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We have studied the effect of gaussian potential (on-site) and unidirectional bond disorder on the density

of states (DOS) of Landau quantized graphene. The broadening of the Landau levels weakly depends on en-

ergy and the symmetry of the disorder except at the Dirac point. There, bond disorder enhances significantly

the peak in the DOS. For stronger disorder, Landau quantization becomes irrelevant, the discrete structures

from Landau levels disappear, and we recover the zero field DOS.
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1. Introduction

The recent discovery of graphene has attracted a lot of

interest due to its low energy excitations, being two-di-

mensional Dirac fermions [1–5]. These leave their strong

fingerprints on transport properties such as the anoma-

lous integer quantum Hall effect [4], which occurs at

half-integer filling factors, and in the presence of univer-

sal minimal value of the conductance in the limit of van-

ishing carrier concentration. Its conductivity depends

also linearly on the carrier concentration, a natural behav-

iour in Drude-like description of normal metals, which

calls for more exotic explanation in graphene than simple

potential scattering. Charged impurities as well as lattice

corrugations or resonant scatterers can account for the

observed behavior [6–8].

In order to understand the behavior of the conducti-

vity, a natural starting point is the generalized Einstein re-

lation, which is a generally valid relation of nonequilib-

rium statistical mechanics, first derived by Kubo [9],

which avoids certain ambiguities hidden in the Kubo or

Landauer formulation [10]. It states for the conductivity

� �� e D2
diff , (1)

where � is the density of states and Ddiff is the diffusion

coefficient, both at the Fermi energy EF . Thus, this rela-

tion requires the knowledge of both the density of states

and the diffusion coefficient. Here, we are going to ad-

dress the behavior of the former in the presence of magnetic

field, leaving the discussion of the diffusion coefficient

and consequently the conductivity for a future publica-

tion. Recently, we have studied the conductivity through

Eq. (1) without magnetic field [11].

Not surprisingly, Landau level formation in graphene

is also unusual compared to normal metals. The resulting

spectrum depends on the Landau level index n as n as

opposed to the linear dependence in normal metals. This

leads to many surprising phenomena in the magnetotrans-

port properties, such as the violation of the Wiedemann-

Franz law under certain conditions [12]. Due to Landau

level formation, the density of states in the presence of

quantizing magnetic field consists of Dirac delta peaks at

the Landau level energies. In the presence of impurities,

these peaks are expected to be broadened.

As a simple approximation, the broadening can be ap-

proximated by a finite, energy and magnetic field inde-

pendent scattering time [13] in the spirit of the Drude the-

ory. On the other hand, the self-consistent determination

of the self-energy [12,14] reveals a complex dependence

on the energy and magnetic field in the case of substitu-

tional on-site (potential) disorder. The purpose of the

present investigation is to extend this earlier analysis to

the case of gaussian on-site and bond disorder, and con-

centrate on the resulting structures around Landau levels.
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2. Formulation

The Hamiltonian of non-interacting quasiparticles liv-

ing on a single graphene sheet is given by [14–16]:

H i eAF j

j x y

j j0 � � � � �
�
�v �

,

( ( ))r , (2)

where � j ’s are the Pauli matrices, and stand for Bloch

states residing on the two different sublattices of the

bipartite hexagonal lattice of graphene [14,17]. Strictly

speaking, the Hamiltonian above describes quasiparticles

around the K points of the Brillouin zone, where the spec-

trum vanishes. The vector potential for a constant, ar-

bi t rar i ly or iented magnetic f ield reads as A(r) �
� � � � �( cos , , ( sin cos sin sin ))By B y x	 	 	0 , where 	 is

the angle the magnetic field makes from the z-axis, and �
is the in-plane polar-angle measured from the x-axis. We

have dropped the Zeeman term, its energy would be negli-

gible with respect to energy of the Landau levels, Eq. (6),

using vF 
10 6 m/s, characteristic to graphene. Eq. (2) ap-

plies for both spin directions.

In the absence of magnetic field, the energy spectrum

of the system is given by

E F( ) |k k|� � v . (3)

This describes massless relativistic fermions with spect-

rum consisting of two cones, touching each other at the

endpoints. From this, the density of states per spin fol-

lows as

� �


� �


� �
�

( ) ( ( )) ( )
| |

� � � � �� �
1

2

2

2

0

2
k

kE
A

kdk k
D

c

k

F

c

v ,

(4)

where k c is the cutoff, D kF c� v is the bandwidth, and

A kc c� 4 2 / is the area of the hexagonal unit cell.

