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Electron transport through a single-level quantum weakly dot coupled to Luttinger liquid leads is consid-

ered in the master equation approach. It is shown that for a weak or moderately strong interaction the differ-

ential conductance demonstrates resonant-like behavior as a function of bias and gate voltages. The inelastic

channels associated with vibron-assisted electron tunnelling can even dominate electron transport for a cer-

tain region of interaction strength. In the limit of strong interaction resonant behavior disappears and the dif-

ferential conductance scales as a power low on temperature (linear regime) or on bias voltage (nonlinear re-

gime).

PACS: 73.63.–b Electronic transport in nanoscale materials and structures;
73.63.Kv Quantum dots.
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1. Introduction

Last years electron transport in molecular transistors

became a hot topic of experimental and theoretical inves-

tigations in nanoelectronics (see e.g. [1,2]). From experi-

mental point of view it is a real challenge to place a single

molecule in a gap between electric leads and to repeatedly

measure electric current as a function of bias and gate

voltages. Being in a gap the molecule may form chemical

bonds with one of metallic electrodes and then a consider-

able charge transfer from the electrode to the molecule

takes place. In this case one can consider the trapped mol-

ecule as a part of metallic electrode and the corresponding

device does not function as a single electron transistor

(SET). Much more interesting situation is the case when

the trapped molecule is more or less isolated from the

leads and preserves its electronic structure. In a stable

state at zero gate voltage the molecule is electrically neu-

tral and the chemical potential of the leads lies inside the

gap between HOMO (highest occupied molecular orbital)

and LUMO (lowest unoccupied molecular orbital) states.

This structure demonstrates Coulomb blockade phenome-

non [3,4] and Coulomb blockade oscillations of conduc-

tance as a function of gate voltage (see review papers in

[5] and references therein). In other words a molecule

trapped in a potential well between the leads behaves as a

quantum dot and the corresponding device exhibits the

properties of SET. The new features in a charge transport

through molecular transistors as compared to the well-

studied semiconducting SET appear due to «movable»

character of the molecule trapped in potential well (the

middle electrode of the molecular transistor). Two qua-

litatively new effects were predicted for molecular tran-

sistors: (i) vibron-assisted electron tunnelling (see e.g.

[6,7]) and, (ii) electron shuttling [8] (see also Rev. 9).

Vibron (phonon)-assisted electron tunnelling is induc-

ed by the interaction of charge density on the with dot lo-

cal phonon modes (vibrons) which describe low-energy

excitations of the molecule in a potential well. This inter-

action leads to satellite peaks (side bands) and unusual

temperature dependence of peak conductance in resonant

electron tunnelling [10]. For strong electron–vibron in-

teraction the exponential narrowing of level width and as

a result strong suppression of electron transport (pola-

ronic blockade) was predicted [10,11]. The effect of elec-

tron shuttling appears at finite bias voltages when addi-

tionally to electron–vibron interaction one takes into

account coordinate dependence of electron tunnelling

amplitude [8,9].

Recent years carbon nanotubes are considered as the

most promising candidates for basic element of future
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nanoelectronics. Both C60-based and carbon nano-

tube-based molecular transistors were already realized in

experiment [12,13]. The low-energy features of I–V char-

acteristics measured in experiment with C60-based mo-

lecular transistor [12] can be theoretically explained by

the effects of vibron-assisted tunnelling [7].

It is well known that in single-wall carbon nanotubes

(SWNT) electron–electron interaction is strong and the

electron transport in SWNT quantum wires is described

by Luttinger liquid theory. Resonant electron tunnelling

through a quantum dot weakly coupled to Luttinger liquid

leads for the first time was studied in Ref. 14 were a new

temperature scaling of maximum conductance was pre-

dicted: G T T g( ) /� �1 2 with interaction dependent expo-

nent (g is the Luttinger liquid correlation parameter).

In this paper we generalize the results of Refs. 10 and

14 to the case when a quantum dot with vibrational de-

grees of freedom is coupled to Luttinger liquid quantum

wires. The experimental realization of our model system

could be, for instance, C60-based molecular transistors

with SWNT quantum wires.

