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Recent experiments renewed interest in persistent currents in mesoscopic normal-metal rings. We show that 
in ballistic rings in high magnetic fields the Zeeman splitting leads to periodic current quenching with period 
much larger than the period of the persistent current. Simple arguments show that this effect might be relevant 
for diffusive rings as well. Another aim of this paper is to discuss fluctuations of the persistent current due to 
thermal excitation of high-energy levels. Being observed such fluctuations would witness a coherent state of an 
electron system at high temperatures when the persistent current is exponentially suppressed. 

PACS: 73.23.Ra Persistent currents; 
73.23.–b Electronic transport in mesoscopic systems;  
73.50.Td Noise processes and phenomena. 
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1. Introduction 

Recent experiments [1,2] renewed interest in persistent 
currents in mesoscopic normal-metal rings. The existence 
of nondecaying (persistent) currents in rings pierced by a 
magnetic flux was predicted for ballistic [3] as well as for 
more realistic rings with elastic scattering [4]. Experiments 
using ballistic rings [5,6] agree well with theoretical pre-
dictions [3,7,8]. In contrast diffusive rings provide a long-
standing challenge due to an apparent disagreement bet-
ween experiment and theory. The experiment finds [9–11] 
a current a few order of magnitude larger than the theory 
[12] based on a model of noninteracting diffusive elec-
trons. More refined theory, for example accounting for 
electron–electron interactions [13,14], could not remove 
this disagreement. However the new experiments [1,2] 
made with the help of more sensitive techniques showed an 
amassing agreement with predictions of the noninteracting 
theory [12] including Zeeman splitting and spin-orbit scat-
tering [15]. In the recent experiment of Bleszynski-Jayich 
et al. [1] this agreement is possible a consequence of the 
high magnetic field that penetrates the ring and that sup-
presses weak localization and related interaction effects. 
The good agreement opens the door to use persistent cur-
rents as a tool to provide direct information on the quan-
tum state of closed systems of electrons. The excellent 
agreement reinforces us that the theory of noninteracting 
electrons remains a powerful theory in mesoscopic phy-
sics. 

In the case of diffusive rings the quantity which is usu-
ally discussed is a typical persistent current, a square root 
of a mean square current. In theory averaging is performed 
over disorder potentials. In experiment averaging is per-
formed over a relevant interval of magnetic fields. This 
averaging is over static fluctuations similar in nature to the 
universal conductance fluctuations [16–18]. However there 
are also intrinsic fluctuations (time-dependent noise) of 
persistent currents at zero temperature [19–23] as well as at 
finite temperatures [23,24]. 

One aim of this paper is to present a short survey of the 
theoretical results on intrinsic persistent current fluctua-
tions. 

The other aim of this paper is related to an interesting 
effect found in the experiment by Bleszynski-Jayich et al. 
[1]: The persistent current is quenched periodically with 
increasing magnetic field, see Fig. 1,e in Ref. 1. The cor-
responding period, 0.3BΔ ∼  T, is close to a magnetic field 
increment ZBΔ  necessary to increase the Zeeman splitting 
of the order of the Thouless energy ThE . For a diffusive 
ring of length L  we have 2 2

Th = /E D Lπ h  with D  the 
diffusion constant [12]. For typical rings' parameters of 
Ref. 1, 2000L∼  nm and 270D∼  cm 2 /s the Thouless 
energy corresponds to a temperature Th Th= / 0.5BT E k ∼ K, 
with Bk  the Boltzmann constant. With this we find 

Th= / ( ) 0.37Z BB E gΔ μ ∼  T where we have used the 
gyromagnetic ratio = 2g  and the Bohr magneton 

= /(2 )B ee mμ h  calculated with the free electron mass em . 
Since ZB BΔ ≈ Δ , one can conjecture that the periodic in-
crement of Zeeman splitting by the Thouless energy results 
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in periodic persistent current quenching. It can be under-
stood as follows: In the diffusive ring of length L  with N  
transverse channels and an electron mean free path l  one 
can arrange levels into groups containing eff = /N Nl L  
correlated levels for each spin direction. Each such a group 
spans an energy window of order the Thouless energy 

ThE . With increase of magnetic field the relative position 
(in energy) of spin-up and spin-down level groups is varied 
with period ZBΔ  due to Zeeman energy. This results in a 
corresponding periodicity of the persistent current magni-
tude. How this mechanism works precisely we show for a 
single channel ballistic ring when the Thouless energy 
equals the level spacing FΔ  near the Fermi energy and the 
effective number of channels is eff = 1N . 

