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The influence of a topological defect in graphene on the ground state of electronic quasiparticle

excitations is studied in the framework of the long-wavelength continuum model originating in the tight-

binding approximation for the nearest neighbour interaction in the graphitic lattice. A topological defect that

rolls up a graphitic sheet into a nanocone is represented by a pointlike pseudomagnetic vortex with a flux

which is related to the deficit angle of the cone. The method of self-adjoint extensions is employed to define

the set of physically acceptable boundary conditions at the apex of the nanocone. The electronic system on a

graphitic nanocone is found to acquire the ground state condensate and current of special type, and we

determine the dependence of these quantities on the deficit angle of the nanocone, continuous parameter of

the boundary condition at the apex, and the distance from the apex.

PACS: 11.10.–z Field theory;
73.43.Cd Theory and modeling;
73.61.Wp Fullerenes and related materials;
81.05.Uw Carbon, diamond, graphite.
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1. Introduction

Topological phenomena are of great interest and im-

portance because of their universal nature connected with

general properties of the space. Topological defects in the

quasirelativistic fermionic matter can induce vacuum

quantum numbers. A general theory of the vacuum po-

larization by a pointlike topological defect of the vortex

type in two-dimensional quantum systems of massless

Dirac fermions was elaborated in Refs. 1,2. In the present

paper we apply this theory to the study of the ground state

polarization in graphene with a topological defect (see

also Refs. 3,4).

Carbon atoms in graphene compose a planar ho-

neycomb lattice with one valence electron per each site.

The primitive cell is rhombic and contains two atoms,

thus the graphene lattice consists of two rhombic sub-

lattices. The first Brillouin zone is a regular hexagon with

corners corresponding to the Fermi points; among six of

them, the two oppositely located ones are inequivalent.

Electronic quasiparticle excitations in graphene are cha-

racterized by a linear and isotropic dispersion relation

between the energy and the momentum in the vicinity of

the Fermi points, where the valence and conduction bands

touch each other. Using the tight-binding approximation

for the nearest neighbour interaction in the honeycomb

lattice, an effective long-wavelength description of elect-

ronic states in graphene can be written in terms of a

continuum model which is based on the Dirac–Weyl

equation for masless electrons in 2 1� -dimensional spa-

ce-time with the role of speed of light c played by Fermi

velocity v c/� 300 [5–7]. The one-particle Hamiltonian

operator of the model takes form

H i v( )
( ) ( )( )0
0

1
1 0

2
2� � � � �� � � , (1)

where � ( )0
1 and � ( )0

2 are the 4 4� matrices belonging to a

reducible representation composed as a direct sum of two

inequivalent irreducible representations of the Clifford

algebra in 2 1� -dimensional space-time. The one-particle

wave function possesses 4 components, which reflects the

existence of 2 sublattices and 2 inequivalent Fermi points

(valleys).

Unlike the conventional case of spinor electrodynamics

in 2 1� -dimensional space-time (see, e.g., Ref. 8), the parity

transformation in the continuum model of graphene implies

the inversion of both spatial axes and the exchange of both

sublattices and valleys [9],
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� �( , , ) ( , , )vt x x P vt x x1 2 1 2	 � � , (2)

where

PH H P P I( ) ( ) ,0 0 2� � � . (3)

The time reversal implies the exchange of valleys [10],

� �( , , ) ( , , )vt x x T vt x x1 2 1 2	 � , (4)

where

T H H T T I( ) ,( ) * ( )0 0 2� � � . (5)

The matrix of the spatial inversion can be presented as

P R� 2
 , (6)

where


 �
1

2
0

1
0

2

i
� �( ) ( ) (7)

is the pseudospin, and R satisfies commutation relations

[ , ] [ , ]( ) ( )R R� �0
1

0
2 0� �� � (8)

and exchanges the sublattice indices, as well as the valley

indices.

