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Mutual friction in helium II: a microscopic approach
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We develop a microscopic model of mutual friction represented by the dissipative dynamics of a normal

fluid flow which interacts with the helical normal modes of vortices comprising a lattice in thermal equilib-

rium. Such vortices are assumed to interact with the quasiparticles forming the normal fluid through a

pseudomomentum-conserving scattering Hamiltonian. We study the approach to equilibrium of the normal

fluid flow for temperatures below 1 K, deriving an equation of motion for the quasiparticle pseudo-

momentum which leads to the expected form predicted by the Hall–Vinen–Bekharevich–Khalatnikov equa-

tions. We obtain an expression for the mutual friction coefficient in terms of microscopic parameters, which

turns out to be practically independent of the vortex mass for values arising from diverse theories. By com-

paring our expression of B with previous theoretical estimates, we deduce interesting qualitative features

about the excitation of Kelvin modes by the quasiparticle scattering.

PACS: 67.25.bf Transport, hydrodynamics;
67.25.dk Vortices and turbulence;
67.25.dt Sound and excitations.

Keywords: mutual friction, normal fluid flow, vortex oscillations.

1. Introduction

When a sufficiently fast rotating sample of liquid he-

lium is cooled below the lambda temperature, all the rota-

tion of the superfluid becomes concentrated in a uniform

array of quantized vortex filaments parallel to the axis of

rotation [1,2]. By contrast, the macroscopic superfluid

velocity field, corresponding to spatial averages over re-

gions large compared with the spacing between vorti-

ces, yields the usual configuration of solid body flow

v r z rs ( ) �� �� rot , for a rotation frequency � rot around

the z axis. Just as the superfluid flow is microscopically

formed by vortices, the normal fluid consists of super-

fluid quasiparticle excitations, phonons and rotons, the

average flow of which is characterized by the normal

fluid velocity field vn . Both fluids must move in equilib-

rium at the same velocity, and such a behavior is caused

by the mutual friction force [3]. A well-known phe-

nomenological model for this macroscopic dyna-

mics is represented by the so-called Hall–Vinen–Bekha-

revich–Khalatnikov (HVBK) equations [3,4]. There is a

simple configuration which allows to show the basic fea-

tures of this process, namely rectilinear flows of uniform

vorticity � � �v zs 2� rot �, which coincides with that of the

rotational scheme [5]. The HVBK equations for such

flows are very simple and read

� �n
n

s
s

t t

�

�
� � �

�

�

v
F

v
, (1)

where � n and � s denote the normal fluid and superfluid

mass densities, respectively, and the mutual friction force

F can be written for temperatures below 1 K as [5],

F v v� � �B n n s� � rot ( ) , (2)

being B a dimensionless dissipative coefficient. Such a

low temperature regime corresponds to � �n s		 , which,

according to (1), implies that the main time dependence

should lie within the normal fluid velocity. This suggests

that a suitable approach to the problem may consist in re-

garding the superfluid component as a thermal equilib-

rium heat bath which interacts with a nonequilibrium

normal fluid flow. Keeping such a picture as our basic

premise, we shall analyze in the present paper a micro-

scopic model of mutual friction, which reproduces the

main features of the above macroscopic dynamics, yield-
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ing an explicit expression of B as a function of micro-

scopic parameters.

The microscopic basis of mutual friction remains as

one of the most intrincate problems of superfluidity. In

such a context, theoretical approaches may strongly dif-

fer, even in significant questions such as the existence of

a nondissipative component of the mutual friction force

[6], which is absent from our modelling [5]. A better un-

derstanding of the microscopic principles governing mu-

tual friction would also contribute to clarify important is-

sues on the subject of quantum turbulence at finite

temperature [7]. In fact, it is just the mutual friction force

which accounts for the strong locking between superfluid

and normal fluid along the turbulent cascade, where re-

cent simulations have shown that the residual slip velo-

city v vs n� plays a central role [8]. In addition, such

simulations suggest that the cross-over between zero-

temperature and finite temperature quantum turbulence

occurs at a lower temperature than the usual estimation of

1 K, hence partially placing the latter regime within the

temperature range of the present investigation.

