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Abstract. We studied ohmic contacts Au-Pd-Ti-Pd-n-AlN and Au-TiB2-Al-Ti-n-GaN 

with contact resistivity ρс = 0.18 cm2 and 24 cm106.1   , respectively, and the effect 
of microwave treatment on their electrophysical properties. After microwave treatment 
for time t up to 1000 s, the contact resistivity dropped by 16% (60%) in the contact to 
AlN (GaN). This seems to result from increase of the number of structural defects in the 
semiconductor near-contact region caused by relaxation of intrinsic stresses induced by 
microwave radiation.
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1. Introduction

Interest in IIIN compound semiconductor devices has 
quickened in the last few years. Along with the 
development of light-emitting diodes, power devices and 
various microwave diodes and transistors, the above 
materials are considered for production of solar blind 
photodetectors operating in UV [1-5]. Efficient appli-
cation of all the above-mentioned devices and facilities 
cannot be achieved without high-reliability thermostable 
low-resistance ohmic contacts. However, the development 
of ohmic contacts to wide-gap IIIN semiconductors still 
remains a complicated physico-technological problem. 
Even in the present-day manufacturing technology of 
gallium-nitride light-emitting diodes and field-effect 
transistors with high mobility of charge carriers in the 
channel based on GaN/AlGaN heterostructures, 
fabrication of ohmic contacts is the most vulnerable 

technological process that often does not enable one to 
predict parameter reproducibility.

A number of contact systems are applied now to 
GaN [1, 4-6], while ohmic contacts to AlN remain 
practically unexplored. The authors of [7, 8] inform on 
linear IV curves in an alloyed ohmic contact In-AlN [6] 
and Ni-AlN [7]. There are no other data on parameters of 
ohmic contacts to AlN in the above papers. In [9, 10] a 
possibility of formation of ohmic contact to high-
resistance n-AlN film grown on a heavily doped n+-4H-
SiC substrate was shown as well as temperature 
dependence of contact resistivity, ρc(T), was measured. A 
high density of structural defects was observed in the 
near-contact region of n-AlN grown on a n+-4H-SiC 
substrate, just as in ohmic contacts to n-GaN grown on 
sapphire. Such objects are of interest for studying the 
effect of various radiation actions (in particular, 
microwave one) on their properties.
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2. Specimens and methods of investigation 

We prepared test structures Au(100 nm)-Pd(70 nm)-
Ti(50 nm)-Pd(30 nm)-n-AlN-n+-4H-SiC and Au(100 nm)-
TiB2(100 nm)-Al(60 nm)-Ti(30 nm)-n-GaN-Al2O3. The 
contact metallizations were formed on substrates (heated 
to 350°C) by using layer-by-layer vacuum deposition of 
metal films in a single technological cycle (n-AlN) and 
magnetron sputtering (n-GaN). After this, the specimens 
were made using templates with radial or linear geometry 
for measurements of contact resistivity with the 
transmission line method [11].

The n-AlN films were grown using chloride vapor 
phase epitaxy on n+-4H-SiC substrates. A standard 
horizontal reactor setup was used [12]. The n-AlN films 
(thickness of ~3.5 m) were of high-resistance and 
compensated, with the donor impurity concentration 

317 cm10  . The GaN films were grown on the sapphire 
substrate by using metal-organic chemical vapor 
deposition [13]. These films (thickness of ~1 m) were 

doped with silicon (concentration up to ~ 317 cm10  ). 
The density of growth dislocations in n-AlN was 

~ 210cm10  , while in n-GaN it was lower by two orders 
of magnitude.

The contact IV curves and contact resistivity were 
measured at the temperature close to 300 K both before 
and after microwave treatment for 11000 s in non-
heating mode (frequency of 2.45 GHz, emittance of 
7.5 W/cm2). The radius of curvature R of test structures 
Au-TiBx-Al-Ti-n-GaN-Al2O3 with continuous 
metallization was measured with a profilometer-
profilograph П104.

