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1. Introduction

The history of investigation of longitudinal
inhomogeneous nondepolarizing media returns us to 
Ref. [1]. The study of anisotropic properties of this type 
of media in time of publication [1] was difficult as 
caused by the complexity of the mathematical apparatus 
used. This problem was solved using the Jones and 
Mueller matrix methods [2, 3]. For the first time, the 
Jones matrix of longitudinal inhomogeneous anisotropic 
medium was presented in [4]. R. Azzam made the next 
step in [5], where he considered the type of longitudinal 
inhomogeneous medium with linear phase anisotropy. In 
particular, in [6-8] the examples of these media were 
considered: cholesteric and twisted nematic liquid 
crystals. However, the studies of anisotropic properties 
of this type of media were made only partially because 
of complexity of these objects. Specifically, such 
properties as the solution of spectral problem and 
orthogonalization properties were missed.

Development of the modern display technology 
results in the fact that these types of liquid crystals are 
very widely used [9-11]. Optical anisotropy of these 
media is in the basis of using various liquid crystals in 
computer displays and indicator devices. Therefore, the 
study of anisotropic properties of longitudinal 
inhomogeneous anisotropic medium is very important 
problem for display technology. The case of longitudinal 
inhomogeneous nondepolarizing media with linear phase 
anisotropy, which in particular includes cholesterics and 
twisted nematics, was solved in [12, 13]. This paper 
generalizes the results obtained in [12, 13] for the case 
of the media characterized by both linear and circular 
phase anisotropy (elliptic phase anisotropy).

2. Polarimetric models of media 

Nondepolarizing longitudinal inhomogeneous medium 
with elliptical phase anisotropy can be equivalently 
represented as a sequence of molecular planes that 
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consist of elongated molecules, oriented parallel to each 
other. At the same time, such molecules possess inherent 
chirality. Each of these molecular planes can be present 
as a thin phase plate with elliptical phase anisotropy 
(elliptical birefringence). The fast (slow) axis of the 
plate is parallel (perpendicular) to the direction along 
which directed is the plane of the molecules that is 
considered, and lies entirely in this plane. In these 
media, the axis of each following molecular layer is 
rotated relative to the previous one by some angle 0 [7]:

p
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

2
0 , (1)

where p  is the step of helical structure in this medium 

(the shortest distance between the planes with the same 
orientation of molecules). Then, the molecular 
orientation of the plane in distance z from the input can 
be defined as:

z0 . (2)

Anisotropic properties of one molecular layer in 
this medium are described by the differential Jones 
matrix (in circular basis) [6]:
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And the anisotropic properties of this longitudinally 
inhomogeneous medium consisting of a sequence of 
molecular planes with a longitudinal size z are described 
by the integral Jones matrix (in linear basis):
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In Eqs (3) and (4), 0 0,   are magnitude of linear 

and circular birefringence per unit thickness in the 
direction of light propagation, respectively, and the 
following replacement is used: 

 200
2
0 4 A ,    xxC cos ,    xxS sin . 

Note that the integral matrix (4) can be obtained from 
the differential (3) by using the vector transfer equation 
and technique presented in [14].

3. Propagation of radiation with privileged states of 
polarization

One of the anisotropic properties of longitudinally 
inhomogeneous media that does not exist in a 

longitudinally homogeneous media is availability of the 
privileged polarization states. The term “privileged” was 
at first introduced in [7]. It means the state of 
polarization of eigenwaves in longitudinal homogeneous 
(untwisted) media of this type. 

Evolution of polarization states along the z axis of 
light propagation in anisotropic medium can be 
described by the first order differential equation for 
polarization complex variable [6]. For the case of 
longitudinally inhomogeneous medium with elliptical 
phase anisotropy, this equation is:
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where   is the complex variable that determines the 

light polarization state. Eq. (5) has a partial solution in 
the form:

zieK 02
2,12,1

 , (6)

where 2,1K  are privileged polarization states of light. 

Azimuth of orientation coincides with orientation of 
input molecular plane, and the angle of ellipticity of 
privileged states is determined as:
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These two privileged polarization states 2,1K  are 

orthogonal and elliptical in a general case, and 
transformation into two elliptical eigenpolarization for 
longitudinally inhomogeneous medium with elliptical 
phase anisotropy takes place when 0, 00  .