In our model electron–electron and electron–phonon

interactions can be of arbitrary strength while electron

tunnelling amplitudes are assumed to be small (that is the

vibrating quantum dot is weakly coupled to quantum

wires). We will use master equation approach to evaluate

the average current and noise power. For noninteracting

electrons this approximation is valid for temperatures

T �� �0, where �0 is the bare level width. For interacting

electrons the validity of this approach (perturbation the-

ory on �0) for high-T regime of electron transport was

proved for g � 1 2/ (strong interaction) [15] and when

1 1� ��g (weak interaction) [16].

We found that at low temperatures: �0 0�� ��T ��
(��0 is the characteristic energy of vibrons) the peak con-

ductance scales with temperature accordingly to Furusaki

prediction [14]: G T T T g( ) ( / )( / ) /� �� ��
1 1 (�� 	F is

the Luttinger liquid cutoff energy). The influence of elec-

tron–phonon interaction in low-T region results in

renormalization of bare level width: � �� �
 �0
2exp ( ),

where � is the dimensionless constant of electron–phonon

interaction. In the intermediate temperature region:

� �� � �0
2

0� �T , (� �� 1), Furusaki scaling is changed to

G T T g( ) ( ) / /� �1 3 2 and at high temperatures when all in-

elastic channels for electron tunnelling are open we again

recovered Furusaki scaling with nonrenormalized level

width (�0).

For nonlinear regime of electron tunnelling we

showed that zero-bias peak in differential conductance,

presenting elastic tunnelling, is suppressed by Coulomb

correlations in the leads. This is manifestation of the

Kane–Fisher effect [14,15]. When interaction is moder-

ately strong (1 2 1/ � �g ) the dependence of differential

conductance on bias voltage is non-monotonous due to

the presence of satellite peaks. For g � 1 2/ the zero-bias

peak can be even more suppressed than the satellite

peaks, which dominate in this case. This is the manifesta-

tion of the interplay between the Luttinger liquid effects

in the leads and the electron–phonon coupling in the dot.

For strong interaction g � 1 2/ satellites are also sup-

pressed and the differential conductance at low tempera-

tures (T �� ��0) scales as dI dV V g/ /� �1 2. This scaling

coincides with the Furusaki prediction, where tempera-

ture is replaced by the driving voltage (eV ) which be-

comes the relevant energy scale for eV T�� , ,��0 �. It

means that the influence of vibrons on the resonant elec-

tron tunnelling through a vibrating quantum dot can be

observed only for weak or medium strong interaction

( /1 2 1� �g ) in the leads.

2. The Model

The Hamiltonian of our system (vibrating quantum dot

weakly coupled to Luttinger liquid leads, see Fig. 1) con-

sists of three parts

� � � �
 � �LL QD T . (1)

Here � �LL l
j

j L R





 ( )

,

describes quantum wires adiabati-

cally connected to electron reservoirs. Quantum wires

(left-L and right-R) are supposed equal and modelled by

Luttinger liquid Hamiltonians with equal Luttinger liquid

parameters 1/ ( )gL R : 1 1 1/ / /g g gL R
 
 (see e.g. [14])

� �
l
L R

l c k ka a kdk
( ) 
 
 �

�

��v

0

. (2)

Here ak
� (ak ) are the creation (annihilation) operators of

bosons which describe the charge density fluctuations

propagating in the leads with velocity v vc F� . These op-

erators satisfy canonical bosonic commutation relations

[ , ] ( )a a k kk k�
� 
 � �� . In what follows we consider for sim-

plicity the case of spinless electrons.

The Hamiltonian of vibrating single level quantum

takes dot the form (see e.g. [10])

�QD if f b b f f b b
 � � �� � � �	 	 �0 0( ) � , (3)

where 	 0 is the energy of electron level on the dot, ��0 is

the energy of vibrons, 	 i is the electron–vibron interac-

tion energy, f � ( f ) and b� (b) are fermionic ( f ) and

bosonic (b) creation (annihilation) operators with canoni-

cal commutation relations { , }f f � 
1, [ , ]b b� 
1.