In the presence of magnetic field, the eigenvalue prob-

lem of this Hamiltonian (H E0� �� ) can readily be solv-

ed [14]. For the zero energy mode (E = 0), the eigen-

function is obtained as

�k

ikx

BL y kl
( )

( )
r �

� �
�

�
��

�

�
��

e 0

0
2 , (5)

and the two components of the spinor describe the two

bands. The energy of the other modes reads as

E n nc( , )� ��� �1 (6)

with � � � 1, n � 0, 1, 2, ..., � 	c F e B� v 2 | cos ( )| is the

Landau scale or energy, but is different from the cyclotron

frequency [18]. Only the perpendicular component of the

field enters into these expressions, and by tilting the field

away from the perpendicular direction corresponds to a

smaller effective field. The sum over integer n’s is cut off

at N given by N D c� �1 2( / )� , which means that we con-

sider 2 3N � Landau levels altogether. For later conve-

nience, we define a magnetic field B0, whose Landau

scale is equal to the bandwidth (�c D� ).

The corresponding wave function is

�n k
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y kl

y kl
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(7)

with cyclotron length l eBb �1/ . Here �n x( ) is the nth

eigenfunction of the usual one-dimensional harmonic os-

cillator. The electron-field operator can be constructed

from these functions as

� � �( ) ( ) , ,

,

, ,r r� �
�

�

�
�

�

�

�
�

�� k k n k

n

k n

k

c c�
�

� . (8)

The Green’s functions of these new operators do not de-

pend on k, and read as

G i k
i

n
n

0
1

( , )�
�

� , (9)

G i k n
i E n

n
n

0
1

( , , , )
( , )

� �
� �

�
�

(10)

for ck and ck n, ,� , respectively, and �n is the fermionic

Matsubara frequency.

3. Gaussian on-site and unidirectional disorder

To take scattering into account, we consider the mutual

coexistence of both Gaussian potential (on-site) disorder

(with matrix element Vo r, , satisfying � � �Vo r, 0 and va-

riance � � �  V V go r o r o rr, , � ) and bond disorder in only

one direction (in addition to the uniform hopping with

matrix element Vb r, , satisfying � � �Vb r, 0 and variance

� � �  V V gb r b r b rr, , � ), which is thought to describe reliably

the more complicated case of disorder on all bonds [19],

and is shown in Fig. 1. In graphene, ripples can represent

the main source of disorder, and are approximated by ran-

dom nearest-neighbour hopping rates, while potential

disorder might only be relevant close to the Dirac point

[20]. The corresponding term in the Hamiltonian is

V V Vo r b r� �, ,� �0 1, (11)

which results in H H V� �0 . Due to the different structure

of the eigenfunctions of the Landau levels in Eqs. (5), (7),

the self energy due to impurity scattering is also expected

to depend on the Landau level index, n. Moreover, the self

energy is expected to depend on the symmetry of the dis-

order in the presence of magnetic field. By evaluating the

lowest order correction, quasiparticles at the zero mode

Landau level can only be scattered to a finite energy level

for pure bond disorder, while scattering within the same

level is possible for pure on-site disorder. Without mag-
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netic field, pure on site or bond disorder leads to the same

self energy [11].

Before going into the details of the calculation, we

conjecture that disorder washes out the presence of Lan-

dau levels, when its strength is larger than the distance be-

tween two adjacent levels. Then for � �! c o bg2 2/ , , the

distinct Landau level structure in the density of states is

visible, while for higher energies, the zero field DOS is

recovered.

In the presence of magnetic field, two self-energies ap-

pear belonging to the zero mode and all other Landau lev-

els with non-zero energy, respectively. The general struc-

ture of the resulting Green’s function reads as

G i k n
i E n i

n
n n

( , , , )
( , ) ( )

� �
� � �

�
� �

1

1"
, (12)

G i k
i i

n
n n

( , )
— ( )

�
� �

�
1

0"
, (13)

where the self-energies obey to the following self-consis-

tency equations:
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,
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#
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� , (14)
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n
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#
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�
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$ � � � �( ) ( )( ( , ) )xV yV g S i yV g G i ko b c n b c n� � 1

� �2 1( ( , ) )xV g G i ko c n� , (18)

where g Nc � �1 1/ ( ) is the degeneracy of a Landau level

per unit cell, V go o� and V gb b� . The resulting self

energies are symmetric with respect to � � 0, since the

gaussian nature of the disorder with zero mean does not

allow for particle-hole symmetry breaking [21]. Eqs. (14)

and (15) are the generalisation of previous results [12]

with inclusion of bond disorder. By restricting the sums in

Eqs. (14) and (15) to the x y� �1 terms, we get back the

results obtained for substitutional disorder [22].

These equations describe impurity effects for arbitrary

scattering potential Vo b, within the self-consistent

non-crossing approximation. The summation over Lan-

dau levels can be performed to yield

S i G i k nn

n

n( ) ( , , , )

,

� � �
�

� ��

� � � � �2 1 22 2z
z N z

c�
[ ( ) ( )]� � , (19)

where z i in n c� �( ( )) /� � �"1 , �( )z is the digamma func-

tion.