Eq. (6) describes the change of privileged 
polarization states of light propagation in the medium 
along the z axis. Since Eq. (5) is written for the 
differential Jones matrix in the circular basis (3), the 
azimuth and angle of ellipticity of polarization  2,1p

can be determined as:
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Graphical representation of (8) is shown in Fig. 1. 
From Eq. (6) and Fig. 1, we can see that the 

azimuths of privileged polarization states are changed by 
the law θp(1,2) = α0, and for each molecular plane they 
coincide with their principal axes, while the angle of 
ellipticity remains unchanged and is defined by Eq. (7). 
As a result of propagation of light with the privileged 
state of polarization along the z axis, this type of 
medium is characterized by efficiency of circular phase 
anisotropy with the magnitude of the relative angle φ0 = 
α0 (rad/mm). 
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Fig. 1. Evolution of the azimuth and angle of ellipticity in 
longitudinally inhomogeneous medium with elliptical phase 
anisotropy and parameters: δ0 = 1.22 rad/mm, α0 = 0.3 rad/mm, 
φ0 = 0.7 rad/mm; (a), (b) azimuth, (c), (d) angle of ellipticity 
for polarizations p1, p2, respectively.

4. The solution of the spectral problem

To analyze the basic anisotropic properties for the 
medium of this type, we need to find properties of their 
eigenwaves, i.e. to solve the spectral problem. For this, 
we use the relations represented in [14], which gives the 

solutions of the spectral problem for the integral (3) and 
differential (4) Jones matrices. As a result, 
eigenpolarization and eigenvalues for these matrices are 
as follows:
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where the following substitutions are used: 
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It follows from relations (9) that, as in the case of 
longitudinally inhomogeneous medium with linear phase 

anisotropy [13], the relation zeN
V

eT eV   (the relation 

occurs in homogeneous medium [14]) is no longer 
satisfied. Also, there is the dependence of the 
eigenvalues of the integral matrix on the angle 0 . 

However, as in the case of longitudinally homogeneous 
medium, these eigenvalues are the phase factors, and 
therefore only change the absolute phase of eigenwaves 
(their amplitude remains unchanged).

It follows from relation (10) that, like to the case of 
longitudinally inhomogeneous medium with linear phase 
anisotropy, the eigenpolarization depends on the value of 
z. Unlike homogeneous media, the eigenpolarization of 
the integral and differential Jones matrices are not equal. 
This leads to the fact that those values change with the 
coordinate z when light propagates from one to another 
molecular plane. Changes in the azimuth and angle of 
ellipticity for eigenpolarizations (basing on equation for 
azimuth and angle of ellipticity that are presented in [6]) 
with z values are shown in Fig. 2. 
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Fig. 2. Changes in the azimuth and angle of ellipticity with 
coordinate z along the axis of light propagation in 
longitudinally inhomogeneous medium with elliptical phase 
anisotropy and parameters δ0 = 1.22 rad/mm, α0 = 0.3 rad/mm, 
φ0 = 0.7 rad/mm for (a), (b) e1T and (c), (d) e2T –
eigenpolarizations, respectively.

As it follows from Figs 2a and 2c, the azimuths of 
eigenpolarizations are linear functions of z that are 

described by the equations: 
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in two cases. 1) When the angle of ellipticity of 
eigenpolarization takes the values 4/  that correspond 
to the circular polarization for which the concept of the 
azimuth is degenerated. 2) A jump of azimuth from the 
maximum (minimum) to the minimum (maximum) 
value, which corresponds to the mathematical properties 
of functions arctg and has no physical meaning. 

Dependences of the angles of ellipticity for both 
eigenpolarizations on z are not linear and periodic. It 
should be also noted that there are z values, at which the 
angle of ellipticity corresponds to linearly polarized 
waves. As a result, the integral Jones matrix of 
inhomogeneous medium coincides with the matrix of the 
linear phase plate with the value of the linear 
birefringence [15]:  44arccos M , and orientation of 

the axis of birefringence:  4342arctan MM , 

which coincides with the azimuth of one of 
eigenpolarizations. In addition, there are the values for 
which the angle of ellipticity corresponds to circularly 
polarized waves. That is, the integral Jones matrix 
coincides with the matrix of circular phase plate with a 
value of circular birefringence: z0 . 