Another important source of controversy arises from

the mass of quantized vortices. On the one hand, many

works have considered it as a negligible parameter under

the assumption that it should be equivalent to the hydro-

dynamic mass of a core of atomic dimensions [1]. An-

other theories, however, yield several orders of magni-

tude higher values for the vortex mass, casting doubt on

models based on massless vortices [9]. Moreover, it has

been argued that an unambiguous vortex mass may not

exist, and that inertial effects in vortex dynamics may be

scenario-dependent [10]. Finally, we should also mention

that there have been conflicting results for the vortex

mass in superconductors as well [11]. A possible way out

to such uncertainties has been recently suggested based

on the concept of pseudomomentum [5]. Our present stu-

dy of the dissipative normal fluid dynamics will utilize

the concept of pseudomomentum as an important tool,

finding again results which are practically independent of

the vortex mass for a wide range of values.

Our approach will consist in assuming a heat bath

formed by a vortex lattice in thermal equilibrium, which

interacts with a quasiparticle flow. The dominant contri-

bution to the heat capacity of such a lattice should arise

from the thermal excitation of helical waves, correspond-

ing to effectively independent vortices [12]. The role of

such oscillations in mutual friction has been scarcely

treated in the literature. We are only able to mention a

couple of papers [13,14], that long ago reached the con-

clusion that the damping of vortex oscillations due to

phonon scattering, should not modify appreciably the

value of the friction coefficient calculated for a rigid

vortex. The same conclusion was recently obtained for

a high-frequency branch of helical waves, within a wi-

der temperature range, including a roton-dominated re-

gime [15].

In building a theory with massive vortices, one can

readily make use of a close analogy with the well-known

electrodynamical problem of a point charge subjected to

magnetic and electric fields [16]. Particularly, the

quantization of the theory, which greatly simplifies the

treatment when the scattering excitation of vortex waves

is taken into account [13], arises immediately from this

analogy. Such an analogy also leads to an immediate iden-

tification of the vortex pseudomomentum, allowing us to

build a proper form for a pseudomomentum-conserving

scattering Hamiltonian.

This paper is organized as follows. In the next section,

we sketch out our derivation of the equation of motion for

the normal fluid flow. In Sec. 3 we analyze the expression

obtained for the mutual friction coefficient B and in Sec. 4

we summarize our main results.

2. Equation of motion for the normal fluid flow

We assume vortex filaments performing helical oscil-

lations about their unperturbed positions parallel to the z

axis. The wavelength 
 is supposed to be much greater

than the amplitude (radius of the helix), and to have a full

description of the helix, one should also know the direc-

tion (right or left) of the helical deformation, or equiva-

lently, the direction of the wave vector k�z (k � � �2
 
). Pe-

riodic boundary conditions over a length L (vortex line

length) along the z axis determine the possible values of

the wave vector as k m L� �2
 , where m is an integer. The

vortex core position r( )z may then be written as a summa-

tion over generalized two-dimensional coordinates rk z( )

associated to normal modes labeled by the wave vector k�z
[12,13]. The quantization of the vortex Hamiltonian

arises straightforwardly from the electromagnetic anal-

ogy [16]. Since the vortex core parameter is assumed to

be much less than the wavelength, we have �k 		 �, be-

ing �k the Kelvin wave frequency and � � �� �s vm the

cyclotron frequency, with mv the vortex mass per unit

length and � the quantum of circulation [1]. This in turn

ensures that cyclotron and Kelvin modes become decoup-

led [15], yielding a Hamiltonian of oscillatory modes

given by

� �
k

k k k k k

�
� � � �

0

1

2

1

2
�( ) ( ) ,� � � � �† †

(3)

where �
k
† (�

k
† ) denotes a creation operator of right (left)

circular quanta.