In the second quantization picture, one can consider

ground state expectation values:

the P-condensate

�( ) | ( ) ( )|x x P x� � �vac vac� � (9)

and the R-current

j( ) | ( ) ( )|x x R x� � �vac vac� �� , (10)

where x vt x x� ( , , )1 2 , � � ( , )� �1 2 , and | vac denotes the

ground state (vacuum). Evidently, quantities (9) and (10)

are vanishing in the case of Hamiltonian given by H ( )0

(1), which corresponds to the idealized strictly planar

graphene with all interactions neglected. In reality, the

layers of graphene are corrugated at mesoscopic scales

[11–13], and namely the effects of curvature in graphene

samples are addressed in the present paper. Therefore, our

starting point is the ground state expectation value of the

time-ordered product of fermion fields in the form

�  � � � �vac vac| ( ) ( )| |( ) |T x y x v y� � � ��
�

1 , (11)

where � �� � � 0, and �� (� � 0 1 2, , ) is the covariant deri-

vative in curved 2 1� -dimensional space-time. Restric-

ting ourselves to static backgrounds (� � �0 0) and using

Eq. (11), we get

�( ) | ( ) |x i x P i v H x� � � � � �tr � 0
1

(12)

and

j( ) | ( ) |x i x R i v H x� � � � � �tr � � 0
1 , (13)

where

H i v� � �� � � (14)

is the Dirac–Weyl Hamiltonian on a curved surface,

[ , ] ,' '� �j j jjg I� � 2 (15)

and g jj' is the metric of this surface. Further, using the

Wick rotation of the time axis, Eqs. (12) and (13) are

recast into the form which exhibits explicitly their time

independence,

�( ) | ( )|x x x� � � 
1

2
tr sgnP H (16)

j x x x( ) | ( )|� � � 
1

2
tr sgn�R H . (17)

In the present paper we compute the P-condensate and

the R-current in graphene with a topological defect.

2. Topological defects

Topological defects in graphene are disclinations in

the honeycomb lattice, resulting from the substitution of a

hexagon by, say, a pentagon or a heptagon; such a

disclination rolls up the graphitic sheet into a cone. More

generally, a hexagon is substituted by a polygon with

6 � N d sides, where N d is an integer which is smaller than

6. Polygons with N d � 0 (N d � 0) induce locally positive

(negative) curvature, whereas the graphitic sheet is flat

away from the defect, as is the conical surface away from

the apex. In the case of nanocones with N d � 0, the value

of N d is related to apex angle �,

sin
�
2

1
6

� �
N d ,

and N d counts the number of sectors of the value of �/3

which are removed from the graphitic sheet. If N d � 0,

then �N d counts the number of such sectors which are

inserted into the graphitic sheet. Certainly, polygonal de-

fects with N d � 1 and N d � �1 are mathematical abstrac-

tions, as are cones with a pointlike apex. In reality, the

defects are smoothed, and N d � 0 counts the number of the

pentagonal defects which are tightly clustered producing a

conical shape; graphitic nanocones with the apex angles

� � �112 9. , 83 6 60 0 38 9 19 2. , . , . , . ,� � � � which correspond to

the values N d �1 2 3 4 5, , , , , were observed experimentally

[14]. Theory predicts also an infinite series of the

saddle-like nanocones with �N d counting the number of

the heptagonal defects which are clustered in their central

regions. Saddle-like nanocones serve as an element which

is necessary for joining parts of carbon nanotubes of

differing radii and for creating Schwarzite [15], a structure

appearing in many forms of carbon nanofoam [16]. As it

was shown by using molecular-dynamics simulations [17],
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in the case of N d � � 4, a surface with a polygonal defect is

more stable than a similarly shaped surface containing a

multiple number of heptagons; a screw dislocation can be

presented as the N d 	 �� limit of a 6 � N d -gonal defect.

The metric of a conical surface with a pointlike apex

has the form

g g rrr � � �1 1 2 2, ( ) ,�� � (18)

where r and � are polar coordinates centred at the apex,

and �� � �� 1. The intrinsic curvature of the cone pos-

sesses a � 2( )x -singularity at its apex, vanishing at x � 0,

and parameter � enters the coefficient before this sin-

gularity term. Quantity 2��for 0 1� �� is the deficit angle

measuring the magnitude of the removed sector, and

quantity �2�� for �� � �� 0 is the proficit angle mea-

suring the magnitude of the inserted sector. In the case of

graphitic nanocones, parameter � takes discrete values:

� �
N d

6
. (19)

Using Eqs. (15) and (18), one gets

� � � � ��r r� � � � �
( ) ( ), ( ) ,0
1 1 1

0
21 (20)

and the Dirac–Weyl Hamiltonian on the cone takes form

H i v r ir� � � � � � �� �
� { [( ) ]}( ) ( )� � � �0

1
0

2 1 11 
 . (21)

