Рис. 3. (В цвете см. онлайн) Влияние смещения иона металла вдоль оси пирамиды на спиновую подсистему координационного комплекса. Спиновые диаграммы $\langle S^2 \rangle = f(Z_{\rm eff}, Q_4)$.

ченные пунктирными окружностями), которые могут быть названы «тройными точками». Это означает, что спиновая подсистема в окрестности таких областей весьма чувствительна к деформациям координационного комплекса. Анализ состава собственных функций кристаллических термов в окрестностях таких областей показал (см. рис. 4), что количество состояний, которые отвечают высокому, промежуточному и низкому спину, примерно одинаково. Отметим, что положение тройной точки, равно как и переходных областей, на диаграммах не фиксировано и зависит от электронной конфигурации и типа искажения.


Рис. 4. Анализ состава собственных функций базисных уровней энергии в окрестностях «тройных точек»: (a) $3d^6$ ($Q_4=-0.15$); (б) $3d^5$ ($Q_4=0.05$); (в) $3d^4$ ($Q_4=0.14$).

3.3. Влияние гофрировки базовой плоскости пирамиды на спиновое состояние иона металла

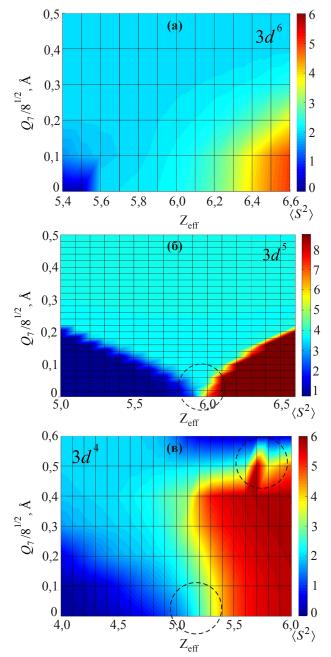
Одним из искажений, часто встречающихся в перовскитоподобных слоистых кобальтитах, является искажение базовой плоскости пирамидальных комплексов типа гофрировки. Подобные искажения описываются нормальной координатой Q_8 , которая преобразуется по неприводимому представлению B_2 , не изменяет объем комплекса, но понижает его симмет-

рию (см. табл. 1 в Приложении). В результате гофрировки связи М–L в базовой плоскости пирамиды становятся неравноценными, что приводит к дополнительному расщеплению кристаллических термов.

Спиновые диаграммы $\langle S^2 \rangle = f(Z_{\rm eff}, Q_8)$ для ионов с электронными конфигурациями $3d^6$, $3d^3$ и $3d^4$ показывают, что, как и в предыдущем случае, ион с электронной конфигурацией $3d^6$, помещенный в искаженный пирамидальный комплекс, может находиться в состоянии с промежуточным спином S=1 в широком диапазоне изменения параметров $(Z_{\rm eff}, Q_8)$. Здесь также имеется «тройная точка», т.е. область равновероятного смешивания трех спиновых состояний (рис. 5(a)).

Рис. 5. (В цвете см. онлайн) Влияние гофрировки базовой плоскости пирамиды на спиновую подсистему координационного комплекса. Спиновые диаграммы $\langle S^2 \rangle = f(Z_{\rm eff}, Q_8)$.

Гофрировка базисной плоскости пирамидального комплекса с $3d^5$ -ионом не приводит к реализации состояния с промежуточным спином (S=3/2) в физически обоснованном интервале изменения параметров. Для этого потребуются довольно большие величины искажений и низкие $Z_{\rm eff}$. В случае $3d^4$ -иона состояние с S=1 может быть реализовано с ростом степени гофрировки плоскости. При этом увеличение $Z_{\rm eff}$ приводит лишь к уменьшению области IS состояния.


3.4. Влияние ромбических искажений пирамидальных комплексов на спиновое состояние иона металла

Ромбические искажения, или искажения ян-теллеровского типа, описываются нормальной координатой Q_7 , которая преобразуется по неприводимому представлению B_2 группы симметрии $C_{4\nu}$ (табл. 1). Подобные смещения ионов понижают симметрию комплекса от $C_{4\nu}$ до $C_{2\nu}$, преобразуя базовую плоскость идеальной пирамиды в ромб. Связи М–L вдоль диагоналей ромба становятся неэквивалентными, следовательно, искажения ян-теллеровского типа приводят к увеличению степени ковалентности в одном направлении и уменьшению ее в другом. Как правило, влияние температуры на кристаллическую структуру соединения моделируют путем варьирования искажений янтеллеровского типа.