The Hamiltonian of the k � 0 modes, corresponding to

rigid displacements of the vortex filament [5], can be ex-

actly solved [16], yielding in the limit � �rot 		 the de-

coupling of cyclotron and translational modes:
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† rot †� � � (4)

Particularly, the translational coordinate

r x y0 0 0 0 0
2

� � � �
�

� �
� � � �

s L
i[( )� ( )� ]† †

evolves according to the superfluid velocity field

� �r x0 02� � � rot y . (5)

The vortex Hamiltonian is given by the sum of (3) and

(4), and the normal fluid Hamiltonian, corresponding to

a noninteracting quasiparticle gas, reads �
q

q q q� � a a† ,

where aq
† denotes a creation operator of quasiparticle ex-

citations of pseudomomentum �q and frequency �q . The

interaction Hamiltonian between vortex and quasipar-

ticles is represented by the pseudomomentum-conserving

form:

H dz a a i z i p q z

L

z zint

,

exp [ ( ) ( ) ( ) ],� � � � � ���
0p q

pq p q p q r� †

(6)

where the parameters � pq represent scattering ampli-

tudes depending on wave vectors of scattered quasipar-

ticles. The vortex pseudomomentum per unit length [5],

integrated along the vortex line yields the generator

of vortex translations or vortex pseudomomentum

� �� �s L�z r0 , which involves only translational coordina-

tes, as expected. Then, adding such a pseudomomentum

to the quasiparticle pseudomomentum �
q

q qq� a a† , we

have the total pseudomomentum, which can be shown to

commute with H int .

The interaction Hamiltonian (6) is difficult to deal

with, so recalling the low amplitude of the helical oscilla-

tions, we may rewrite the exponential in (6) as

exp [ ( ) ( ) ( ) ]� � � � � �i z i p q zz zp q r

� � � � � � � � � �exp [ ( ) ] exp [ ( ) ] exp [ ( ) ( ( )i i p q z i zz zp q r p q r r0 0 )]

(7)

and next approximate the last exponential to first order in

r r( )z � 0 . This procedure, however, is not valid for vortex

modes with frequencies approaching zero, i.e. the lowest

part of Kelvin’s spectrum, as noted early by Fetter [13]. In

fact, he showed that retaining a finite number of terms of

such an exponential expansion leads to divergent results,

analogous to those of the «infrared catastrophe» in elec-

trodynamics. Here it is expedient to recall that within our

study, each vortex forms part of a vortex lattice which

will be regarded as a heat bath for the quasiparticle flow.

Now, it is well known that rather simple models of heat

bath often provide suitable descriptions of realistic envi-

ronments [17]. Relying on this hypothesis and to over-

come the above difficulty, we shall represent Kelvin’s

spectrum by a single frequency w0 , which will be eventu-

ally regarded as a temperature-dependent parameter in or-

der to take into account the distinct features of the interac-

tion of such waves with phonons and rotons. In summary,

we shall make use of a simplified model of heat bath con-

sisting of vortex modes of two frequencies (w0 		 �) of

opposite polarization. On the other hand, neglecting the

vortex displacement in the y-direction [5], we shall re-

place the translational coordinate operator in the first ex-

ponential on the right-hand side of Eq. (7) by the c-num-

ber � � � � � �r x0 02� rot y t� (cf. Eq. (5)). Such a replacement

becomes equivalent to having time-dependent scatter-

ing amplitudes in Eq. (6), i.e. with a time dependent

phase factor, � �pq exp [ ( ) ]i p q y tx x� � �2 0rot . This fac-

tor, however, would not have any practical incidence,

since our results will be shown to be dependent upon the

absolute value of the scattering amplitudes. Finally, ta-

king into account these approximations we may replace

exp [ ( ) ( )] ( ) ( ( ) )� � � � � � �i z i zp q r p q r r� 1 0

in Eq. (6) yielding [15]

H
L

a a
s

p q

k

z zint

, ,

� ���
2� �

�
p q

pq p q� †

� � � � � � �{[( ) ( )][ ( ) ]q p i q py y x x k k k� � �† 1 0

� � � � � �[( ) ( )][ ( ) ]}.p q i q py y x x k k k
� � �1 0

†
(8)

There is an additional parameter to be taken into ac-

count in our vortex heat bath that is the total number of

modes 2L � 
min . We shall assume for simplicity that both

polarizations have a common «ultraviolet» cutoff 
min ,

which should be greater than the vortex core parameter

(~ 1 �) and the mean radius of the helix. Such a radius

turns out to be of the order of the core parameter for cy-

clotron modes, while for Kelvin modes in a lattice of

� rot s� 1 1� has been estimated [12] as ~103
� T � K. So,

we have assumed 
min � 103
� in our calculations.