The second-quantized fermion field operator is pre-

sented as

�( )
| |

exp[ ( ) ] ( )x
dE E

v
iEx v a

n Z

En En� � �
�

�

���
�

�
2 2

0

0 1 � x

� �

���

� ��� dE E

v
iEx v b

n Z

En En
| |

exp[ ( ) ] ( )
�

�
2 2

0

0 1 � x , (22)

where � is the set of integer numbers, aEn
� and aEn (bEn

�

and bEn ) are the fermion (antifermion) creation and de-

struction operators satisfying anticommutation relations

[ , ] [ , ]
(

~
)

~
,~a a b b

E E

EE
En En En En nn

�
�

�
�� �

��
� (23)

and � En ( )x is the solution to the stationary Dirac–Weyl

equation

H EEn En� �( ) ( )x x� . (24)

The ground state is defined conventionally as

a bEn En| |vac vac �  � 0 . (25)

Solutions to the Dirac–Weyl equation form a complete

set and are orthonormalized in a way which is usual for

the case of the continuum

d r g v
E E

EE
En En nn� � � �

�
�

�

00

2

2 22

�
��� �

�
( ) ( )

(
~

)

~
,~~ ~x x �

(26)

where g g rjj� � �det ' ( )1 2 2� , and a factor of 2 in the

right hand side of the last relation is due to the existence

of two inequivalent Fermi points (valleys).

As it was shown in Ref. 3, the fermion field on a gra-

phitic nanocone obeys the M�bius–strip–type condition:

� �( , , ) exp ( ) ( , , ),vt r i R vt r� � �� �� � � �2 3 (27)

where � is given by Eq. (19). Condition (27) in the case of

odd N d involves the exchange of sublattices, as well as

valleys. Note that since R I2 � , the exchange is eliminated

after double rotation

� �( , , ) cos ( ) ( , , )vt r N vt rd� � � �� �4 ; (28)

that is why the mention of the M�bius strip
seems to be relevant.

By performing a singular gauge transformation (see

Ref. 3 for more details), one gets the fermion field ob-

eying usual condition

� �' ( , , ) ' ( , , )vt r vt r� � �� � �2 , (29)

in the meantime, Hamiltonian (21) is transformed to

 � � � � � � � �!
"#

$
%&

' � �H i v r i R ir� � � � ��( ) ( ) ( ) ( )0
1

0
2 1 11

3

2

(

)

*
+
,
.

(30)

Thus, a topological defect in graphene is represented

by a pseudomagnetic vortex with flux N /d � 2 through the

apex of a cone with deficit angle N /d � 3. Note that, due to

commutation relations

[ , ] [ , ] [ , ] [ , ]P R P T R T� � � �� � � �
 
 0 , (31)

discrete symmetries of spatial inversion and time reversal

are maintained:

PH H P T H H T � �   �  , ( )* . (32)

3. Solution to the Dirac–Weyl equation

Vacuum expectation values are independent of the

matrix representation used, therefore a choice of rep-

resentation is a matter of convenience. As it was already

noted, the � ( )0
1 -and � ( )0

2 -matrices (and, consequently, 
)

are of the block-diagonal form. Since the R-matrix sa-

tisfies relation (8), it can be unitarily transformed to the

block-diagonal form also:

URU
I

I
U U� ��

�
-

.
//

0

1
22 �1

0
1

0

0

0
, ( ) ( )� � . (33)
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Thus Hamiltonian attains the block-diagonal form after

this unitary transformation:

  �  �
-

.
//

0

1
22

�

�
H UH U

H

H

1 1

1

0

0
. (34)

To be more precise, let us assign the definite sublattice

and valley indices to components of the initial fermion

field in the following way [18]:

� � � � �� � � � �( , , , )A B A B
T , (35)

where subscripts A and B correspond to two sublattices

and subscripts « � » and « � » correspond to two valleys.

After performing the singular gauge transformation and

the unitary one, we get   � with components mixing up

different sublattices and valleys. The appropriate solution

to the Dirac–Weyl equation takes form

  �
�

� � �
En En En

T( , )
, ,1 1

, (36)

where the two-component functions satisfy equations

H E ss En s En s� �, , ,� � 3 1. (37)

Corresponding to Eq. (35), the � ( )0
1 - and � ( )0

2 -matrices

can be chosen in the form

� 4
4

� 4 5
5 �4

( ) ( ),0
1

2

2 0
2

1

1

0

0
� �

-

.
/
/

0

1
2
2 �

-

.
/
/

0

1
2
2 , (38)

where 41 and 4 2 are the off-diagonal Pauli matrices. Then

the matrices of spatial inversion and time reversal in the

initial representation take form

P T i
I

I
�

-

.
/
/

0

1
2
2 �

-

.
//

0

1
22

0

0

0

0

1

1

4
4

, . (39)