From the condition   0arccos 44 M  [15] (which 

ensures the absence of linear phase anisotropy), we 
obtain that in this type of medium eigenpolarization 
becomes circular in the carrying value:
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(absence of circular phase anisotropy) yields the 
following relation that provides linear eigenpolarization: 
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2
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So, compared to longitudinally homogeneous media, the 
content of eigenvectors of Jones matrices in 
longitudinally inhomogeneous case changes. In 
particular, they describe the polarization of light waves 
in the input of medium that are reproduced at its output, 
if it’s specific thickness. As a result, these waves cannot 
be considered as eigenvectors in generally acceptable 
understanding. But specific monomolecular plane is 
homogeneous medium, so the eigenvectors of Jones 
matrices, of course, describe the state of polarization of 
its eigenwaves.

It also follows from Fig. 2 that eigenpolarization in 
this type of medium is always orthogonal, which can be 
checked by direct substitution of Eq. (10) into the 

condition 1  that is transformed into an identity 
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at any values of parameters: 0, 0, 0, z. When checking 
the possibility of degeneration of anisotropy in this type 
of inhomogeneous medium and substituting elements of 
the Jones matrix (4) into the condition 

  04 2112
2

1122  TTTT , we find that there is no 

parameter values (0, 0, 0, z), in which the anisotropy 
becomes degenerate.

5. Orthogonalization properties

Using the notion “orthogonalization properties of 
media”, we mean that for given polarization of input 
light the polarization of output one is orthogonal.

Implementation of orthogonalization properties of 
nondepolarizing media that are described by some Jones 
matrix was considered in [16]. Further, in work [17] it 
was obtained the relation on anisotropic parameters that 
provide existence of orthogonalization properties in 
specific types of media. As a result, for the existence of 
orthogonalization properties the inequality F > 0 should 
be valid, where F is as follows:
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In Eqs. (15), Xij, Yij are real and imaginary parts of 
the Jones matrix elements. If F = 0, then, for the 
existence of orthogonalization properties, an additional 
condition should be satisfied in elements of the Jones 
matrix. This condition has the form:
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But in the case when 02
1 R , the intensity of light, 

the polarization state of which in output becomes
orthogonal, equals zero. So, we have to check this
feature.

Substituting the elements of Jones matrix (4) for 
this type of longitudinally inhomogeneous media with
elliptical phase anisotropy, as a result we get the value of
F as a function of the anisotropy parameters 0, 0, 0

and thickness z. This dependence is shown in Fig. 3a for 
the thickness z = 2 mm and value of parameter of 
anisotropy φ0 = π/2 rad/mm. Presented in Fig. 3b is the 

dependence of F on the parameter of anisotropy 0  for 

some values of parameters 0, 0.

a

b

Fig. 3. Dependence of the function F on the anisotropy 
parameters (a) δ0, α0 and curve F = 0, (b) 0  at δ0 = π rad/mm 
for a medium with inhomogeneous elliptical phase anisotropy 
and parameters: φ0 = π/2 rad/mm, z = 2 mm.

Like to the case of an inhomogeneous medium with 
linear phase anisotropy, in this type of medium with 
parameters: φ0 = π/2 rad/mm, z = 2 mm, there exist 

several parameters of anisotropy 0 , 0  for which the 

medium might have orthogonalization properties. As an 
example, Fig. 3b demonstrates the section of curves in 
Fig. 3b at δ0 = π rad/mm, where we can find such value 
φ0 = π/2  rad/mm that gives 0F  . Substituting the 

above values of anisotropy 0 , 0 , 0  and values z = 

2 mm in Eq. (16), we obtain 3.832
1 R , and, therefore, 

at a given set of parameters 0 , 0 , 0 , z, the

corresponding type of medium characterized by 
orthogonalization properties.