The tunnelling Hamiltonian is given by standard ex-

pression

�T j

j L R

t f j
 ��



{ ( )

,

� h.c.}, (4)
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where t j is the electron tunnelling amplitude and �( )j ,

j L R
 , is the annihilation operator of electron at the end

point of L R( )-electrode. This operator could be written in

a «bosonised» form (according to [14])

�( ( )) exp ( )
/

L R dk
K k

a a
k

k k
 �
�

�

�
�

�

�

�
�

�
�

�

�2

2

2

0
��

�

�

e
, (5)

here � is a short-distance cutoff of the order of the recip-

rocal of the Fermi wave number k F and K g� 
 � �( / )2 1 1

is the interaction parameter in the «fermionic» form of the

Luttinger liquid Hamiltonian (2), it defines the Luttinger

liquid parameter g which is varied between 0 and 1: the

case g 
1 describes the «noninteracting» (Fermi-liquid)

leads, than in the case g � 0 the interaction in the leads

goes to infinity.

Hamiltonian (3) is «diagonalized» to �d P f f
 ��	
� �

��0b b by the unitary transformation (see e.g. [17])

U i pn f
 exp ( )� , where p i b b
 ��( ) / 2, n f ff 
 � and

the dimensionless parameter � 	 �
 � 2 0i / � character-

izes electron–vibron coupling. The unitary transforma-

tion results in: (i) the shift of fermionic level (polaronic

shift) 	 	 	 �P i
 �0
2

0/ � and (ii) the replacement of tun-

nelling amplitude in (3) t t i pj j� � �exp ( )� . The model

Eqs. (1)–(5) can not be solved exactly and one needs to

exploit certain approximations to go further.

We will use «master equation» approximation (see e.g.

[5]) to evaluate the average current and noise power in

our model. It is in this approximation that average current

separately for the model with interacting leads [14] and

for vibrating quantum dot with noninteracting leads [18]

was calculated earlier. Master (rate) equation approach

exploits such quantities as the probability for electron to

occupy level dot and the transition rates. It neglects quan-

tum interference in electron tunnelling and therefore de-

scribes only the regime of sequential electron tunnelling

which is valid when the width of electron level

�0 �� min ,( )T eV . In other words, in our case «master

equation» approach is equivalent to the lowest order of

perturbation theory in �0.

For interacting electrons the validity of master equa-

tion approach for high-T regime of resonant electron tun-

nelling can be justified for strong repulsive interaction

g � 1 2/ [14]. It is correct also for weak interaction

1 1� ��g as one can check by comparing the results of

Refs. 14 and 16, where resonant tunnelling through a dou-

ble-barrier Luttinger liquid was considered for weak elec-

tron–electron interaction. Notice, that the results [18] of

exact solution known for g 
1 2/ , where a mapping to

free-fermion theory can be used [5], do not agree with the

high-T scaling of G T( ) [14] extrapolated to this special

point g 
1 2/ . The free-fermion scaling G T T( ) � �1 found

for g 
1 2/ (master equation approach predicts T -inde-

pendent value [14]) could be a special feature of this ex-

actly solvable case. We will assume that beyond the close

vicinity to g 
1 2/ the master equation approach for

high-T behavior of conductance is a reasonable approxi-

mation.

3. Transition rates and the average current

In master equation approach the average current

through a single level quantum expressed dot in terms of

transition rates takes the form

I e
R L L R



�� � � �
��

01 10 01 10 , (6)

where �
01
R L( )

is the rate of electron tunnelling from the to

dot right (left) electrode, �
10
R L( )

describes the reverse pro-

cess and � � �� 
 �01 10, � � �if if
L

if
R
 � ( , , )i f 
 0 1 . To
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Fig. 1. The schematic picture of the two-terminal electron

transport through a vibrating quantum weakly dot coupled (via

narrow dielectric regions Ht ) to the Luttinger liquid leads

( ( )
� �

l
L R

l
 ) with the chemical potentials 	F eV / 2 (V is the

driving voltage). All the energies are counted from the Fermi

energy, which chosen to be zero. Electrons tunnel from one

lead to another by hopping on and off the level dot with the en-

ergy 	P (elastic channel) and due to electron–vibron coupling

they can emit or absorb vibrons (vibron–assisted tunnelling).