3. Experimental results and discussion 

The IV curves of contacts to n-GaN and n-AlN were 
linear both before and after microwave treatment, thus 
characterizing contact ohmicity (Fig. 1). However, 
according to the electrophysical parameters of the initial 
n-AlN and n-GaN films, the values of contact 
resistivities for the above contacts differed by about 
33.5 orders of magnitude (ρc of contacts to n-AlN was 
higher than that of contacts to n-GaN).

Shown in Fig. 2 are dependences of contact 
resistivity ρc on the time of microwave treatment t for 
contacts to n-AlN (curve 1) and n-GaN (curve 2). At 
short times of treatment (below 100 s), ρc in contacts to 
n-AlN grows with time, while ρc in contacts to n-GaN 
decreases at times of microwave irradiation up to 1000 s. 
The above variations of ρc with time in contacts to n-
GaN can be explained by taking into account relaxation 
of intrinsic stresses (IS) in that contact system induced 
by microwave radiation. As the time of microwave 
treatment grew, the radius of curvature of test specimen 
increased. To illustrate, in the initial (before microwave 
treatment) specimen R = 10 m, while after microwave 
irradiation for 28 s R = 45 m.
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Fig. 1. IV curves for the contact structures Au-TiBx-Al-Ti-n-
GaN (a) and Au-Pd-Ti-Pd-n-AlN/SiC (b) taken before (—) and 
after (---) microwave treatment for 750 s.
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Fig. 2. Dependence of contact resistivity ρc on time of 
microwave treatment t for contacts to n-AlN (1) and n-
GaN (2).
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In accordance with the model of ohmic contacts to 
semiconductor with the high dislocation density [14], ρc is
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Here ρc is the metal resistivity at the temperature 
Т = 0°C, α – its temperature coefficient, r – radius of the 
metal shunt, dD – distance that electrons pass through the 
shunt from the semiconductor bulk to the continuous 
metal contact, ND1 – density of conducting dislocations 
(i.e., those with which the metal shunts are associated), q
– elementary charge, k – Boltzmann constant, Vt –
electron thermal velocity, LD – Debye screening length, 
n – electron concentration in the semiconductor bulk, 

0
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 – coefficient taking into account current 

limitation by diffusion supply of electrons, Dn – electron 
diffusion coefficient, yс0 – non-dimensional equilibrium 
potential at the metalsemiconductor interface.

One can see from Eq. (1) that contact resistivity ρc

goes down as the density of conducting dislocations ND1

increases. This may take place if the IS relaxation 
process occurs by generation of dislocations. Such a 
process of IS relaxation correlates with the ρc value 
measured in ohmic contacts to n-GaN.

It seems that IS relaxation in the contact to n-AlN 
occurs by annihilation of dislocations at the drains. In 
that case, the cracks in AlN film caused by aftergrowth 
IS relaxation serve as drains. Reduction of dislocation 
density leads to increase of ρc, which corresponds to the 
observed ρc dependence on time t of microwave 
irradiation for 1150 s. As the irradiation time is 
increased up to 750 s, then ρc goes down to a value 
smaller than the initial one. We believe that the 
mechanism of ρc decrease in this case is similar to that 
considered above for contact metallization to n-GaN. 
One can see from Fig. 2 that as the time of irradiation is 
increased up to 750 s for contacts to n-AlN and 1000 s 
for contacts to n-GaN, ρc decreases by 16% and 60%, 
respectively. As was shown in [13] by the example of 
ohmic contacts to n-GaN, these variations remain stable, 
if the specimens are stored at room temperature for 
9 months.

It should be noted that in both types of contacts the 
interface formed in the course of rapid thermal annealing 
at Т = 900 °C followed with cooling is structurally 
inhomogeneous, since the formed solid solutions and 
alloys are polyphase. This is related to essential 
distinction between their structural parameters and 
compositions [1, 4-6]. The process of relaxation of IS 
concentrators, which may appear owing to this, is 
induced by microwave radiation; as a result, a strongly
defect interface may be formed in the semiconductor 
near-contact region. The reality of this process as a 
general phenomenon in manufacturing technology for 
semiconductor devices was stressed by the authors of 

[15] when analyzing defect formation in both 
heteroepitaxial structures and metalsemiconductor 
contacts.