We can find these states of polarization. To fulfil it, 
we shall consider the most general case when the input 
state of polarization is elliptical and described by the 
Jones vector [6]:
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where inp , inpe  are the azimuth and angle of ellipticity 

for the polarization ellipse of input light. Now, apply the 
basic equation of the Jones matrix method:

inpout TEE  , (18)
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where outE  are the Jones vectors of output light. Also, 

pass from Jones vectors to corresponding complex 
variables based on the relations )()( / inpxinpyinp EE , 

)()( / outxoutyout EE . As a result, we obtain the 

equation in the form: 

 inpinpoutinp ezf ,,,, 00   , (19)

where orthogonalization properties sold at 

1 
outinp . (20)

Substituting the above values of parameters of 
anisotropy and thickness of the medium in Eqs (17) to 
(20), we find that according to the classification 
presented in [14] this type of medium in a general case is 
characterized by continuum of polarization states that 
are orthogonalized. Examples of these polarizations 
(solutions of Eq. (5)) are elliptical and linear polarization 
states with parameters:  81.16inp ,  04.4inpe , and 

 7.7inp , respectively. It should be noted that these 

states of polarization coincide with the corresponding 
polarization states for longitudinal inhomogeneous 
medium with linear phase anisotropy that was described 
in [12].

6. Evolution of the states of polarization

Now we study the evolution of linear state of 
polarization along the z axis in a longitudinally 
inhomogeneous medium with elliptic phase anisotropy. 
In this case, we use the Mueller matrix method. In this 
method, an arbitrary linear state of polarization with 
azimuth inp  is described by the Stokes vectors:

 TinpinpinpS 02sin2cos1  . (21)

At the same time, the anisotropic properties of the 
medium are described by the integral Mueller matrix 
Eq. (22), which is obtained from the Jones matrix (4) 
using the method presented in [6]. 

Anisotropic properties of molecular layer in this 
method are described by the differential Mueller matrix:
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Matrix (23) can be obtained from the differentiated 

integral matrix (22) by using the equation 

1





 M

dz

dM
m  or the relation between the differential 

Jones matrix (3) and the differential Mueller matrix [5]. 
It should be noted that the differential matrix (23) differs 
from the corresponding matrix for a homogeneous 
medium with elliptical phase anisotropy [18] only by its 
dependence   on z. The state of polarization of output 
light can be found using the equation:

out inpS MS . (24)

Substituting (21) and (22) into (24), we get:
   zfzS inpout ,,,, 000  (25)

This equation describes the evolution of Stokes 
vectors, which present the input state of polarization 
with azimuth inp  along the axis z in a medium with 

anisotropy parameters 000 ,,  . If polarized light 

propagates in the medium, it is very informative to 
consider evolution of the azimuth O  and angle of 

ellipticity Oe  with z coordinates in direction of light 

propagation, which are defined as follows:
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a

b

Fig. 4. Evolution of linearly polarized light with the azimuth  
inp = –0.8 rad in longitudinally inhomogeneous  medium with 
elliptical phase anisotropy and parameter: δ0 = 1.22 rad/mm, 
α0 = 0.3 rad/mm, φ0 = 0.4 rad/mm. a) Evolution of azimuth, 
b) evolution of angle of ellipticity.

Fig. 4 presents the evolution of polarization 
parameters O and eO for the cases of longitudinally 
inhomogeneous medium with elliptical phase anisotropy. 

From Fig. 4, we have that in this case the azimuth 
is aperiodic function of z coordinates in contrast to that 
in homogeneous medium of this type that have been 
studied in [17]. The angle of ellipticity is a periodic 
function of z coordinates as in the case of homogeneous 
media of this type [17]. The period of ellipticity angle in 
this type of media should be equal to the thickness z of 
the medium in which eigenpolarization becomes circular 
(see Eq. (12)) at k = 1. Similar results were obtained in 
[5, 6] for longitudinally inhomogeneous medium with 
linear phase anisotropy. 

7. Conclusions

Based on the Jones and Mueller matrix methods, the 
anisotropic properties of longitudinally inhomogeneous 
nondepolarizing media with elliptical phase anisotropy 
have been analyzed.

We have shown that the vector transfer equation for 
this type of media contains the partial solutions that 
describe evolution of privileged states of polarizations. 
In particular, it appears that these privileged states of 
polarization propagate in this type of media in such a 
way like that in the medium characterized by circular 
phase anisotropy. Namely, azimuths of polarization 
coincide with the principal axes of the specific molecular 
plane and the angles of ellipticity remain unchanged. 

By solving the spectral problem, we have found 
that the exponential relationship between the eigenvalues 
of differential and integral Jones matrices derived in [4] 
is no longer held. However, the eigenvalues in this case 
remain phase factors. This results in the fact that the 
concept of eigenpolarizations in the case of 
longitudinally inhomogeneous nondepolarizing media is 
transformed in comparison with the case of 
homogeneous media. This is particularly evident in their 
dependence on z coordinates. This means that the 
traditional concept of eigenpolarizations is valid only for 
definite thickness of the medium. 