Inelastic channels are represented as side-levels with energies

	 	 �P P 
  � 0. The position of the levels dot with respect to

the Fermi energy can be uniformly shifted by applying voltage

Vg to the «gate» electrode.



evaluate these rates in our approach we will use Fermi

«Golden Rule» (quantum mechanical perturbation the-

ory) for tunnelling Hamiltonian obtained from Eq. (4) af-

ter the unitary transformation: � �T t!

�t j

j L R

t j f i p
 � � ��



{ ( ) exp ( )

,

� � h.c.} . (7)

The standard calculation procedure results in the follow-

ing expressions for tunnelling rates

� � �
10

2

0 0
( )

( ) ( ) ( ) ( ) e
j j

b j j f

t
dt V t V t


"

"
"

"

"
" # $ # $

��

�
� ���

xp ( ( ) / )i eV tP F j	 	� � � , (8)

� � �
01

2

0 0
( )

( ) ( ) ( ) ( ) e
j j

b j j f

t
dt V t V t


"

"
"

"

"
" # $ # $

��

�
� ���

xp ( ( ) / )� � �i eV tP F j	 	 � , (9)

where V V VL R� 
 is the bias voltage and j L R
 , . Notice

that in the perturbation calculation on the bare level width

�0
2� | |,t L R , we neglect the level width in the Green func-

tion of the level dot. Besides, in this approximation aver-

ages over bosonic and fermionic operators in formulas for

tunnelling rates are factorized and, thus, the averages

# $� b over bosonic variables

V i p
 � �exp ( )� , p
i

b b
 ��

2
[ ] (10)

can be calculated with the quadratic Hamiltonian

�b b b
 �
��0 . In what follows we will assume that vib-

rons are characterized by equilibrium distribution func-

tion: n T Tb ( ) [ exp ( / ) ]
 � �
��0

11 . Averages # $� f over

fermionic operators in Eqs. (8), (9) are calculated with the

Luttinger liquid Hamiltonian (2). The corresponding cor-

relation functions in Eqs. (8), (9) are well known in the

literature (see e.g. [10,14])

# $ 
 � � %�V t V nb B( ) ( ) exp ( ( ))0 1 22�

% � � �
&
'
(

)(

*
+
(

,
��

�

 I n n il t i Tl

l

B B[ ( )] exp [ ( / )]2 1 22
0� � �

(
, (11)

# $ �
��

�
��

&
'
)

*
+
,

�
�

� �
� �

j j f
F

g

t
i

T

Tt
( ) ( )

/

0

1

�

� �v �
�

sinh . (12)

Here I zl ( ) is a modified Bessel function, � � 	F is a ultra-

violet cutoff energy, g is the Luttinger liquid correlation

parameter.

By putting correlation functions (11),(12) in Eqs. (8),

(9) and evaluating time integrals we get the following

equations for tunnelling rates � �� 
( ) ( )j j
10

and �� 
( )j


 �- .
01

j
, ( j L R
 , )

�
�

�

/
 

�

 0

1
2

3
4
5

�  ( )
/ exp [ ( / ) /j j
g

jT T

2

2 2 21 1 2
0

�
� � �

�

�coth T

g

]

( / )� 1
%

%
�

�
�
�

�

�
�
�

�
 �


 �

�

 I
T g

i
l

T
l

l

j

—
( / )

( )�
�

�

�

2

0

0

2

1

2 2sinh �

�
�

/0

1
2
2

3

4
5
5

"

"
"

"

"
"

&
'
(

)(

*
+
(

,(

2

,

(13)

where �L R( ) is the partial level width (see, for example,

[ 1 4 ] ) � �j j jc t f f
 # $ 
�( / )2 2� � const ( j L R
 , ) , �L �
� 
� �R 0, / j F P jeV
 � �	 	 ; here �( )z is Gamma

function.