Separating the radial and angular variables in the solution

to Eq. (37),

� �
�

En s
En s

En s

r
f r i n s/

g r i n s
,

,

,

( , )
( ) exp[ ( ) ]

( ) exp[ (
�

�
�

2

/2) ]�
-

.
//

0

1
22 , (40)

we get that the radial components satisfy equations

0

0

D

D

f r

g r
E

f
n s

n s

En s

En s

En s,

,

,

,

,( )

( )

�-

.
/
/

0

1
2
2

-

.
//

0

1
22 �

( )

( )
,

,

r

g rEn s

-

.
//

0

1
22 (41)

where

D v r sn

D v r

n s r

n s r

,

,

[ ( ) ( )],

[ ( )

� �� � � �

� � � �

� �

� �

�

�

1 1

1

1

1

� �

� � � �1 1 2( )].sn �
(42)

Let us consider graphitic nanocones with 1 1 2� 6 �� /

and � � �1, and define quantity

F �
� �!

"#
$
%&

� � 6 � �

� �

' �1

2

1

2
1 1

1

2
0

1

2
1

1sgn( ) ( ) , ( ) ,

.

� � � � �

�
(
7

)
7

(43)

A pair of linearly independent solutions to Eq. (41) is

written in terms of the cylinder functions. In the case of

1 1 2� �� / (N d � 5 4 3, , ), the condition of regularity at the

origin is equivalent to the condition of square integra-

bility at this point, and this selects a physically reasonable

solution. Thus, in view of the orthonormality condition

(26), the complete set is given by regular modes with

sn � 0

f r

g r

En s

En s

,

,

( )

( )

-

.
//

0

1
22 �

1

2 1

1

1 1

1

1� �
�

�( )

( )

( ) ( )

( )

( )�

-

.

/
/

� �

� � �

�

�

J kr

E J kr

l F

l F
sgn

0

1

2
2

,

l sn� , (44)

and regular modes with sn � 0

f r

g r

En s

En s

,

,

( )

( )

-

.
//

0

1
22 �

1

2 1

1

1 1

1

1� �
�

�( )

( )

( ) ( )
'( )

'( )� �

- � �

� � �

�

�

J kr

E J kr
l F

l F
sgn

.

/
/

0

1

2
2

,

 � �l sn , (45)

where k E v� �| | ( )�
1, and J u� ( ) is the Bessel function of

order �; note that F is integer belonging to range 5 16 6F

in this case.

In the case of 1 2 0/ � �� (N d � 2 1, ) , 0 1 2� 6 �� /

( , ,N d � � � �1 2 3) and � � �1 (N d � �6), there is a mode,

for which the condition of regularity at the origin is not

equivalent to the condition of square integrability at this

point: both linearly independent solutions for this mode

are at once irregular and square integrable at the origin.

To be more precise, let us define in this case

n

s

s
c � � � 6 � �

� � �

'
(
7

)7
2

1
1

2

1

2
0

2 1

[sgn ( ) ], ( ) ,

.

� � �

�
(46)

Then the complete set of solutions to Eq. (41) is cho-

sen in the following form: regular modes with sn snc�

f r

g r

En s

En s

,

,

( )

( )

-

.
//

0

1
22 �

1

2 1

1

1 1

1

1� �
�

�( )

( )

( ) ( )

( )

( )�

-

.

/
/

� �

� � �

�

�

J kr

E J kr

l F

l F
sgn

0

1

2
2

,

l s n nc� �( ) , (47)

regular modes with sn snc�

f r

g r

En s

En s

,

,

( )

( )

-

.
//

0

1
22 �

1

2 1

1

1 1

1

1� �
�

�( )

( )

( ) ( )
'( )

'( )� �

- � �

� � �

�

�

J kr

E J kr
l F

l F
sgn

.