The paper is organized as follows: In Sec. 2 we explore 
the effect of a high magnetic field onto the persistent cur-
rent in ballistic rings. We show that the fluctuations in spin 
subsystem, taking place at some particular magnetic fields, 
dramatically reduces the persistent current magnitude at 
finite temperatures. Then in Sec. 3 we discuss fluctuations 
of the persistent current in a single ring due to coupling to 
a thermal bath. We conclude in Sec. 4. 

2. Effect of Zeeman splitting in ballistic rings 

The magnetic field B  has a twofold effect. First, it 
produces an Aharonov–Bohm (AB) magnetic flux [25] 
through the ring. This results in a periodicity of the free 
energy with magnetic field with period 0= /ABB SΔ Φ , 
where 0 = /h eΦ  is the magnetic flux quantum and S  is 
the area enclosed by the ring [26]. This periodicity is due 
to intersections (direct or avoided-crossing) of an electron 
spectrum sub-bands corresponding to different orbital 
moments. We assume that a reservoir keeps the system in 
the energetically most favorable state. 

Second, the Zeeman splitting, which increases with ,B  
leads to intersections of energy levels of electrons with 
spin up (↑ ) and spin down (↓ ). 

If the spin–flip processes are present in the ring, then 
the number of electrons with spin directed along (opposite 
to) the field will change as the field is varied. This also 
results in oscillations of the thermodynamic quantities as a 
function of the magnetic fields but with a period of [27] 

 = .F
Z

B
B

g
Δ

Δ
μ

 (1) 

For a ring with many electrons this period is much larger 
than the period of AB oscillations. 

2.1. Model 

We consider a one-dimensional (1D) ballistic ring with 
noninteracting electrons in a perpendicular magnetic field, 
Fig. 1. Our calculations do not apply to diffusive rings and 
thus do not describe quantitatively the results of experi-
ments by Bleszynski-Jayich et al. [1]. 

In real diffusive rings there is an additional effect which 
arises from the magnetic field penetrating the ring and 
changing the ring orbital wave functions. This effect can 
be expected to be periodic with the period required by in-
creasing the flux into the sample by one flux quantum. 
Typically to see the Aharonov–Bohm flux period in a ring 
the ratio of the rings hole to the surface of the ring must be 
large. The interplay of these two orbital periodicities might 
also lead to quenching of the persistent current. 

To model the presence of spin–flip processes we adopt 
the fictitious reservoir model introduced in Ref. 28. In our 
case it is a fictitious reservoir of spin excitations. We as-
sume that the ring can exchange electrons with a reservoir 
having constant chemical potential 0μ  independent of both 
the spin and magnetic field. The chemical potential is posi-
tioned in the middle between electron levels of the ring in 
zero magnetic field. Then with increasing B  energy levels 
for spin up electrons will decrease while the ones for spin 
down electrons will increase. When some unoccupied level 
sinks below 0μ  one electron with spin up enters the ring. 
Similarly, when some occupied level rises above 0μ  one 
electron with spin down escapes to the reservoir. At chosen 

0μ  both crossings take place at the same magnetic field. 
Hence the number of electrons in the ring remains fixed, 
that is the case for isolated rings used in experiment, while 
one spin is flipped. To forbid charge fluctuations in the 
ring at finite temperature we additionally assume that the 
change of the particle number in the ring costs a large Cou-
lomb energy cE →∞  [29]. 