Next, we have shown that the infinite numbers of 
input states of polarization can be orthogonalized by the 
medium of this class. 

Studying evolution of linear polarization in this 
type of medium, it is shown that in comparison with the 
same type of homogeneous media the azimuth of 
polarization becomes a nonperiodic function of z
coordinates. However, the angle of ellipticity is periodic 
with a definite period. 

Summarizing, it has been found that the anisotropic 
properties of this type of media are qualitatively 
equivalent to the similar properties of longitudinally 
inhomogeneous media with linear phase anisotropy. This 
is due to the fact that the circular phase anisotropy is 
always a longitudinally homogeneous. In fact, this is 
natural generalization of the first equivalence theorem 
[2] for the case of longitudinally inhomogeneous media.
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Abstract. In this paper, basing on the anisotropic properties of longitudinal inhomogeneous nondepolarizing media with linear phase anisotropy, more general type of media with elliptical phase anisotropy was studied. The features of propagation of light with privileged states of polarization were observed. Transformation of polarization states of eigenwaves along z axes of light propagation was studied. The orthogonalization properties inherent to this type of medium were obtained. Evolution of linear polarized light in this media was presented and discussed.
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1. Introduction 

The history of investigation of longitudinal inhomogeneous nondepolarizing media returns us to Ref. [1]. The study of anisotropic properties of this type of media in time of publication [1] was difficult as caused by the complexity of the mathematical apparatus used. This problem was solved using the Jones and Mueller matrix methods [2, 3]. For the first time, the Jones matrix of longitudinal inhomogeneous anisotropic medium was presented in [4]. R. Azzam made the next step in [5], where he considered the type of longitudinal inhomogeneous medium with linear phase anisotropy. In particular, in [6-8] the examples of these media were considered: cholesteric and twisted nematic liquid crystals. However, the studies of anisotropic properties of this type of media were made only partially because of complexity of these objects. Specifically, such properties as the solution of spectral problem and orthogonalization properties were missed.


Development of the modern display technology results in the fact that these types of liquid crystals are very widely used [9-11]. Optical anisotropy of these media is in the basis of using various liquid crystals in computer displays and indicator devices. Therefore, the study of anisotropic properties of longitudinal inhomogeneous anisotropic medium is very important problem for display technology. The case of longitudinal inhomogeneous nondepolarizing media with linear phase anisotropy, which in particular includes cholesterics and twisted nematics, was solved in [12, 13]. This paper generalizes the results obtained in [12, 13] for the case of the media characterized by both linear and circular phase anisotropy (elliptic phase anisotropy).


2. Polarimetric models of media 


Nondepolarizing longitudinal inhomogeneous medium with elliptical phase anisotropy can be equivalently represented as a sequence of molecular planes that consist of elongated molecules, oriented parallel to each other. At the same time, such molecules possess inherent chirality. Each of these molecular planes can be present as a thin phase plate with elliptical phase anisotropy (elliptical birefringence). The fast (slow) axis of the plate is parallel (perpendicular) to the direction along which directed is the plane of the molecules that is considered, and lies entirely in this plane. In these media, the axis of each following molecular layer is rotated relative to the previous one by some angle (0 [7]:
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 is the step of helical structure in this medium (the shortest distance between the planes with the same orientation of molecules). Then, the molecular orientation of the plane in distance z from the input can be defined as:
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Anisotropic properties of one molecular layer in this medium are described by the differential Jones matrix (in circular basis) [6]:
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(3)


And the anisotropic properties of this longitudinally inhomogeneous medium consisting of a sequence of molecular planes with a longitudinal size z are described by the integral Jones matrix (in linear basis):
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In Eqs (3) and (4), 
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 are magnitude of linear and circular birefringence per unit thickness in the direction of light propagation, respectively, and the following replacement is used: 
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. Note that the integral matrix (4) can be obtained from the differential (3) by using the vector transfer equation and technique presented in [14].


3. Propagation of radiation with privileged states of polarization


One of the anisotropic properties of longitudinally inhomogeneous media that does not exist in a longitudinally homogeneous media is availability of the privileged polarization states. The term “privileged” was at first introduced in [7]. It means the state of polarization of eigenwaves in longitudinal homogeneous (untwisted) media of this type. 