At first we consider different limiting cases when it is

possible to obtain simple analytical expressions for the

average current (6). Notice, that electric current depends

on the gate voltageVg through the corresponding depend-

ence of level energy 	P gV( ). It is convenient for the fur-

ther analysis to choose the value of gate voltage at which

the current at low bias is maximum as: 	 	P g FV( ) 
 . In

what follows we also put V V VL R
 � 
 / 2.

For noninteracting leads ( )g 
1 and noninteracting

quantum dot ( )� 
1 it is easy to derive from Eqs. (6), (13)

the well-known formula for the maximum (resonant) cur-

rent at temperatures T L R�� � ( )

I V
e eV

T
( ) �

�
�

tanh
4

0
1
2

3
4
5 , (14)

where � � � � �
 �L R L R/ ( ) is the effective level width. It

is evident that at high voltages: eV T�� the current

through a single level dot does not depend on the bias

voltage and its value is totally determined by the effective

level width �.

For a vibrating quantum dot ( )� 6 0 weakly coupled to

noninteracting leads ( )g 
1 our approach reproduces the

results of Ref. 10. In the temperature region we are inter-

esting in ( )( )T L R�� � the general formulae derived in

[10] can be rewritten in a more clear and compact form. In

particular, by using for g 
1 in Eq. (11) the well-known

representation for Gamma function (see e.g. [19])

�( )
cosh ( )

1

2

2

�"
"
" "

"
" 
iz

z

�
�

, (15)
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it is easy to obtain the following expression for the maxi-

mum (peak) conductance

G T G T F
T

� �
�

( ) ( )
 0

1
2

3

4
5

� 0 , (16)

where

G T G
T

( ) �

�
2

0
�

, G
e

h
0

2


 (17)

is the standard resonance conductance of a single-level

quantum at dot T L R�� � ( ). The dimensionless function

F x�( ) takes the form

F x n xB� �( ) exp [ ( ( ))]
 � � %2 1

% �
&
'
(

)(

*
+
(

,(


�

I z x
I z x

lx

l

l

0 2
1

2
2

( ( ))
( ( ))

cosh ( / )
, (18)

h e r e z x n x n xB B( ) ( )[ ( )]7 �2 12� a n d n xB ( ) 


 � �( exp ( ) )x 1 1. At low temperature region � �� ��T

�� ��0, when there are no thermally activated vibrons in

the dot ( )nB �� 1 only the first term in the brackets con-

tribute to the sum and: F T� � �( ) exp ( )�� �� 0
2

� . We

see, that zero-point fluctuations of the position dot result

in renormalization of the level width � �� �
 �exp ( )2 .

For strong electron–vibron coupling this phenomenon

(polaronic narrowing of level width) leads to polaronic

(Franck–Condon) blockade of electron transport through

vibrating quantum dot [11]. The temperature behavior of

peak conductance (16) was considered in Ref. 20.

Now we will study the general case when interacting

quantum dot ( )� 6 0 is connected to interacting leads

( )g � 1 . Analytical expressions for conductance in this

case can be obtained in the limits of low ( ( )�L R ��
�� ��T ��0 ) and high ( )T �� ��0 temperatures.

At low temperatures the main contribution to the sum

over «l» in Eq. (13) comes from elastic transition l 
 0. All

inelastic channels ( )l 6 0 are exponentially suppressed for

eV , T �� ��0. At T g�� ��0 the peak conductance takes

the form

G T G
T

g

g

T
g

( )
( / )

( / / )

/

�

� ��

2

1 2

1 2 1 2
0

1 1� �
� ��
�

�
�

�

�
�
0
1
2

3
4
5

�
. (19)

We see that at low temperatures conductance scales with

temperature according to Furusaki’s prediction [14]:

G T T g( ) /� �1 2. The influence of electron–vibron coupling

results in multiplicative renormalization of bare level

width � �� �
 �exp ( )2 .