4. Conclusion

The experimental studies of contact resistivity ρc made 
before and after microwave treatment of ohmic contacts 
to n-GaN and n-AlN for 1700 s and 11000 s, 
respectively, showed that ρc decreased as compared with 
its initial value. This seems to result from relaxation of 
intrinsic stresses owing to generation of structural 
defects induced by microwave radiation.
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Abstract. We studied ohmic contacts Au-Pd-Ti-Pd-n-AlN and Au-TiB2-Al-Ti-n-GaN with contact resistivity ρс = 0.18 ((cm2 and 
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1. Introduction 

Interest in III(N compound semiconductor devices has quickened in the last few years. Along with the development of light-emitting diodes, power devices and various microwave diodes and transistors, the above materials are considered for production of solar blind photodetectors operating in UV [1-5]. Efficient appli​cation of all the above-mentioned devices and facilities cannot be achieved without high-reliability thermostable low-resistance ohmic contacts. However, the development of ohmic contacts to wide-gap III(N semiconductors still remains a complicated physico-technological problem. Even in the present-day manufacturing technology of gallium-nitride light-emitting diodes and field-effect transistors with high mobility of charge carriers in the channel based on GaN/AlGaN heterostructures, fabrication of ohmic contacts is the most vulnerable technological process that often does not enable one to predict parameter reproducibility.


A number of contact systems are applied now to GaN [1, 4-6], while ohmic contacts to AlN remain practically unexplored. The authors of [7, 8] inform on linear I(V curves in an alloyed ohmic contact In-AlN [6] and Ni-AlN [7]. There are no other data on parameters of ohmic contacts to AlN in the above papers. In [9, 10] a possibility of formation of ohmic contact to high-resistance n-AlN film grown on a heavily doped n+-4H-SiC substrate was shown as well as temperature dependence of contact resistivity, ρc(T), was measured. A high density of structural defects was observed in the near-contact region of n-AlN grown on a n+-4H-SiC substrate, just as in ohmic contacts to n-GaN grown on sapphire. Such objects are of interest for studying the effect of various radiation actions (in particular, microwave one) on their properties.


2. Specimens and methods of investigation 


We prepared test structures Au(100 nm)-Pd(70 nm)-Ti(50 nm)-Pd(30 nm)-n-AlN-n+-4H-SiC and Au(100 nm)-TiB2(100 nm)-Al(60 nm)-Ti(30 nm)-n-GaN-Al2O3. The contact metallizations were formed on substrates (heated to 350°C) by using layer-by-layer vacuum deposition of metal films in a single technological cycle (n-AlN) and magnetron sputtering (n-GaN). After this, the specimens were made using templates with radial or linear geometry for measurements of contact resistivity with the transmission line method [11].


The n-AlN films were grown using chloride vapor phase epitaxy on n+-4H-SiC substrates. A standard horizontal reactor setup was used [12]. The n-AlN films (thickness of ~3.5 (m) were of high-resistance and compensated, with the donor impurity concentration 
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The contact I(V curves and contact resistivity were measured at the temperature close to 300 K both before and after microwave treatment for 1(1000 s in non-heating mode (frequency of 2.45 GHz, emittance of 7.5 W/cm2). The radius of curvature R of test structures Au-TiBx-Al-Ti-n-GaN-Al2O3 with continuous metallization was measured with a profilometer-profilograph П104.


3. Experimental results and discussion 


The I(V curves of contacts to n-GaN and n-AlN were linear both before and after microwave treatment, thus characterizing contact ohmicity (Fig. 1). However, according to the electrophysical parameters of the initial n-AlN and n-GaN films, the values of contact resistivities for the above contacts differed by about 3(3.5 orders of magnitude (ρc of contacts to n-AlN was higher than that of contacts to n-GaN).