Расчеты спиновых диаграмм $\langle S^2 \rangle = f(Z_{\rm eff}, Q_7)$ для ионов металла с электронными конфигурациями $3d^6$, $3d^5$ и $3d^4$, помещенных в ромбически искаженный пирамидальный комплекс, показали (см. рис. 6), что состояние с промежуточным спином может быть стабилизировано в широком диапазоне параметров $Z_{\rm eff}$ и Q_7 . Особенно ярко эта тенденция проявляется для ионов с электронной конфигурацией $3d^6$ (рис. 6(a)). Подчеркнем, что искажения ян-теллеровского типа играют роль стабилизирующего фактора для состояний с промежуточным спином.

Что касается ионов с конфигурацией $3d^5$, то для стабилизации состояния с промежуточным спином (S=3/2) необходимы более существенные искажения пирамидального комплекса. В случае правильной (неискаженной) пирамиды $(Q_7=0)$ в окрестности точки $Z_{\rm eff}\approx 5,95\,$ наблюдается область смешанных состояний (обозначена пунктирной окружностью), которая перерастает в состояние с промежуточным спином при нарастании ромбических искажений.

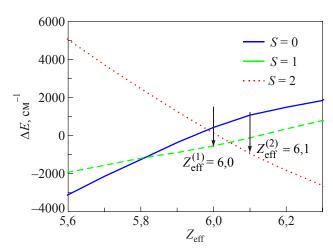
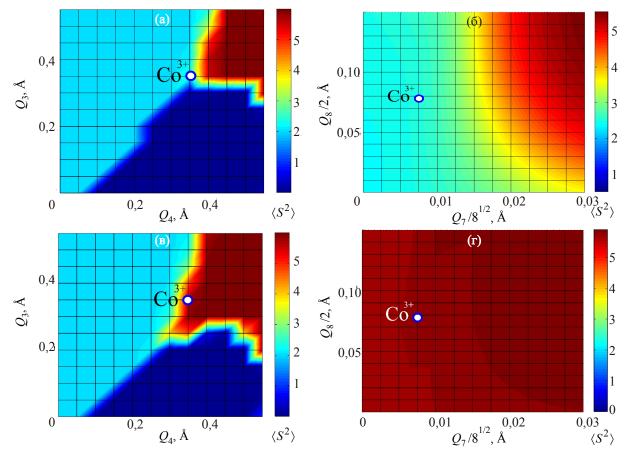

Более сложную спиновую диаграмму демонстрируют ионы с электронной конфигурацией $3d^4$. Область со спином S=1 может быть реализована как для правильного, так и для искаженного пирамидального комплекса (рис. 6(в)). При этом существуют по крайней мере две области (отмечены пунктирными окружностями) со смешанным спиновым состоянием HS:IS:LS, т.е. области «тройных точек».

Рис. 6. (В цвете см. онлайн) Влияние ромбических (янтеллеровских) искажений базовой плоскости пирамиды на спиновую подсистему координационного комплекса. Спиновые диаграммы $\langle S^2 \rangle = f(Z_{\rm eff}, Q_7)$.

4. Эволюция спинового состояния пятикоординированного иона ${\rm Co}^{3+}$ в редкоземельном слоистом кобальтите GdBaCo₂O_{5,5}

В качестве примера использования техники спиновых диаграмм рассмотрим координационный комплекс $\left[\text{CoO}_5\right]^{7-}$, который является структурной единицей редкоземельного слоистого кобальтита с формулой $\text{GdBaCo}_2\text{O}_{5,5}$ [22,23]. Соединение $\text{GdBaCo}_2\text{O}_{5,5}$ кристаллизуется в орторомбической сингонии с пространственной группой симметрии Pmma. Трехвалентные ионы кобальта $\left(\text{Co}^{3+}\right)$ занимают две неэквивалентные


 $Puc.\ 7.\ ({\rm B}$ цвете см. онлайн) Зависимость нижних уровней энергии ионов кобальта, находящихся в пирамидальном окружении при температуре $T=300~{\rm K}$ и соответствующих трем различным спиновым состояниям, от величины эффективного заряда ядра $Z_{\rm eff}$.