2.2. Main equations 

To describe a system of 1eN �  noninteracting elec-
trons in 1D ballistic ring we use the Luttinger liquid model 
[30] with the Lagrangian in a bosonic form [31], 

 
2 2

= ,

1= ,
4LL F

F
L v

v t x
χ χ

χ ρ σ

∂θ ∂θ⎛ ⎞ ⎛ ⎞
−⎜ ⎟ ⎜ ⎟

∂ ∂⎝ ⎠ ⎝ ⎠
∑h  (2) 

Fig. 1. One-dimensional ring pierced by the magnetic field B
with persistent current I . The hatched plane represents for a re-
servoir of spin excitations which is uniformly coupled to the ring.
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where Fv  is the Fermi velocity. The fields ρθ  and σθ  
describe charge and spin excitations with density 

( , ) = 1 / /t x xχ χρ π∂θ ∂  and flow ( , ) = 1 / / ,j t x tχ χπ∂θ ∂  
respectively. The total number of electrons in the ring is 

0 0= L
eN N N dx Nρ↑ ↓≡ + ρ +∫  with 0 0 0=N N N↑ ↓+  the 

number of electrons in the ground state, i.e., at zero tem-
perature and at = 0B . Correspondingly, the number of 
spin excitations is 

0 0= LN N N dx Nσ σ σ↑ ↓≡ − ρ +∫ , where 
0 0 0=N N Nσ ↑ ↓−  describes the spin polarization of the 

ground state. In our model we have 0 = 0N σ . 
The presence of a magnetic field B  results in the Aha-

ronov–Bohm phase and in the Zeeman energy. The effect 
of the AB phase due to a magnetic flux = BSΦ  through 
the ring is described by the Lagrangian [32,33] 

 
0

= ,
4 4
j j

AB
k khL j j

L
ρ σ

ρ σ
⎧ ⎫⎡ ⎤Φ⎪ ⎪+ +⎨ ⎬⎢ ⎥Φ⎪ ⎪⎣ ⎦⎩ ⎭

 (3) 

where = 4L Sπ  is the circumference of the ring. The 
topological numbers are =j j jk k kρ ↑ ↓+  and 

=j j jk k kσ ↑ ↓− . The spin-resolved topological numbers 
depend on the parity of the number of electrons in the ring: 

/ = 0jk ↑ ↓  (1)  if /N↑ ↓  is odd (even). The Lagrangian, ZL  
which takes into account the Zeeman energy reads, 

 = .Z B
N

L g B
L
σμ  (4) 

The particle exchange with a fictitious reservoir is de-
scribed as follows [34]: 

 ( )2ex 0= .c
e

E
L N N

Lρμρ − −  (5) 

At cE →∞  the number of electrons (i.e., the charge) in 
the ring is frozen while the spin exchange with the reser-
voir is allowed. 

With these Lagrangians we calculate the Euclidean ac-
tion 

 { }ex
0 0

= ,
L

E LL AB ZS dx d L L L L
β

− τ + + +∫ ∫  (6) 

where = itτ  is an imaginary time and = / ( )Bk Tβ h  with 
T  temperature. 

Then we calculate the partition function Z  as the path 
integral over the fields ρθ  and σθ : 

 /= e .SEZ D D −
ρ σθ θ∫ h  (7) 

The partition function defines the thermodynamic potential 
= lnBk T ZΩ − , which in turn defines the persistent cur-

rent [26]: 

 ( ) = .I ∂Ω
Φ −

∂Φ
 (8) 

On a ring the fields ρθ  and σθ  obey the following 
twisted boundary conditions [32,33] 

2 1 2 1

2 1 2 1

1 1( , ) = ( , ) (2 ),

1 1( , ) = ( , ) (2 ),

M

M

k x k L x k n k m k

k x k L x k n k m k

ρ ρ ρ ρ ρ

σ σ σ σ σ

θ τ+ β + θ τ + + +
π π

θ τ+ β + θ τ + + +
π π

  (9) 

where 1k , 2k , ( )nρ σ , and ( )mρ σ  all are integers. More-
over, both nρ  and nσ  (and accordingly mρ  and mσ ) have 
the same parity. The topological numbers are 