The density of states (DOS) is determined from

� �


� % � % �
�

( ) Im ( , ) ( , , , )

,
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�

�

�
�

�

�

�
���1

G i k G i k n

nk

(20)

with % & �0 , and is shown in Fig. 2. In the limit of pure

on-site disorder (Vb � 0), the residual DOS is given by

�


( )0
1

0

�
B

g Bo

(21)

for weak disorder and field. In general, the expansion of

the self energy proceeds in integer powers of go due to

the gaussian nature of the disorder. Terms containing

go originate from the self consistency condition,

Eqs. (14) and (15).

The broadening of the levels is almost symmetric for

weaker disorder, but is far from being Lorenztian [23].

Also the level position is modified in the presence of im-

purities due to the finite real part of the self energies, and

this shift increases with the variance. This was also found

in a similar treatment [14].

On the other hand, the residual DOS becomes more di-

vergent with disorder in the pure bond-disorder limit

(Vo � 0) as

�


( )
ln ( / )

0
2

0 0

�
D

g

B

B B Bb

. (22)

The divergence of these residual DOS follows natu-

rally from the fact, that in the limit of zero disorder, the
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Fig. 1. A small fragment of the honeycomb lattice is shown.

The thick lines denote the uni-directional bond disorder, on-site

disorder acts on the lattice points.



DOS consists of Dirac-delta peaks at the Landau level en-

ergies including zero energy, which should be recovered

when Vo b, & 0. Here B0 represents the bandwidth, i.e. a

magnetic field scale, when the first Landau level equals to

the cutoff energy.

The density of states at the Dirac point first increases

with disorder, because of the broadening of the Landau

levels. After reaching a minimum, it increases and satu-

rates to a finite value: due to the renormalization of Lan-

dau level energies, E0 moves closer to zero, and at the

same time, the broadening continuously increases with

disorder. Therefore, the levels merge together, and the

presence of the field does not play a role any more, as is

seen in Fig. 2.

The difference in the DOS for various disorders in

magnetic field is the most visible at small energies, close

to the zeroth Landau level. There, as suggested by Eqs.

(21), (22), the contribution of bond disorder is most pro-

nounced for weak scatterers. For stronger scatterers, as is

seen in Fig. 2, they are very close to each other, which is

compatible with Ref. 11.

In Fig. 3 the magnetic field dependence of the DOS at

the Dirac point is shown. The bond disorder increases it

more efficiently with magnetic field than on-site disorder.

With increasing variance, the DOS at B � 0 enhances, and

for large disorder, neither the symmetry of the disorder,

nor the explicit value of the field matters, the various

curves fall on top of each other.

4. Conclusions

We have studied the effect of gaussian on-site and uni-

directional bond disorder in the density of states in gra-

phene in the presence of quantizing magnetic field. Due

to the different symmetry of the disorder, distinct density

of states characterizes the pure on-site and bond disorder

case in the self-consistent non-crossing approximation,

in contrast to the zero magnetic field case [11]. These dif-

ferences become less relevant for higher energies

� �' c o bg2 2/ , or stronger disorder. The Landau level

energies are strongly renormalized by the disorder toward

lower energies. The broadening of the levels is not Lo-

rentzian, but remains almost symmetric.

We are grateful for useful discussions to K. Ziegler

and P. Thalmeier. This work was supported by the Hun-

garian Scientific Research Fund under grant number

OTKA TS049881 and K 72613.

Disorder effect on the density of states in Landau quantized graphene

Fizika Nizkikh Temperatur, 2008, v. 34, No. 10 1023

0.5

0.4

0.3

0.2

0.1

0

D
(

)
�

�
l/

D
(0

)
�

� �/ c

V/�c

–2 –1 0 1 2

16

14

12

10

8

6

4

2

0 0.2 0.4 0.6 0.8 1.0

3

2 2

1

1

1

1

a

b

Fig. 2. The density of states is shown for on-site and/or unidi-

rectional bond disorder for N �1000, V c/ .� � 01 (1), 0.2 (2),

0.4 (3). The solid line represents the coexisting bond and po-

tential disorder with V V Vo b� � / 2, the dashed/dashed-dot-

ted denotes the on-site/bond disorder (a). The inverse of the

residual density of states for N �1000 with on-site (V Vo � ,

dashed line), bond disorder (V Vb � , dashed-dotted line) with

strength V and for their coexistence with V V Vo b� � / 2 (solid

line) (b).
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Fig. 3. The density of states is shown as a function of magnetic

field for V c/ .� � 01(1), 0.2 (2), 0.4 (3) from top to bottom. The

solid line represents the coexisting bond and unidirectional

bond disorder with V V Vo b� � / 2, the dashed/dashed-dotted

denotes the on-site/bond disorder.
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