кристаллографические позиции в элементарной ячей-ке: один из ионов занимает октаэдрическую позицию $\left[\text{CoO}_6\right]^{9-}$, второй располагается в пирамидальном комплексе $\left[\text{CoO}_5\right]^{7-}$.

Экспериментально показано [22], что спиновое состояние ионов Co^{3+} изменяется под действием температуры: ионы кобальта, занимающие октаэдрические позиции, претерпевают спиновый переход (LS \leftrightarrow HS), тогда как спиновое состояние ионов кобальта в пирамидальных комплексах (IS) остается неизменным.

Расчет электронной структуры трехвалентного иона кобальта, расположенного в пирамидальном комплексе вида $\left[\mathrm{CoO_5}\right]^{7-}$, со структурными данными соединения $\mathrm{GdBaCo_2O_{5,5}}$, полученными при температуре $T=300~\mathrm{K}~[22]$, выполнен в рамках МТКП с учетом спин-орбитального взаимодействия. Кривые на рис. 7 демонстрируют изменения нижайших электронных уровней энергии, соответствующих различным спиновым состояниям иона Co^{3+} , в зависимости от величины его Z_{eff} . Рисунок 7 показывает, что уменьшение величины эффективного заряда ядра приводит к каскаду спиновых переходов $\mathrm{HS} \to \mathrm{IS} \to \mathrm{LS}$ и состояние с промежуточным спином (S=1) является базисным в интервале $5,81 < Z_{\mathrm{eff}} < 6,04$.

Анализ искажений, выполненный на основе структурных данных при $T = 300 \, \mathrm{K}$, показал, что пирамидальный комплекс испытывает низкосимметричные искажения, которые описываются следующими нор-

Puc.~8.~ (В цвете см. онлайн) Спиновые диаграммы, рассчитанные для иона Co^{3+} , помещенного в пирамидальное окружение: (a) $\langle S^2 \rangle = f(Q_3,Q_4)|_{\substack{Q_1=0,0221\,\text{Å}:\\Q_3=0,0553\,\text{Å}}}^{Z(1)=6,0}$; (б) $\langle S^2 \rangle = f(Q_7,Q_8)|_{\substack{Q_3=0,3553\,\text{Å}:\\Q_4=0,3538\,\text{Å}}}^{Z(1)=6,0}$; (в) $\langle S^2 \rangle = f(Q_3,Q_4)|_{\substack{Q_1=0,0221\,\text{Å}:\\Q_3=0,3553\,\text{Å}}}^{Z(1)=6,1}$; (б) $\langle S^2 \rangle = f(Q_7,Q_8)|_{\substack{Q_3=0,3553\,\text{Å}:\\Q_4=0,3538\,\text{Å}}}^{Z(1)=6,0}$; (6) $\langle S^2 \rangle = f(Q_7,Q_8)|_{\substack{Q_3=0,3553\,\text{Å}:\\Q_4=0,3538\,\text{Å}}}^{Z(1)=6,0}$; (7) $\langle S^2 \rangle = f(Q_7,Q_8)|_{\substack{Q_3=0,3553\,\text{Å}:\\Q_4=0,3538\,\text{Å}}}^{Z(1)=6,0}$; (8) $\langle S^2 \rangle = f(Q_7,Q_8)|_{\substack{Q_3=0,3553\,\text{Å}:\\Q_4=0,3538\,\text{Å}}}^{Z(1)=6,0}$; (9) $\langle S^2 \rangle = f(Q_7,Q_8)|_{\substack{Q_3=0,3553\,\text{Å}:\\Q_4=0,3538\,\text{Å}}}^{Z(1)=6,0}$; (10) $\langle S^2 \rangle = f(Q_7,Q_8)|_{\substack{Q_3=0,3553\,\text{Å}:\\Q_4=0,3538\,\text{Å}}}^{Z(1)=6,0}$; (11) $\langle S^2 \rangle = f(Q_7,Q_8)|_{\substack{Q_3=0,3553\,\text{Å}:\\Q_4=0,3538\,\text{Å}}}^{Z(1)=6,0}$; (12) $\langle S^2 \rangle = f(Q_7,Q_8)|_{\substack{Q_3=0,3553\,\text{Å}:\\Q_4=0,3538\,\text{Å}}}^{Z(1)=6,0}$; (13) $\langle S^2 \rangle = f(Q_7,Q_8)|_{\substack{Q_3=0,3553\,\text{Å}:\\Q_4=0,3538\,\text{Å}}}^{Z(1)=6,0}$; (13) $\langle S^2 \rangle = f(Q_7,Q_8)|_{\substack{Q_3=0,3553\,\text{Å}:\\Q_3=0,3538\,\text{Å}}}^{Z(1)=6,0}$; (13) $\langle S^2 \rangle = f(Q_7,Q_8)|_{\substack{Q_3=0,3538\,\text{Å}:\\Q_3=0,3538\,\text{Å}}}^{Z(1)=6,0}$