To study the time evolution of the normal fluid, we

have cons idered the d iss ipa t ive dynamics of a

quasiparticle flow which interacts with the heat bath

formed by a uniform array of N v quantized vortex fila-

ments. Then, following the methodology of Ref. 18, we

have derived a system of non-Markovian equations ruling

the time evolution of the quasiparticle populations nq

[19], which leads to the following equation of motion for

the quasiparticle pseudomomentum:
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q

q
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pqq p q p q� �� � �� | | ( )( )

, ,

n
L N

dv

s i

p qz z

2 2
2 2

� �

� �

min

�

0

t

p q iw� � � �cos [( ) ]� � �

� � � � � � � � ��
{ ( )[ ( )] [ ( ) ( )] [ ]n t n t n t n t

w k Ti B
q p q p� � � �1 1e

� �1} ,

(9)

where wi denotes the frequencies � and w0 . Assuming that the quasiparticle numbers in the above expression are well

described by a local equilibrium form, the quasiparticle pseudomomentum �
q

qq v v� � �n AL n n s� ( )should correspond

to a macroscopically small area A of the x– y plane containing N v vortices, where the spatial dependence of the fields vn

and vs can be neglected. In addition, given that the time dependence stems exclusively from vn t( )(cf. Sec. 1), a straight-

forward calculation leads to the following non-Markovian equation:

� [ ( ) ] ( ),v v vn

t

n sd t� � � �� � � � �

0

(10)

with a memory kernel given by

� �
� � � 


� � �( ) | | cos [(

, ,

� ��L

k TB n s i

p q pz z

��
�rot

min
2

2

p q

pq q i iw g w� � ��) ]{| | ( )� p q
4

� � � � � � ��[| � ( � )| | � ( � )| ] ( )} ( )[ ( )] [z p z z q z
4 4 1g w n ni q p� � 1� n wi( )] , (11)

where

g w
n

n w

n w k T

n
i

p

q i

q q p i B

p
� �

�
�

� � �
( )

( )

( )

( ) exp [ ( ) ]

(

�

�

� � �

�

�

� wi )

(12)

and n w w k TB( ) [ exp ( ) ]� � � �� 1 1. In the thermodynamic limit, the summations over pand q in (11) become integrals and

� �( ) acquires a finite lifetime. If such a lifetime can be regarded as microscopic in comparison with the observational

timescale, equation (10) may be transformed according to the Markov approximation into the differential equation:

� [ ( ) ]v v vn n st� � �� (13)

with

� � � �
� � � 


� �� �

�

� �( ) | | (

, ,0

2

2d
Lh

k TB n s i

p qz z

�
�rot

min p q

pq � �p q iw� � �)

� � � �| | ( )[ ( )][ ( )]p q
4 1 1n n n wq p i� � , (14)

where the continuum limit corresponds to the replacement

� 
 �p q z zz z
A L d d p q

p q

p q

,

[ ( ) ] ( )� � �� � �2 5 3 32 .

Actually, we have studied the non-Markovian equation (10) finding that memory effects are negligible for � rot 		 w0

[19], which will be assumed hereafter. Finally, taking into account (13), (1) and (2), we may obtain the expression of the

mutual friction parameter from B � �� � rot .

3. Study of the mutual friction parameter B

An explicit expression for the friction parameter B can be extracted by computing the right-hand side of Eq. (14), which is

reduced to the single one-dimensional integral [20]:

B
c k T

n w dp n

s n s B i

i p� �  � �
�

19

70 2
1

3

2 2

0

�

( )
[ ( )] | | (


 � � 

�

min

� �p i p

j

j
iw n p q� � �) [ ( )] ( , ),( )1 ! (15)
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where � p (cs) denotes the quasiparticle group (sound)

velocity and

!( , )
( ) ( ) ,

( ) (
p q

p q q p p q p q

q p p q p q
�

� � � "

� � �

2 4 4 2 2

2 4 4 2 2

5 2

5 2 q p"