/
/

0

1

2
2

,

 � �l s n nc( ) , (48)
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and an irregular mode

f r

g r

En s

En s E

c

c

,

,

( )

( ) ( )[ sin ( ) cos (

-

.
//

0

1
22 �

� �

1

2 1 1 2� � 8 F�)]
�

�
��

�

sin ( ) ( ) cos ( ) ( )

( ) [sin ( ) (

8 8
8
E F E F

E F

J kr J kr

E J krsgn 1 ) cos ( ) ( )]�
-

.
//

0

1
22� �8E FJ kr1

,

(49)

note that F belongs to range 0 1� �F in this case. Thus, the

requirement of regularity for all modes is in contradiction

with the requirement of completeness for these modes. The

problem is to find a condition allowing for irregular at

r 	 0 behavior of the mode with n nc� , i.e. to fix 8E in

Eq. (49). To solve this problem, first of all one has to recall

the result of Ref. 19, stating that for the partial Dirac

Hamiltonian to be essentially self-adjoint, it is necessary

and sufficient that a non-square-integrable (at r 	 0) so-

lution exist. Since such a solution does not exist in the case

of n nc� , the appropriate partial Hamiltonian is not

essentially self-adjoint. The Weyl-von Neumann theory of

self-adjoint operators (see, e.g., Ref. 20) is to be employed

in order to consider a possibility of the self-adjoint exten-

sion for this operator. It can be shown (see Ref. 3) that the

self-adjoint extension exists indeed, and the partial Hamil-

tonian at n nc� is defined on the domain of functions

obeying condition

lim( ) ( )

lim( ) ( )

,

,

r

F
n s

r

F
n s

rMv/ f r

rMv/ g r

c

c

	

	

�
� �0

0

1

22

�

�

F F

F

�

�
�-

.
/

0
1
21

1 2 4

9
9

:( )

( )
tan

�
,

(50)

where 9( )u is the Euler gamma function, M is the pa-

rameter of the dimension of mass, and : is the self-adjoint

extension parameter. Substituting the asymptotics of Eq.

(49) at r 	 0 into Eq. (50), one gets the relation fixing

parameter 8E ,

tan sgn( ) ( ) tan8
�

E

F

E
k

Mv
� -

.
/

0
1
2 �-

.
/

0
1
2

�
�

2 1

2 4

:
. (51)

In the case of graphitic nanocones with � � � �1 2 1/ �
( , )N d � � �4 5 and �� �1 (N d � �6), there are more than

one irregular modes; this case will be considered else-

where.

4. Condensate

It is instructive to rewrite Eq. (16) as

�( ( )x) i x� �� , (52)

where

i x x x( ) | | | |� � � �i
v P H

4

1
� tr � . (53)

Although the trace of �P is formally zero, it may appear

that current i is nonvanishing; then its nonconservation

results in the emergence of condensate �.

The contribution of regular modes is canceled upon

summation over the sign of energy; thus, current (53) is

vanishing in the case of 1 1 2� 6� / , and we are left with the

cases of 1 2 0/ � �� , 0 1 2� 6 �� / , and � � �1, when an ir-

regular mode appears. Summing over s � 3 1corresponds to

summing contributions of the inequivalent irreducible repre-

sentations. These contributions are canceled for angular com-

ponent i � ( )x � � � �( ) | | | |i/ v P H4 1
� tr x x� � and doubled for

radial component i r( )x � � � �( ) | | | |i/ v P Hr4 1
� tr x x� . Con-

sequently, we get

i dk
k

Mv

r
F

( )
( )

tanx � �
�

-
.
/

0
1
2 �-

.
/

0
1
2

'
(

� �

�1

4 1 2 4
0

2 1

� �
�� :7

)7
� �� � � �[ ] ( ) ( )( ) ( )L L J kr J krF F1

� � � �� � � � � �[ ][ ( ) ( ) ( ) ( )]( ) ( )L L J kr J kr J kr J kr
k

Mv
F F F F1 1

�-
.
/

0
1
2 �-

.
/

0
1
2 �

�

� � � �

1 2

1
2 4

F

F FL L J kr J krcot [ ] ( ) ( )( ) ( )
: � *

+
7

,7
,

(54)

where

L
k

Mv
F

k

Mv

F

( ) tan cos ( )3

�
� 3 -

.
/

0
1
2 �-

.
/

0
1
2 � 3 -

.

� �
2 1

2 4
2

: �
� /

0
1
2 �-

.
/

0
1
2

!

"
#
#

$

%
&
&

� �
1 2

1

2 4

F

cot .
: �

(55)

Extending the integrand in Eq. (54) to the complex k-plane, using the Cauchy theorem to deform the contour of integration (for

more details see Ref. 2), and introducing the dimensionless integration variable, we recast Eq. (54) into the form

Vacuum polarization in graphene with a topological defect

Fizika Nizkikh Temperatur, 2008, v. 34, No. 10 1053



i
F

r
dw

K w K w

F

r F F( )
sin ( )

( )

( ) ( )

cos ( ) l

x �
� �

�
��

�

� �3 2

0

1

1
2 1h n ln tan

�w

rMv

-
.
/

0
1
2 � �-

.
/

0
1
2

!