Evolution of polarization states along the z axis of light propagation in anisotropic medium can be described by the first order differential equation for polarization complex variable [6]. For the case of longitudinally inhomogeneous medium with elliptical phase anisotropy, this equation is:
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where 
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 is the complex variable that determines the light polarization state. Eq. (5) has a partial solution in the form:
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where 
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 are privileged polarization states of light. Azimuth of orientation coincides with orientation of input molecular plane, and the angle of ellipticity of privileged states is determined as:
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These two privileged polarization states 
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 are orthogonal and elliptical in a general case, and transformation into two elliptical eigenpolarization for longitudinally inhomogeneous medium with elliptical phase anisotropy takes place when 
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Eq. (6) describes the change of privileged polarization states of light propagation in the medium along the z axis. Since Eq. (5) is written for the differential Jones matrix in the circular basis (3), the azimuth and angle of ellipticity of polarization 
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Graphical representation of (8) is shown in Fig. 1. 


From Eq. (6) and Fig. 1, we can see that the azimuths of privileged polarization states are changed by the law θp(1,2) = α0, and for each molecular plane they coincide with their principal axes, while the angle of ellipticity remains unchanged and is defined by Eq. (7). As a result of propagation of light with the privileged state of polarization along the z axis, this type of medium is characterized by efficiency of circular phase anisotropy with the magnitude of the relative angle φ0 = α0 (rad/mm). 
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Fig. 1. Evolution of the azimuth and angle of ellipticity in longitudinally inhomogeneous medium with elliptical phase anisotropy and parameters: δ0 = 1.22 rad/mm, α0 = 0.3 rad/mm, φ0 = 0.7 rad/mm; (a), (b) azimuth, (c), (d) angle of ellipticity for polarizations (p1, (p2, respectively.

4. The solution of the spectral problem


To analyze the basic anisotropic properties for the medium of this type, we need to find properties of their eigenwaves, i.e. to solve the spectral problem. For this, we use the relations represented in [14], which gives the solutions of the spectral problem for the integral (3) and differential (4) Jones matrices. As a result, eigenpolarization and eigenvalues for these matrices are as follows:
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where the following substitutions are used: 
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It follows from relations (9) that, as in the case of longitudinally inhomogeneous medium with linear phase anisotropy [13], the relation 
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 (the relation occurs in homogeneous medium [14]) is no longer satisfied. Also, there is the dependence of the eigenvalues of the integral matrix on the angle 
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. However, as in the case of longitudinally homogeneous medium, these eigenvalues are the phase factors, and therefore only change the absolute phase of eigenwaves (their amplitude remains unchanged).


It follows from relation (10) that, like to the case of longitudinally inhomogeneous medium with linear phase anisotropy, the eigenpolarization depends on the value of z. Unlike homogeneous media, the eigenpolarization of the integral and differential Jones matrices are not equal. This leads to the fact that those values change with the coordinate z when light propagates from one to another molecular plane. Changes in the azimuth and angle of ellipticity for eigenpolarizations (basing on equation for azimuth and angle of ellipticity that are presented in [6]) with z values are shown in Fig. 2. 
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Fig. 2. Changes in the azimuth and angle of ellipticity with coordinate z along the axis of light propagation in longitudinally inhomogeneous medium with elliptical phase anisotropy and parameters δ0 = 1.22 rad/mm, α0 = 0.3 rad/mm, φ0 = 0.7 rad/mm for (a), (b) (e1T and (c), (d) (e2T – eigenpolarizations, respectively.

As it follows from Figs 2a and 2c, the azimuths of eigenpolarizations are linear functions of z that are described by the equations: 
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 that correspond to the circular polarization for which the concept of the azimuth is degenerated. 2) A jump of azimuth from the maximum (minimum) to the minimum (maximum) value, which corresponds to the mathematical properties of functions arctg and has no physical meaning. 