=M M Mk k kρ ↑ ↓+  and =M M Mk k kσ ↑ ↓− . The spin-
resolved topological numbers /Mk ↑ ↓  characterize the pari-
ty of the number of additional (over the ground state num-
ber) electrons in the ring. In combination with previously 
introduced topological numbers /jk ↑ ↓  (dependent on the 
parity of the total number of electrons) one can relate them 
to the parity of the number 0 /N ↑ ↓  of electrons in the 
ground state in such a way that / /=M jk k↑ ↓ ↑ ↓  if 0 /N ↑ ↓  is 
odd and / /= ( 1) mod1M jk k↑ ↓ ↑ ↓ +  if 0 /N ↑ ↓  is even [32,33]. 

Since the Lagrangian under consideration is quadratic 
in the fields /ρ σθ , the extremal trajectories obeying the 
boundary conditions (9) and determining the flux-
dependent part of the partition function = ( )Z AZ Φ  are 
linear functions of both x  and τ : 

 ext
/ / / /( , ) = (2 ) .M

xx m k n
Lρ σ ρ σ ρ σ ρ σ

⎧ ⎫τ
θ τ π + +⎨ ⎬

β⎩ ⎭
 (10) 

The measure D Dρ σθ θ  in Eq. (7) includes the sum-
mation over /nρ σ  and /mρ σ  that defines ( )Z Φ . The inte-
gration over fluctuations of fields /ρ σθ  defines a mag-
netic-flux independent constant A  [34]. 

Since in the ground state the system under conside-
ration is nonmagnetic, 0 0=N N↑ ↓ , then 0N  is even. We 
calculate ( )Z Φ  for 0 = 4 2N n + , where n  is an integer. In 
this case we find [35] 

4

=1
( ) = (2 , ) (0, ) (1, ) (2 , ),i AB i i c i Z

i
Z q q q qΦ θ ϕ θ θ θ ϕ∑  (11) 

where 0= / /AB ABB Bϕ Φ Φ ≡ Δ , = /Z ZB Bϕ Δ , 
2= exp [ (2 )/ ]Fq T− π Δ , 2= exp [ (2 )/( 8 )]c F cq T E− π Δ + , 

and ( , )i v qθ  are the Jacobi theta functions, see, e.g., 
Ref. 36: 
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Note, that the partition function for 0 = 4N n  can be 
deduced from that for 0 = 4 2N n +  by changing 

1 / 2AB ABϕ → ϕ + . 
The magnetic field B  enters ( )Ω Φ  in a twofold way. 

First, it does through the parameter ABϕ  that causes con-
ventional AB oscillations with period ABBΔ . Second, it 
does through the parameter Zϕ  that also causes oscilla-
tions of the thermodynamic potential, hence persistent cur-
rent oscillations, with period ZBΔ . The ratio of corres-
ponding periods can be represented as follows: 

 
0

= ,Z F

AB Z

B
B
Δ Δ
Δ Δ

 (13) 

with 0 0= /Z Bg SΔ μ Φ  the Zeeman splitting at the mag-
netic field producing one magnetic flux quantum through 
the ring's opening. 

Taking the gyromagnetic ratio = 2g  and assuming the 
carrier's mass equal to a free electron mass, we find in the 
ballistic case under consideration, 0/ = / 4Z ABB B NΔ Δ  
[27]. The factor 1/ 4  reflects the well known parity effect 
[32,37] for spinful electrons. For 0 1N � , the period of 
oscillations caused by the Zeeman splitting is much larger 
than the period of AB oscillations. Therefore, the former 
effect will result in a large-scale modulation (a beating) of 
the AB oscillations. 