"
#

$

%
&

:
2 4

�
, (56)

where K u� ( ) is the Macdonald function of order �. Since in our case � � � ��
i r rir

r1 , by differentiating Eq. (56) we get the

following expression for the vacuum condensate:
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Evidently, Eq. (57) vanishes at cos : � 0, while at F /�1 2 it is simplified,
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If cos : � 0 and F /� 1 2, then at large distances from the defect we get
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5. Current

It is straightforward to conclude that the radial component, j / R Hr r( ) ( ) | ( )|x x x� � � 1 2 tr sgn� , is vanishing, so it

remains to consider the angular component, j / R H� ��( ) ( ) | ( )|x x x� � � 1 2 tr sgn . The contribution of irregular mode (49)

to this quantity is

g j dkk
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where L( )3 is given by Eq. (55). Similarly as in the previous section, we get
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where I u� ( ) is the modified Bessel function of order �. The contribution of regular modes (47) and (48) is
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Performing the summation (details will be published elsewhere), we get
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Thus we get the following expression for the vacuum current:
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At cos : � 0 we get
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Also Eq. (65) at F �
1

2
is simplified,
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If cos : � 0 and F /� 1 2, then at large distances from the defect we get
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In the case of 1 1 2� 6� / (N d � 5 4 3, , ), the vacuum current takes form
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In the cases of N d � 3 and N d � 4, the sums in Eq. (69) are canceled term by term; thus the current is vanishing. In the

case of N d � 5, the current can be presented in the following form
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(70)

Using the Schl�fli contour integral representation for I u� ( ) and K u � ( ), one can show (details will be published

elsewhere) that the current is vanishing in this case also.

6. Summary

In the present paper we study the ground state polarization

in graphene with a disclination, i.e. 6 � N d -gonal (N d � 0)

defect inserted in the otherwise perfect twodimensional ho-

neycomb lattice. The variation of the bond length and the

mixing of �- with 4-orbitals caused by extrinsic curvature of

the lattice surface are neglected, and our consideration, focu-

sing on global aspects of coordination of carbon atoms, is

based on the long-wavelength continuum model originating

in the tight-binding approximation for the nearest neighbour

interactions. Our general conclusion is that the ground state is

polarized in cases when the Dirac—Weyl equation possesses

a solution which is irregular, although square integrable, at

the location of the defect; thus the ground state polarization is
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depending on the boundary parameter at this point, which

exhibits itself as the self-adjoint extension parameter. The

conclusion is consistent with the previously obtained result

for the induced ground state charge in graphene with a

disclination [3,4].

It is straightforward to demonstrate that the usual

ground state current, � �vac vac| |� �� , and the ground

state pseudospin-condensate, � �vac vac| |� 
� , are zero.

In the present paper we consider other ground state cha-

racteristics: the P-condensate (9) and the R-current (10),

which in terms of the sublattice and valley field com-

ponents (see Eq. (35)) are explicitly written as

�( ) |[ ( ) ( ) ( ) ( )x x x x xA B B A� � � ��
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and
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(72)

(the radial current is vanishing). Whereas the current is

invariant under time reversal, the condensate is invariant

under time reversal and spatial inversion as well. In par-

ticular, in the chiral representation of the Dirac matrices

(with diagonal � 5-matrix) one gets P � � 0 and the con-

densate corresponds to the conventional chiral symmetry

breaking condensate, � vac vac| |�� .

In the cases of the one-pentagon (N d �1), one-heptagon

(N d � �1) and three-heptagon (N d � �3) defects, our

results take form
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At large distances from the defect, the current de-

creases as r �2, see Eq. (68), whereas the condensate de-

creases faster, see Eq. (59), with the same power law as

for the decrease of the charge density [3].
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In the cases of the two-pentagon (N d � 2), two-hep-

tagon (N d � �2) and six-heptagon (N d � �6) defects, the

expressions for the condensate and the current are sim-

plified and are given by Eqs.(58) and (67), respectively.

Note that in these cases the charge is zero [3].

One can see that the ground state polarization effects

cannot be eliminated at all by the choice of the value of

the boundary parameter ( ): . Even in the case of cos : � 0,

when the condensate and the charge are vanishing, the

current is nonvanishing, see Eq. (66). The question of

which of the values of : is realized in nature has to be

answered by future experimental measurements, pro-

bably with the use of scanning tunnel and transmission

electron microscopy.
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