Dependences of the angles of ellipticity for both eigenpolarizations on z are not linear and periodic. It should be also noted that there are z values, at which the angle of ellipticity corresponds to linearly polarized waves. As a result, the integral Jones matrix of inhomogeneous medium coincides with the matrix of the linear phase plate with the value of the linear birefringence [15]: 
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, which coincides with the azimuth of one of eigenpolarizations. In addition, there are the values for which the angle of ellipticity corresponds to circularly polarized waves. That is, the integral Jones matrix coincides with the matrix of circular phase plate with a value of circular birefringence: 
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 [15] (which ensures the absence of linear phase anisotropy), we obtain that in this type of medium eigenpolarization becomes circular in the carrying value:
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Similarly, the condition 
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 (absence of circular phase anisotropy) yields the following relation that provides linear eigenpolarization: 
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where 
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. So, compared to longitudinally homogeneous media, the content of eigenvectors of Jones matrices in longitudinally inhomogeneous case changes. In particular, they describe the polarization of light waves in the input of medium that are reproduced at its output, if it’s specific thickness. As a result, these waves cannot be considered as eigenvectors in generally acceptable understanding. But specific monomolecular plane is homogeneous medium, so the eigenvectors of Jones matrices, of course, describe the state of polarization of its eigenwaves.


It also follows from Fig. 2 that eigenpolarization in this type of medium is always orthogonal, which can be checked by direct substitution of Eq. (10) into the condition 
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 that is transformed into an identity at any values of parameters: (0, (0, (0, z. When checking the possibility of degeneration of anisotropy in this type of inhomogeneous medium and substituting elements of the Jones matrix (4) into the condition 
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, we find that there is no parameter values ((0, (0, (0, z), in which the anisotropy becomes degenerate.


5. Orthogonalization properties

Using the notion “orthogonalization properties of media”, we mean that for given polarization of input light the polarization of output one is orthogonal.


Implementation of orthogonalization properties of nondepolarizing media that are described by some Jones matrix was considered in [16]. Further, in work [17] it was obtained the relation on anisotropic parameters that provide existence of orthogonalization properties in specific types of media. As a result, for the existence of orthogonalization properties the inequality F > 0 should be valid, where F is as follows:
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And
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(15)


In Eqs. (15), Xij, Yij are real and imaginary parts of the Jones matrix elements. If F = 0, then, for the existence of orthogonalization properties, an additional condition should be satisfied in elements of the Jones matrix. This condition has the form:
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But in the case when 
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, the intensity of light, the polarization state of which in output becomes orthogonal, equals zero. So, we have to check this feature.


Substituting the elements of Jones matrix (4) for this type of longitudinally inhomogeneous media with elliptical phase anisotropy, as a result we get the value of F as a function of the anisotropy parameters (0, (0, (0 and thickness z. This dependence is shown in Fig. 3a for the thickness z = 2 mm and value of parameter of anisotropy φ0 = π/2 rad/mm. Presented in Fig. 3b is the dependence of F on the parameter of anisotropy 
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Fig. 3. Dependence of the function F on the anisotropy parameters (a) δ0, α0 and curve F = 0, (b) (0  at δ0 = π rad/mm for a medium with inhomogeneous elliptical phase anisotropy and parameters: φ0 = π/2 rad/mm, z = 2 mm.

Like to the case of an inhomogeneous medium with linear phase anisotropy, in this type of medium with parameters: φ0 = π/2 rad/mm, z = 2 mm, there exist several parameters of anisotropy 
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 for which the medium might have orthogonalization properties. As an example, Fig. 3b demonstrates the section of curves in Fig. 3b at δ0 = π rad/mm, where we can find such value φ0 = π/2  rad/mm that gives 

[image: image56.wmf]0


F


=


. Substituting the above values of anisotropy 

[image: image57.wmf]0


d


, 

[image: image58.wmf]0


a


, 

[image: image59.wmf]0


j


 and values z = 2 mm in Eq. (16), we obtain 
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, z, the corresponding type of medium characterized by orthogonalization properties.

We can find these states of polarization. To fulfil it, we shall consider the most general case when the input state of polarization is elliptical and described by the Jones vector [6]:
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where 
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 are the azimuth and angle of ellipticity for the polarization ellipse of input light. Now, apply the basic equation of the Jones matrix method:
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where 
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 are the Jones vectors of output light. Also, pass from Jones vectors to corresponding complex variables based on the relations 
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. As a result, we obtain the equation in the form: 
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where orthogonalization properties sold at 
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Substituting the above values of parameters of anisotropy and thickness of the medium in Eqs (17) to (20), we find that according to the classification presented in [14] this type of medium in a general case is characterized by continuum of polarization states that are orthogonalized. Examples of these polarizations (solutions of Eq. (5)) are elliptical and linear polarization states with parameters: 
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, respectively. It should be noted that these states of polarization coincide with the corresponding polarization states for longitudinal inhomogeneous medium with linear phase anisotropy that was described in [12].