At high temperatures: T �� ��0 one can use the well

known asymptotic expansion for Bessel function

I z z zl ( ) exp ( ) /� 2� , which can be used in summation

Eqs. (18), (13) until l z2 � . Besides, in this temperature

region the summation in Eq. (13), can be replaced by inte-

gration and the corresponding integral can be taken

exactly

| ( )| ( )

��

�
�� � 
� �a iz dz aa2 1 22 2� . (20)

This allows us to derive the following expression for the

temperature dependence of peak conductance in the inter-

mediate temperature region � �� � �0
2

0�� �T , ( )� 8 1

G T G
T

T

T
g

( )
exp ( / )

/

�

� � �

� �

�
2

4
0

2
0

0

1�
�

��

�
�
�

�

�
�
�

0
1
2

3
4
5

�
�

�

1

. (21)

Notice that in the considered temperature region the

polaronic blockade is already partially lifted ��( )T 


 � �� �exp ( / )� �2

0 4� T at T � � �2
0� and conductance

scales with temperature as G T T g( ) / /� �1 3 2. At last, at

temperatures T �� � �2
0� when all inelastic channels for

electron transport are open, the polaronic blockade is to-

tally lifted [20] and we reproduce again Furusaki scaling.

It is clear from our asymptotic formulae (19),(21) that

both in low- and in high- temperature regions the contri-

butions of electron–electron and electron–vibron interac-

tions to the conductance are factorized. In general case

these contributions are not factorized, as one can see from

Eqs. (8), (9) and from Eq. (13) for tunnelling rates, and

we can expect interplay of Kane–Fisher effect and the ef-

fect of phonon(vibron)-assisted tunnelling.

To see this interplay we consider nonlinear (differen-

tial) conductance G V dI dV( ) /
 . It is well known that

Kane–Fisher effect is pronounced for the energies close

to the Fermi energy. For differential conductance it means

that the zero-bias (elastic) resonance peak is suppressed

with the increase of electron–electron interaction, while

satellite peaks are less affected by the interaction. When

electron–electron interaction is weak or moderately

strong ( / )1 2 1� �g the dependence of differential con-

ductance on the bias voltage (for � � 1) is not a monoto-

nous function due to the presence of satellite peaks (see

Fig. 2,a,b). The resonant behavior disappears for strong

interaction g � 1 2/ (Fig. 2,b), when at low temperatures

T �� ��0 differential conductance scales with bias volt-

age as G V V g( ) /� �1 2 in accordance with the Luttinger

liquid prediction for nonlinear electron transport through

a single-level quantum dot. For instance, if we put

1 2 3/ , ( , , )g n n
 
 � and tune the level energy to the reso-

nance point 	 � �0
2

0
 � — («resonant» location of the

level in the presence of «polaronic» shift), we obtain for

the differential conductance G V( ) the following expres-

sion for eV g/ ( / )��0 1 2�� �

G V G
n

eV
n

( )
( )!

� 4
1

1 2
0

2

� ��
� ��

�

��
�

��
0
1
2

3
4
5

�
, (22)
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where � �� �
 �exp ( )2 . One can readily see that expres-

sion (22) reproduces Furusaki temperature scaling

Eq. (19) when eV is replaced by T .

Analogous interplay of Kane–Fisher and polaronic ef-

fects one can see in Fig. 3,a,b, where differential conduc-

tance is plotted as a function of level energy 	 0 (or, equiv-

alently, as a function of gate voltage). For noninteracting

leads ( )g 
1 the resonance conductance peaks correspond

to the level positions at 	 	P F eV 
  / 2 (in our plot we

put: eV 
 5 0�� ). This elastic resonance peak is sup-

pressed by electron–electron interaction in the leads

( )g � 1 . The dependence G Vg( ) for weak and moderately

strong interaction still reveals resonance structure with

4 satellites in our case, Fig. 3,a. The inelastic resonance

peaks disappear at g � 1 2/ and maximum of differential

conductance corresponds at g �� 1 to the level position at

	 	P g FV( ) 
 , that is exactly in the middle between chemi-

cal potentials of left and right electrodes (Fig. 3,b).