мальными координатами: $Q_3 = 0,3553 \, \text{Å}$ — смещение апексного иона кислорода вдоль оси z; $Q_4 = 0,3538 \, \text{Å}$ — смещение центрального иона кобальта из базовой плоскости пирамиды вдоль оси z; $Q_7 = 0,0221 \, \text{Å}$ — искажения ян-теллеровского типа, $Q_8 = 0,1529 \, \text{Å}$ — искажение базовой плоскости пирамиды, моделирующее гофрировку плоскости (см. табл. 2 и рис. 1). Очевидно, что наиболее значительными по величине являются Q_3 и Q_4 .

На рис. 8 представлены спиновые диаграммы, рассчитанные для двух различных значений эффективного заряда ядра $Z_{\rm eff}^{(1)}=6,0\,$ и $Z_{\rm eff}^{(2)}=6,1,\,$ которые соответствуют состояниям иона кобальта со спином $S=1\,$ и $2\,$ (на рис. 7 эти точки указаны стрелками) и находятся вблизи точки спинового перехода. Для диаграмм первого (см. рис. 8(a) и 8(b)) вида варьируемыми параметрами являются нормальные искажения $Q_3\,$ и $Q_4\,$, тогда как величины низкосимметричных искажений $Q_7\,$ и $Q_8\,$ постоянны и равны $Q_7=0,0221\,$ Å и $Q_8=0,1529\,$ Å. Диаграммы второго вида (см. рис. 8(6) и 8(r)) построены так, что $Q_3\,$ и $Q_4\,$ являются константами, а $Q_7\,$ и $Q_8\,$ варьируются. Точками отмечены состояния иона кобальта $Co^{3+}\,$ в соединении $GdBaCo_2O_{5,5}\,$ (см. табл. $2\,$ в Приложении).

Спиновая диаграмма на рис. 8(a) в широком диапазоне изменения параметров Q_4 и Q_3 демонстрирует область состояния с промежуточным спином. Ион кобальта находится в области «тройной точки», т.е. в области спиновой нестабильности: увеличение Q_3 и уменьшение Q_4 приводит к стабилизации состояния со спином S=1, уменьшение Q_3 — к спиновому переходу $IS \to LS$, а увеличение Q_4 — к спиновому переходу $IS \to LS$. Аналогичная ситуация показана и на диаграмме на рис. 8(b). Ион кобальта находится в переходной области IS:HS, и уменьшение искажения Q_4 приводит к состоянию со спином S=1.

Очевидно, что ромбические искажения Q_7 (искажения ян-теллеровского типа) стабилизируют состояние со спином S=1 (см. рис. 8(6)) в области $0 \le Q_7 < 0.015$. Нарастание смещений $Q_7 > 0.015$ приводит к спиновому переходу IS \rightarrow HS . При этом искажения типа гофрировки плоскости Q_8 не оказывают определяющего значения на спиновое состояние комплекса. В заключение отметим, что спиновая диаграмма, построенная на плоскости тех же параметров, но для значения эффективного заряда ядра $Z_{\rm eff}$ (рис. $8(\Gamma)$), показывает стабильное высокоспиновое состояние.