Shown in Fig. 2 are dependences of contact resistivity ρc on the time of microwave treatment t for contacts to n-AlN (curve 1) and n-GaN (curve 2). At short times of treatment (below 100 s), ρc in contacts to n-AlN grows with time, while ρc in contacts to n-GaN decreases at times of microwave irradiation up to 1000 s. The above variations of ρc with time in contacts to n-GaN can be explained by taking into account relaxation of intrinsic stresses (IS) in that contact system induced by microwave radiation. As the time of microwave treatment grew, the radius of curvature of test specimen increased. To illustrate, in the initial (before microwave treatment) specimen R = 10 m, while after microwave irradiation for 28 s R = 45 m.
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Fig. 1. I(V curves for the contact structures Au-TiBx-Al-Ti-n-GaN (a) and Au-Pd-Ti-Pd-n-AlN/SiC (b) taken before (—) and after (---) microwave treatment for 750 s.
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Fig. 2. Dependence of contact resistivity ρc on time of microwave treatment t for contacts to n-AlN (1) and n-GaN (2).


In accordance with the model of ohmic contacts to semiconductor with the high dislocation density [14], ρc is
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Here ρc is the metal resistivity at the temperature Т = 0°C, α – its temperature coefficient, r – radius of the metal shunt, dD – distance that electrons pass through the shunt from the semiconductor bulk to the continuous metal contact, ND1 – density of conducting dislocations (i.e., those with which the metal shunts are associated), q – elementary charge, k – Boltzmann constant, Vt – electron thermal velocity, LD – Debye screening length, n – electron concentration in the semiconductor bulk, 
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 – coefficient taking into account current limitation by diffusion supply of electrons, Dn – electron diffusion coefficient, yс0 – non-dimensional equilibrium potential at the metal(semiconductor interface.


One can see from Eq. (1) that contact resistivity ρc goes down as the density of conducting dislocations ND1 increases. This may take place if the IS relaxation process occurs by generation of dislocations. Such a process of IS relaxation correlates with the ρc value measured in ohmic contacts to n-GaN.


It seems that IS relaxation in the contact to n-AlN occurs by annihilation of dislocations at the drains. In that case, the cracks in AlN film caused by aftergrowth IS relaxation serve as drains. Reduction of dislocation density leads to increase of ρc, which corresponds to the observed ρc dependence on time t of microwave irradiation for 1(150 s. As the irradiation time is increased up to 750 s, then ρc goes down to a value smaller than the initial one. We believe that the mechanism of ρc decrease in this case is similar to that considered above for contact metallization to n-GaN. One can see from Fig. 2 that as the time of irradiation is increased up to 750 s for contacts to n-AlN and 1000 s for contacts to n-GaN, ρc decreases by 16% and 60%, respectively. As was shown in [13] by the example of ohmic contacts to n-GaN, these variations remain stable, if the specimens are stored at room temperature for 9 months.


It should be noted that in both types of contacts the interface formed in the course of rapid thermal annealing at Т = 900 °C followed with cooling is structurally inhomogeneous, since the formed solid solutions and alloys are polyphase. This is related to essential distinction between their structural parameters and compositions [1, 4-6]. The process of relaxation of IS concentrators, which may appear owing to this, is induced by microwave radiation; as a result, a strongly defect interface may be formed in the semiconductor near-contact region. The reality of this process as a general phenomenon in manufacturing technology for semiconductor devices was stressed by the authors of [15] when analyzing defect formation in both heteroepitaxial structures and metal(semiconductor contacts.


4. Conclusion


The experimental studies of contact resistivity ρc made before and after microwave treatment of ohmic contacts to n-GaN and n-AlN for 1(700 s and 1(1000 s, respectively, showed that ρc decreased as compared with its initial value. This seems to result from relaxation of intrinsic stresses owing to generation of structural defects induced by microwave radiation.


Acknowledgement


This work was supported by the Project III-41-12.

References

1. V.N. Danilin, Yu.P. Dokuchaev, T.A. Zhukova M.A. Komarov, Power high-temperature-capable and radiation-resistant new-generation microwave devices with wide-gap heterojunction AlGaN/GaN structures // Obzory po Elektronnoi Tekhnike, Ser. 1. SVCh Tekhnika, GUPNPP “Pulsar”, Moscow (2001), (in Russian).