In Fig. 2 we give the persistent current, Eq. (8), calcu-
lated using the partition function, Eq. (11). The suppres-
sion of the persistent current =I I I↑ ↓+  occurs for mag-
netic fields at which the number of spin excitations in the 
ring, =N N Nσ ↑ ↓−  changes. Strictly speaking at these 
fields Nσ  fluctuates. Since the total number eN  of elec-
trons is fixed, it fluctuates by 2± . The numbers N↑  and 
N↓  fluctuate by 1± . Because of the parity effect, that re-
sults in fluctuations of an effective magnetic flux expe-
rienced by electrons by 0 / 2Φ . Correspondingly the cur-
rents I↑  and I↓  fluctuate such that the odd harmonics of 
their dependence on Φ  vanish. Therefore, the Zeeman 
effect results in halving of the period of AB oscillations at 

some particular fields. With increasing temperature the 
higher harmonics decay faster and only the first one has 
noticeable magnitude [7,32]. This is the reason why the 
period halving appears together with quenching of the cur-
rent in Fig. 2. 

Note the mechanism of period halving we discuss here 
is different from the general one inherent to the system of 
electrons with spin discussed in Ref. 38. 

So, quenching of the current in high magnetic fields 
(accordingly to the mechanism presented here) does not 
mean that the persistent current is destroyed. And the sub-
sequent revival of the current shows that the system re-
mains phase-coherent. The high temperature may act simi-
larly: It suppresses a current leaving an electron system in 
the phase-coherent state that can be revealed with the help 
of persistent current fluctuations. 

3. Thermal fluctuations of persistent currents in 
ballistic rings 

Due to influence of the thermal bath the persistent cur-
rent fluctuates. The fluctuations, like the persistent current, 
exist only if the electron state is phase coherent. Any de-
phasing processes destroy both the persistent current and 
its fluctuations. However, investigating a temperature be-
havior of the persistent current only, it is difficult to say 
why it is destroyed, because of strengthening of decohe-
rence processes with temperature or because of a mutual 
cancellation of contributions from thermally excited states. 
Therefore, detecting the thermal fluctuations of the persis-
tent current could shed more insight onto the quantum state 
of electrons in a ring at non-zero temperatures. 

3.1. Thermodynamic approach to persistent current 
fluctuations 

First we start from a two-level model which can be used 
to describe electrons in a ring at low temperatures [39,40]. 
Then we present calculations with the total spectrum taken 
into account that is necessary at high temperatures. 

3.1.1. Two-level model. Here we follow Ref. 22. Con-
sider a temperature so low that only the first elementary 
excitation is important. In a canonical system we have a 
probability p−  that the system is in the ground state and 
p+  is the probability that the topmost electron of the 

ground state has been excited into the first available state. 
The energies of the two states are 

 
=

=1
= ,

n N

n
n

E− ε∑  (14) 
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−

+ +ε + ε∑  (15) 
Fig. 2. Persistent current I  in units of 0 = /FI ev L  as a function
of the magnetic flux = BSΦ . The parameters are: = 0.2B Fk T Δ ,

= 10c FE Δ , 0 = 0.04Z FΔ Δ . 
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We have assumed that there are N  spinless electrons. In the 
Boltzmann case we have = (1/ ) exp { / ( )}Bp Z E k T+ +−  
and = (1/ ) exp { /( )}Bp Z E k T− −− . The normalization Z  is 
determined by the requirement that = 1p p+ −+ , and thus 

 
/( )

1=
e 1E k TB

p+ Δ +
 

, (16) 

 
/( )

1=
e 1E k TB

p− −Δ +
 

, (17) 

where 1= = N NE E E+ − +Δ − ε − ε . 
The currents in these two states are = /I E+ +∂ ∂Φ  and 
= /I E− −∂ ∂Φ . The average current in the two state ap-

proximation is 
 = .I I p I p+ + − −+  (18) 

Note that at low temperatures the excited state probabi-
lity is exponentially small = 1/ exp { / ( ) 1}Bp E k T+ Δ + ≈  

exp { / ( )}BE k T≈ −Δ . Therefore the departure from the 
ground state is exponential. Of course here we assume that 
the levels are non-degenerate. If they are degenerate then 

= = 1/ 2p p+ −  which is for instance the case for a ballis-
tic ring either in the center or at the boundary of the Bril-
louin zone depending on whether the particle number is 
odd or even. 