#
$
%

&% ),
(16)

being q q
j
i� ( ) the roots of the equation � �q p iw� � . In

obtaining (15) we have utilized the expression of the scat-

tering amplitude given in ref. [20], which has been shown

to lead to a very good agreement with the experimental

determinations of the longitudinal friction coefficient D

for temperatures below 1 K [18]. From (15) we may see

that B consists of two terms arising from the frequencies

w wi � 0 and wi � �. Such contributions, however, are

weighted by respective factors [ ( )] [ ( )]1 10� '' �n w n � , so

the cyclotron contribution will be always negligible with

respect to that arising from the frequency w0 and we have

that, in practice, B will correspond to the limit of massless

vortices, � � � The expression (15) leads to simpler

phonon and roton approximations. If we restrict ourselves

to w0 �1010 s–1, such a frequency may be neglected

everywhere in (15), except in the factor [ ( )]1 0� n w . Then,

to approximate for phonon temperatures (T< 0.4 K), we

use the linear dispersion relation �p sc p� and get

B
n w k T

c

B

s s

ph

min

�
�254 9 1 0

3

2 4

. [ ( )] ( )
.

� � 

(17)

On the other hand, for temperatures above 0.6 K, only

the portion of the dispersion curve around the roton mini-

mum makes a significant contribution to the integrand in

(15), then making use of the usual approximations in

roton calculations [20], we obtain

B
n w k k T

c
r

B

s s

�
�2079 1 0 0

3

2

. [ ( )]
,

�

�� 
min

(18)

where � and k0 are parameters entering the Landau para-

bolic approximation, � �p p k� � � � �( � �( )0
2 2 .

Experimental determinations of B have been reported

only above 1.3 K. However, we may utilize the following

expression valid for temperatures below 1 K [1],

B
D

n

�
2

� �
(19)

and replace D in (19) by means of the Iordanskii theoreti-

cal estimate for the phonon temperature range [21], yield-

ing

B
k T

m c

B

s

ph � 817

4
2

. . (20)

On the other hand, for the roton temperature range, we

may replace D vn G� � ) || in (19) yielding,

B
k T

TB
r K� � �

2 2
1 5 1 2

)

� 
�

||
. ,�

(21)

being vG the average group velocity of rotons and

) || .� 8 38� the roton scattering length [1,2]. Notice that

we have replaced the friction coefficient D by expressions

corresponding to a straight vortex, since corrections due

to vortex bending should be negligible, as seen in Sec. 1.

This of course does not mean that vortices would remain

straight against the quasiparticle scattering; on the con-

trary, thermal excitation of Kelvin waves is undoubtedly

expected to occur, although details of this process are not

evident from expressions (20) and (21). However, some

features about such a process may be deduced from our

results (17) and (18). First it is convenient to discuss the

physical meaning of the frequency w0 . Since such a fre-

quency is intended for representing the whole spectrum of

Kelvin waves in the context of an interaction with

quasiparticles, it should not be surprising to find that

quite distinct values of w0 could be required in order to

better estimate interactions with phonons or rotons. This

amounts to assuming a dependence of w0 on temperature,

which may be fully extracted by equating our results with

the theoretical expressions (20) and (21). Then, from (17)

and (20) we may conclude that phonon scattering at a tem-

perature T should be expected to excite Kelvin waves

about a representative frequency given by

w T0
8 1 3 35 64 10� . ,� �� �s K (22)

while (18) and (21) imply that roton scattering should be

likely to excite Kelvin waves about frequency

w T0
10 1 12 08 10� . .� �� �s K (23)

Recall that according to the Markov approximation

one should assume w0 '' � rot � 1 s–1, which sets up a

lower bound for the validity of the result (22) at tempera-

tures above ~ 0.01 K. In addition, the assumption


min � 103
� implies an upper bound for the Kelvin

spectrum, max ( )�k � 108 1s � , which turns out to be con-

sistent with a phonon temperature range below 0.4 K in

(22). However, the values arising from (23) seem to be

overestimated for roton temperatures, since they would

only be consistent with a 
min of order 102
�. In addition,

such values of w0 could reach the order of cyclotron fre-

quencies arising from some theories of the vortex mass

[9], contradicting the previous assumption �k 		 �. This

suggests that only the qualitative trend w T0 � should be

taken into account from the result (23).