It is important to stress here once more that for moder-

ately strong electron–electron interaction in the leads the

inelastic tunnelling can dominate in electron transport.

One can see from Figs. 2,3 that there is region of coupling

constants when the first satellite peak is higher than the

«main» (zero-bias) resonant peak, which corresponds to

elastic (l 
 0) tunnelling channel. It is the most significant

prediction, we have made in this paper.

4. The noise power

The knowledge of tunnelling rates Eqs. (8), (9) allows

us to evaluate not only the average current Eq. (6) but the

noise power as well. We will follow the method devel-

oped in Refs. 21 and 22 where quantum noise was calcu-

lated for resonant electron transport through a quantum

weakly dot coupled to noninteracting electrodes.

The noise power is defined (see e.g. [23]) as

S dt i t I t I( ) exp ( ) ( ) ( )� �
 # $

��

�

�2 0/ / , (23)
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Fig. 2. Differential conductance (in the units of G0) as a func-

tion of driving voltage (in the units of ��0). Here we put

� / kT 
 0.01; ��0 10/ kT 
 ; �2 1
 ; and tune the level energy to

the resonant position 	 � �0
2

0
 � (	P 
 0). Solid lines corre-

spond to the case of noninteracting leads g 
1 (a) and (b); dot

line (g 
 0.8), dash-line dot (g 
 0.6) (a), dot line (g 
 0.45),

dash-dot (g 
 0.25) (b). Zero-bias (elastic) resonance peak is

gradually suppressed with the increase of electron–electron

correlations (decrease of Luttinger liquid parameter g) while

the satellite peaks survive until g �1 2/ (a). For g � 1 2/ the res-

onance-like behavior of differential conductance disappears

and conductance scales as a power-law of the bias voltage (b).
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Fig. 3. Differential conductance (in the units of G0) as a func-

tion of level energy 	0, counted from the Fermi energy. The

bias voltage eV / ��0 5
 is sufficiently high to excite vibrons

and to support electron transport through inelastic channels. All

parameters are the same as for Fig. 2,a and b, correspondingly.



where /I t I t I( ) ( )
 � (I is the average current). The noise

defined in Eq. (23), in the case of sequential tunnelling

through a quantum dot, can be expressed in terms of tun-

nelling rates. For a single level quantum this dot formula

for low frequency noise S S
 
( )� 0 takes the form

S eI
I

e
L R


 � �2
4

4
2

2 01 10

�
� �
�� �

, (24)

here the average current I is determined by Eq. (6). The

noise power Eq. (24) depends on temperature and bias

vol tage S T V( , ) and conta ins both thermal (Jon-

son–Nyquist) noise S T S T V TG TJN ( ) ( , ) ( )7 
 
0 4 (G is

the conductance) and the nonequilibrium (shot) noise

S T Vsh ( , ). Since the thermal noise is totally determined by

temperature dependence of conductance, we will study in

what follows only shot noise and Fano factor F 


 S eIsh / 2 . In particular, Fano factor in our case can be

represented as follows

F
I

e

e

I

TG

e

L R


 � � �
0

1
2
2

3

4
5
5

&
'
(

)(

*
+
(

,(
1

2 2 01 10

2�
� �
�� �

. (25)

For noninteracting leads ( )g 
1 and noninteracting quan-

tum dot ( )� 
 0 one readily gets from Eqs. (13), (24) a sim-

ple expression for the «full» noise ( )S of a single electron

transistor (SET). On resonance 	 	P g FV( ) 
 and at tem-

peratures T �� � one finds

S
e eV

T

eV

T

 0

1
2

3
4
5 � 0

1
2

3
4
5

�

�
�

�

�
� �

&
'

2

4
1

2

4

2� �
���

tanh tanh
(

)(

�
��

�
�

�

�
�
*
+
(

,(

e eV T

eV T

2

2

4

4

�
�

exp ( / )

cosh ( / )
. (26)

From Eq. (26) in the limit V � 0 we obtain S S TJN
 ( ),

where S T e TGJN ( ) /
 
2 4� � is the thermal noise. In the

opposite case eV T�� we rederive the well-known for-

mulae for the shot-noise and the Fano factor of a single

level quantum dot [21–23]