5. Выводы

Для исследования основных спиновых состояний координационных комплексов [ML_N] произвольной симметрии предложена схема построения спиновых диаграмм. В рамках МТКП выполнен анализ спиновых диаграмм, рассчитанных для ионов с электронными конфигурациями $3d^4$, $3d^5$ и $3d^6$, помещенных в пира-

мидальное окружение. Анализ показал, что различные деформации пирамидального комплекса инициируют различные сценарии поведения основного спинового состояния иона металла. Обнаружены области смешанных спиновых состояний типа HS:LS, IS:LS, HS:IS, а также HS:IS:LS, которые реализуются для всех изученных конфигураций вследствие спин-орбитального взаимодействия, сопоставимого с кристаллическим полем в вышеуказанных областях. Спиновая подсистема в окрестности таких областей крайне чувствительна к деформациям координационного комплекса. Показано, что для иона кобальта, расположенного в пирамидальном комплексе в соединении редкоземельного слоистого кобальтита GdBaCo₂O_{5.5}, состояние с промежуточным спином может быть стабилизировано смещением апексного кислорода вдоль оси z.

Приложение

Искажения пирамидального комплекса, представленного на рис. 1, описываются 18 нормальными координатами, которые преобразуются по неприводимым представлениям группы симметрии $C_{4\nu}$ (см. табл. 1). Нумерация координат ионов в таблице соответствует нумерации ионов на рис. 1.

Таблица 1. Нормальные координаты координационного комплекса [ML_5], выраженные через декартовы координаты смещения

Нормальные	Тип сим-	Выражение через декартовы
координаты	метрии	смещения
Q_1	$A_{ m l}$	$x_1 + x_2 - x_3 - x_4 - y_1 + y_2 + y_3 - y_4$
		$\sqrt{8}$
Q_2	$A_{ m l}$	$(z_1 + z_2 + z_3 + z_4)/2$
Q_3	$A_{\mathbf{l}}$	z_5
Q_4	$A_{\mathbf{l}}$	^z 6
Q ₅	A_2	$\frac{x_1 - x_2 - x_3 + x_4 + y_1 + y_2 - y_3 - y_4}{\sqrt{8}}$
		√8
<i>Q</i> ₆	B_{l}	$\frac{x_1 + x_2 - x_3 - x_4 + y_1 - y_2 - y_3 + y_4}{\sqrt{8}}$
		√8
<i>Q</i> ₇	B ₂	$\frac{x_1 - x_2 - x_3 + x_4 - y_1 - y_2 + y_3 + y_4}{\sqrt{8}}$
		√8
Q_8	B_2	$(z_1+z_3-z_2-z_4)/2$
Q_9	E	$(x_1 + x_3 - y_1 - y_3)/2$
Q_{10}		$(-x_2 - x_4 + y_2 + y_4)/2$
Q_{11}	E	$(-x_2-x_4-y_2-y_4)/2$
Q_{12}		$(x_1 + x_3 + y_1 + y_3)/2$
Q_{13}	E	$(z_1 - z_3) / \sqrt{2}$
Q_{14}		$(-z_2 + z_4) / \sqrt{2}$
<i>Q</i> ₁₅	E	$(x_5 - y_5) / \sqrt{2}$
Q_{16}		$(x_5 + y_5) / \sqrt{2}$
<i>Q</i> ₁₇	Е	$(x_6 - y_6) / \sqrt{2}$
Q ₁₈		$(x_6 + y_6) / \sqrt{2}$

Таблица 2. Искажения координационного комплекса $[{\rm CoO}_5]^{7-}$, расположенного в кристаллической структуре ${\rm GdBaCo}_2{\rm O}_{5,5}$, выраженные через декартовы координаты смещения

$$\left[\text{CoO}_{5}\right]^{7-}$$

 $Q_3(A_1) = z_5 = 0.3553 \text{ Å}$ $Q_4(A_1) = z_6 = 0.3538 \text{ Å}$

 $Q_7(B_2) = (x_1 - x_2 - x_3 + x_4 - y_1 - y_2 + y_3 + y_4) / \sqrt{8} = 0,0221 \text{ Å}$ $Q_8(B_2) = (z_1 + z_3 - z_2 - z_4) / 2 = 0,1529 \text{ Å}$

Работа выполнена при частичной поддержке гранта НАНУ-РФФД №142 и гранта НАНУ №91/12-H.