6. Evolution of the states of polarization

Now we study the evolution of linear state of polarization along the z axis in a longitudinally inhomogeneous medium with elliptic phase anisotropy. In this case, we use the Mueller matrix method. In this method, an arbitrary linear state of polarization with azimuth 
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At the same time, the anisotropic properties of the medium are described by the integral Mueller matrix Eq. (22), which is obtained from the Jones matrix (4) using the method presented in [6]. 


Anisotropic properties of molecular layer in this method are described by the differential Mueller matrix:
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Matrix (23) can be obtained from the differentiated integral matrix (22) by using the equation 
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 or the relation between the differential Jones matrix (3) and the differential Mueller matrix [5]. It should be noted that the differential matrix (23) differs from the corresponding matrix for a homogeneous medium with elliptical phase anisotropy [18] only by its dependence 
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 on z. The state of polarization of output light can be found using the equation:
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Substituting (21) and (22) into (24), we get:
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This equation describes the evolution of Stokes vectors, which present the input state of polarization with azimuth 
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 along the axis z in a medium with anisotropy parameters 
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. If polarized light propagates in the medium, it is very informative to consider evolution of the azimuth 
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 with z coordinates in direction of light propagation, which are defined as follows:
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Fig. 4. Evolution of linearly polarized light with the azimuth  (inp = –0.8 rad in longitudinally inhomogeneous  medium with elliptical phase anisotropy and parameter: δ0 = 1.22 rad/mm, α0 = 0.3 rad/mm, φ0 = 0.4 rad/mm. a) Evolution of azimuth, b) evolution of angle of ellipticity.

Fig. 4 presents the evolution of polarization parameters (O and eO for the cases of longitudinally inhomogeneous medium with elliptical phase anisotropy. 


From Fig. 4, we have that in this case the azimuth is aperiodic function of z coordinates in contrast to that in homogeneous medium of this type that have been studied in [17]. The angle of ellipticity is a periodic function of z coordinates as in the case of homogeneous media of this type [17]. The period of ellipticity angle in this type of media should be equal to the thickness z of the medium in which eigenpolarization becomes circular (see Eq. (12)) at k = 1. Similar results were obtained in [5, 6] for longitudinally inhomogeneous medium with linear phase anisotropy. 


7. Conclusions


Based on the Jones and Mueller matrix methods, the anisotropic properties of longitudinally inhomogeneous nondepolarizing media with elliptical phase anisotropy have been analyzed.


We have shown that the vector transfer equation for this type of media contains the partial solutions that describe evolution of privileged states of polarizations. In particular, it appears that these privileged states of polarization propagate in this type of media in such a way like that in the medium characterized by circular phase anisotropy. Namely, azimuths of polarization coincide with the principal axes of the specific molecular plane and the angles of ellipticity remain unchanged. 


By solving the spectral problem, we have found that the exponential relationship between the eigenvalues of differential and integral Jones matrices derived in [4] is no longer held. However, the eigenvalues in this case remain phase factors. This results in the fact that the concept of eigenpolarizations in the case of longitudinally inhomogeneous nondepolarizing media is transformed in comparison with the case of homogeneous media. This is particularly evident in their dependence on z coordinates. This means that the traditional concept of eigenpolarizations is valid only for definite thickness of the medium. 


Next, we have shown that the infinite numbers of input states of polarization can be orthogonalized by the medium of this class. 


Studying evolution of linear polarization in this type of medium, it is shown that in comparison with the same type of homogeneous media the azimuth of polarization becomes a nonperiodic function of z coordinates. However, the angle of ellipticity is periodic with a definite period. 


Summarizing, it has been found that the anisotropic properties of this type of media are qualitatively equivalent to the similar properties of longitudinally inhomogeneous media with linear phase anisotropy. This is due to the fact that the circular phase anisotropy is always a longitudinally homogeneous. In fact, this is natural generalization of the first equivalence theorem [2] for the case of longitudinally inhomogeneous media.
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