2. T.V. Blank, Yu.A. Gol’dberg, Semiconductor photoelectric converters for the ultraviolet region of the spectrum // Semiconductors 37(9), p. 999-1030 (2003).


3. E.F. Schubert, Light-Emitting Diodes, 2nd Ed. Cambridge Univ. Press, 2006.


4. R. Quay, Gallium Nitride Electronics. Springer-Verlag, Berlin–Heidelberg, 2008.

5. A.G. Vasil’ev, Yu.V. Kolkovskii, Yu.A. Kontsevoi, Microwave Wide-Gap Semiconductor Devices and Facilities. Teknosfera, Moscow, 2011 (in Russian).


6. A.N. Kovalev, Semiconductor Heterostructure Transistors. DomMISiS, Moscow, 2011 (in Russian).


7. T.V. Blank, Yu.A. Gol’dberg, O.V. Konstantinov, V.G. Nikitin, E.A. Posse, The mechanism of current flow in an alloyed In-GaN ohmic contact // Semiconductors 40(10), p. 1173-1177 (2006).


8. T. Erlbacher, M. Bickermann, B. Kallinger, E. Meissner, A.J. Bauer, L. Frey, Ohmic and rectifying contacts on bulk AlN for radiation detector applications // Phys. Stat. Sol.(c), 9(3-4), p. 968-971 (2012).


9. A.V. Sachenko, A.E. Belyaev, N.S. Boltovets, Yu.V. Zhilyaev, V.P. Klad’ko, R.V. Konakova, Ya.Ya. Kudryk, V.N. Panteleev, V.N. Sheremet, Resistance formation mechanisms for contacts to n-GaN and n-AlN with high dislocation density // Phys. Stat. Sol.(c), 10(3), p. 498-500 (2013).


10. A.V. Sachenko, A.E. Belyaev, N.S. Boltovets, Yu.V. Zhilyaev, L.M. Kapitanchuk, V.P. Klad’ko, R.V. Konakova, Ya.Ya. Kudryk, A.V. Naumov, V.N. Panteleev, V.N. Sheremet, Formation mechanism of contact resistance to III-N heterostructures with a high dislocation density // Semiconductors 47(9), p. 1180-1184 (2013).


11. D.K. Schroder, Semiconductor Materials and Device Characterization. Wiley, New Jersey, 2006.


12. V.N. Bessolov, Yu.V. Zhilyaev, E.V. Konenkova, V.N. Panteleev, I.K. Poletaev, S.N. Rodin, Sh. Sharofidinov, M.P. Scheglov, S.A. Kukushkin, Vapor-phase epitaxy of semipolar GaN/AlN/Si(100) and nonpolar AlN/3C-SiC/Si(100) structures // Abstracts of Reports at the 8th All-Russian Conf. “Gallium, Indium and Aluminum Nitrides – Structures and Devices”, Sankt-Peterburg, May 26-28, 2011, p. 200 (in Russian).


13. 
A.E. Belyaev, N.S. Boltovets, S.A. Vitusevich, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudryk, A.A. Lebedev, V.V. Milenin, Yu.N. Sveshnikov, V.N. Sheremet, Effect of microwave treatment on current flow mechanisms in Au-TiBx-Al-Ti-n+-n-n+-GaN-Al2O3 ohmic contacts // Semiconductors 44(6), p. 745-751 (2010).


14. A.V. Sachenko, A.E. Belyaev, N.S. Boltovets, R.V. Konakova, Ya.Ya. Kudryk, S.V. Novitskii, V.N. Sheremet, J. Li, S.A. Vitusevich, Mechanism of contact resistance formation in ohmic contacts with high dislocation density // J. Appl. Phys. 111, 083701 (2012).


7. M.G. Milvidskii, V.B. Osvenskii, Structural Defects in the Epitaxial Layers of Semiconductors. Metallurgiya, Moscow, 1985 (in Russian). 













































































































© 2013, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine


289



_1441110631.bin



_1441110783.bin



_1442751181.unknown



_1441110782.bin



_1441108412.unknown



_1441108716.unknown



_1441108735.unknown



_1441108429.unknown



_1441108344.unknown