- 1. J.M. Lehn, Science 295, 2400 (2002).
- 2. M.D. Hollingsworth, Science 295, 2410 (2002).
- 3. Е.С. Житлухина, К.В. Ламонова, С.М. Орел, Ю.Г. Пашкевич, *ФНТ* **31**, 1266 (2005) [*Low Temp. Phys.* **31**, 963 (2005)].
- 4. E.S. Zhitlukhina, K.V. Lamonova, S.M. Orel, P Lemmensand, and Yu.G. Pashkevich, *J. Phys.: Condens. Matter* **19**, 156216 (2007).
- 5. Р.Ю. Бабкин, К.В. Ламонова, С.М. Орел, Ю.Г. Пашкевич, *Опт. и спектр.* **107**, 13 (2009).
- K. Lamonova, E. Zhitlukhina, R. Babkin, S. Orel, S. Ovchinnikov, and Y. Pashkevich, *J. Phys. Chem. A* 115, 13596 (2011).
- 7. A. Sommerfeld and G.Z. Wentzel, Phys. 7, 86 (1921).
- 8. J. Bowen and R Malliken, Nature 114, 380, (1924).
- 9. L. Pauling, Proc. Roy. Soc. A 114, 181 (1927).
- 10. J.C. Slater, Phys. Rev. 36, 57 (1930).
- 11. W. Angus, Proc. Roy. Soc. A 136, 569 (1932).
- 12. K. Kohlrausch, Acta Phys. Austr. 3, 452 (1950).
- С.С. Бацанов, Л.Н. Мазалов, В.И. Чирков, Изв. СО АН СССР 2, 121 (1961).
- 14. В.С. Урусов, *ЖСХ* **3**, 437 (1962).
- 15. М.Е. Ельяшевич, *Атомная и молекулярная спектроско- пия*, Физматгиз, Москва (1962).
- С.С. Бацанов, Р.А. Звягина, Интегралы перекрывания и проблема эффективных зарядов, Наука, Новосибирск (1966).
- A. Stoklosa, J. Zajecki, and S.S. Kurek, *Materials Science-Poland* 22, 1 (2004).
- 18. Р.Ю. Бабкин, К.В. Ламонова, С.М. Орел, Ю.Г. Пашкевич, В.Ф. Мещеряков, *Опт. и спектр.* **112**, 206 (2012).
- С.В. Вонсовский, С.В. Грум-Гржимайло, В.И. Черепанов, А.Н. Мень, Д.Т. Свиридов, Ю.Ф. Смирнов, А.Е. Ни-

- кифоров, *Теория кристаллического поля и оптические* спектры примесных ионов с незаполненной *d-оболочкой*, Наука, Москва (1969).
- 20. А.М. Стоунхем, *Теория дефектов в твердых телах*, Наука, Москва (1978).
- 21. М.Д. Глинчук, М.Ф. Дейген, Электрические эффекты в радиоспектроскопии: электронный парамагнитный, двойной электронно-ядерный и параэлектрический резонансы, Наука, Москва (1981).
- 22. C. Frontera, J.L. García-Muñoz, A. Llobet, and M.Á.G. Aranda, *Phys. Rev. B* **65**, 180405 (2002).
- 23. D.D. Khalyavin, S.N. Barilo, S.V. Shiryaev, G.L. Bychkov, I.O. Troyanchuk, A. Furrer, P. Allenspach, H. Szymczak, and R. Szymczak, *Phys. Rev. B* **67**, 214421 (2003).

The spin state fluctuations of 3*d* ions near the «triple points»

E.S. Zhitlukhina, K.V. Lamonova, S.M. Orel, and Yu.G. Pashkevich

The spin states of 3d ions placed in an arbitrarily distorted coordination complex are investigated within the semiempirical modified crystal-field theory. A scheme for constructing spin-state diagrams is presented. Spin-state diagrams are obtained for transition metal ions with electron configurations 3d⁴, 3d⁵, and 3d⁶ placed in a pyramidal environment. The spin-state diagrams for all configurations studied display so-called "triple points", i.e., the regions where the spin states are mixed in equal proportions. The spin-state evolution of a five-coordinated Co³⁺ ion in the layered rare-earth cobaltite GdBaCo₂O_{5.5} is studied. It is found that the intermediate spin state of the Co³⁺ ion is stabilized by the apex oxygen displacement along the pyramidal axis.

PACS: 71.70.Ch Crystal and ligand fields;

71.70.Ej Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect;

71.70.Fk Strain-induced splitting;

75.30.Wx Spin crossover.

Keywords: theory of crystal field, calculations of the electronic spectra, spin transitions, the spin-orbit interaction.