S
e

sh 
 �
0

1
22

3

4
55

2
1

22� �
���

, F 
 �1
2�
��

. (27)

These formulae (26), (27) can be also re-derived from

the general expression for the full noise of noninteracting

electrons (see e.g., Eq. (61) in Ref. 23)

S V T
e

d T f f f f T Tt L L R R t t( , ) { ( )[ ( ) ( )] ( )[ (
 � � � � ��
2

1 1 1
�

	 	 	 	)]( ) }f fL R� 2 , (28)

where Tt ( )	 i s the t ransmiss ion coeff ic ien t and

f Tj j
 � � �{exp [( ) / ] }	 9 1 1 is the equilibrium distribu-

tion function of electrons in the leads (9 j is the chemical

potential; j L R
 , ). In the case of single level quantum dot

Tt ( )	 takes the form Breit–Wigner tunnelling probability

Tt
L R

P L R

( )
( ) ( ) /

	
	 	



� � �

� �

� �2 2 4
. (29)

For a weak tunnelling when �L R( ) are the smallest energy

scales in the problem the Lorentzian shape of the

Breit–Wigner resonance shrinks to �-function

Tt PL R
( )| ( — )

,
	 � � 	 	� ��0 2� . (30)

With the help of Eqs. (28),(30) for the resonance condi-

tion 	 	P g FV( ) 
 we easily re-derive Eq. (26). (Notice,

that in sequential tunnelling approach the tunnelling tran-

sitions through the left and right barriers are assumed to

be weak and uncorrelated. Therefore we can safely ne-

glect Tt
2-term in Eq. (28).) It is evident from Eqs. (25),

(27) that for noninteracting electrons the Fano factor is

sub-Poissonian ( )F � 1 and F approaches 1 for strongly

asymmetric junction � �L R R L( ) ( )�� and for eV T�� .

The master equation approach we have used in our

analysis holds when electron tunnelling amplitudes are

small. For noninteracting electrons this assumption is sat-

isfied when electron energies are far from the resonant en-

ergy level, i.e. Tt ( )	 �� 1. The differential shot noise in

this case as a function of bias voltage or gate voltage be-

haves similarly to the differential conductance. Notice

however that due to different dependence on temperature

the shot noise unlike the thermal one even in sequential

tunnelling regime (T �� �) can not be expressed in terms

of conductance.

By comparing Fig. 4,a and Fig. 3,b, one can see that

the above similarity is preserved for interacting electrons

(g 6 1, � 6 0) as well. The corresponding Fano factor

which is the «shot noise/current» ratio and thus is less

sensitive to the details of tunnelling process, for strong

electron–electron interaction exhibits a simple behavior

(see Fig. 4,b). It dips (F � 1 2/ ) at symmetric (with respect

to chemical potentials of the leads) position of the level

dot. Outside this region F � 1 (Poissonian noise). The

width of the dip decreases with the increase of interac-

tion, Fig. 4,b.
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5. Summary

We considered the influence of interaction on trans-

port properties of molecular transistor which was modell-

ed as a vibrating single-level quantum dot weakly coupl-

ed to the Luttinger liquid leads. We found interesting

interplay between polaronic and Luttinger liquid effects

in our system. In particular it was shown that for weak or

moderately strong interaction (1 2 1/ � �g ) the differential

conductance demonstrates resonance-like behavior and

for moderately strong interaction inelastic channels can

even dominate in electron transport through a vibrating

quantum dot. For strong interaction (g �� 1) the resonant

character of vibron-assisted tunnelling disappears and the

differential conductance scales as a power law on temper-

ature (linear regime T eV�� ) or on bias voltage (nonlin-

ear regime eV T�� ).
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Fig. 4. Differential shot noise power (in the units of eG0) (a)

and Fano factor as functions of the level energy 	0 in the non-

linear transport regime eV / ��0 5
 (b). Other parameters are

the same as on Fig. 2,b.