4. Summary

We have analyzed a microscopic model of mutual fric-

tion represented by the dissipative dynamics of a normal

fluid flow, which interacts with the helical normal modes

Mutual friction in helium II: a microscopic approach
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of vortices comprising a lattice in thermal equilibrium.

Such vortices interact with the quasiparticles forming the

normal fluid through a pseudomomentum-conserving

scattering Hamiltonian. Assuming a simplified model for

the vortex heat bath, we have derived an equation of mo-

tion for the quasiparticle pseudomomentum leading to the

expected form predicted by the HVBK equations. We

have shown that the mutual friction coefficient B turns

out to be practically independent of the values of vortex

mass arising from diverse theories. Finally, from a com-

parison of our expression of B with previous theoretical

estimates, we have deduced interesting qualitative fea-

tures about the interaction of quasiparticles with Kelvin

modes, namely phonon (roton) scattering at a temperature

T should be expected to excite Kelvin waves about repre-

sentative frequencies proportional to T3(T).

This work was supported by CONICET, Argentina

through the grant PIP 5409.

1. R.J. Donnelly, Quantized Vortices in Helium II, Cambridge

University Press, Cambridge (1991).

2. C.F. Barenghi, R.J. Donnelly, and W.F. Vinen, J. Low.

Temp. Phys. 52, 189 (1983).

3. H.E. Hall and W.F. Vinen, Proc. Roy. Soc. London Ser. A

238, 215 (1956).

4. I.L. Bekharevich and I.M. Khalatnikov, Zh. Éksp. Teor.

Fiz. 40, 920 (1961) [ Sov. Phys. JETP 13, 643 (1961)].

5. H.M. Cataldo, J. Phys. A: Math. Theor. 41, 295501 (2008).

6. P. Ao and D.J. Thouless, Phys. Rev. Lett. 70, 2158 (1993);

G.E. Volovik, Phys. Rev. Lett. 77, 4687 (1996); E.B.

Sonin, Phys. Rev. B55, 485 (1997).

7. Quantized Vortex Dynamics and Superfluid Turbulence,

C.F. Barenghi, R.J. Donnelly, and W.F. Vinen (eds.),

Springer, Berlin (2001).

8. P.-E. Roche, C.F. Barenghi and E. Leveque,

http://arxiv.org/abs/0905.2754.

9. V.N. Popov, Zh. Éksp. Teor. Fiz. 64, 672 (1973) [Sov.

Phys. JETP 37, 341 (1973)]; J.M. Duan, Phys. Rev. B49,

12381 (1994); J.-M. Tang, Intl. J. Mod. Phys. B15, 1601

(2001).

10. D.J. Thouless and J.R. Anglin, Phys. Rev. Lett. 99, 105301

(2007).

11. J.H. Han, J.S. Kim, M.J. Kim, and P. Ao, Phys. Rev. B71,

125108 (2005).

12. A.L. Fetter, Phys. Rev. 162, 143 (1967).

13. A.L. Fetter, Phys. Rev. 186, 128 (1969).

14. E.B. Sonin, Zh. Éksp. Teor. Fiz. 69, 921 (1975) [Sov. Phys.

JETP 42, 469 (1976)].

15. H.M. Cataldo, J. Phys. A: Math. Gen. 38, 7929 (2005).

16. D. Yoshioka, The Quantum Hall Effect, Springer, Berlin

(2002), ch. 2.

17. A.O. Caldeira and A.J. Leggett, Ann. Phys. (N.Y.) 149, 374

(1983); L.D. Chang and S. Chakravarty, Phys. Rev. B31,

154 (1985).

18. H.M. Cataldo and D.M. Jezek, J. Low Temp. Phys. 136,

217 (2004).

19. H.M. Cataldo, http://arxiv.org/abs/cond-mat/0604109.

20. H.M. Cataldo and D.M. Jezek, Phys. Rev. B65, 184523

(2002).

21. S.V. Iordanskii, Zh. Éksp. Teor. Fiz. 49, 225 (1965) [Sov.

Phys. JETP 22, 160 (1966)].

1176 Fizika Nizkikh Temperatur, 2009, v. 35, No. 12

H.M. Cataldo