The mean of the square of the current is 

 2 2 2=I I p I p+ + − −+  (19) 

and thus for the mean square current fluctuations we obtain 

 2 2= ( ) .I I I p p+ − + −δ −  (20) 

Note that this expression is just what we expect for 
thermal fluctuations, since =f p− , and = 1p f+ −  but of 
course here the p s′  are not Fermi distribution functions. 
But it holds for the p s′  like for the Fermi functions that 

(1 ) = /Bf f k Tdf dE− − . We can make the following 
statement about the temperature dependence: if <Bk T EΔ  
the temperature dependence is exponential: that is the 
mean square current fluctuations are exponentially small. 
If we are at a point of degeneracy then 0= =I I I+ −−  and 

= = 1/ 2p p+ −  and the mean square current fluctuations 
are 

 2 2
0= .I Iδ  (21) 

Note that in the two level approximation this represents an 
upper bound for the current fluctuations. For the ballistic 
ring at low temperatures the mean square current fluctua-
tions should be a strongly varying function of flux (and 
temperature). Namely at the degeneracy points the above 
results should apply with a maximal fluctuations whereas 
away from the degeneracy points for <Bk T EΔ  the fluc-
tuations remain exponentially suppressed, see a blue dash-
dotted line in Fig. 3. 

In Ref. 22 this model was used to discuss the case if the 
many-body quantum mechanical ground state of system 
and environment are entangled. In this case the current 
fluctuations persist down to zero temperature and provide 
entanglement information. 

To account for a high-temperature behavior we genera-
lize straightforwardly a two-level model. 

3.1.2. Multi-level model. Let us assume that we know 
the multi-electron spectrum ( )kE Φ  for electrons in the 
ring threaded by the magnetic flux Φ  and contacted with a 
thermal bath with temperature T . Then we can calculate 
the partition function (see, e.g., Ref. 41), 

 
( )

( ) = e ,
Ek
k TB

k
Z

Φ
−

Φ ∑  (22) 

and the persistent current, ( ) = ln ( )/BI k T ZΦ ∂ Φ ∂Φ  [26]. 
It is easy to see that the current ( )I Φ  can be represented 
as an average of currents supported by individual levels, 

( ) = ( ) /k kI EΦ −∂ Φ ∂Φ , found with the help of the Gibbs 
distribution function, 1( ) = ( ) exp { / ( )}k k Bw Z E k T−Φ Φ − : 

 ( ) = ( ) ( ) .k k
k

I I I wΦ ≡ Φ Φ∑  (23) 

By analogy we define the mean square current fluctuations 
as follows: 

 [ ]22 = ( ) ( ) ( ) .k k
k

I I I wδ Φ − Φ Φ∑  (24) 

Using Eqs. (22)–(24), after a little algebra, we can connect 
the fluctuations and the persistent current 

 2 ( )= ( ) ,B
II k T ∂ Φ⎛ ⎞δ + γ Φ⎜ ⎟∂Φ⎝ ⎠

 (25) 

Fig. 3. (Color online) Mean square fluctuations of the persistent 
current in the ballistic ring 2I〈δ 〉  in units of 2 2

0 = ( / )FI ev L  as 
a function of the magnetic flux Φ . The temperature is 

=B Fk T Δ  (solid line), 0.5 FΔ  (dashed line), 0.1 FΔ  (dash-
dotted line). The number of particle in the ring is odd. 
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∂ Φ
γ Φ Φ
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∑

 
 

Since we did not use the explicit expression for the multi-
particle spectrum ( )kE Φ , the equations given above are 
valid for rings with either fixed number of electrons (ca-
nonical case) or fixed chemical potential (grand canonical 
case) [24]. Also they are valid for rings with disorder and 
with interactions. 

At low enough temperatures only two lowest levels, 
say, = 0, 1k , matter and we recover a two-level model 
with 0 =w p−  and 1 =w p+ . 

3.1.3. Fluctuations for noninteracting electrons with 
fixed chemical potential. In the particular case of a ring 
exchanging with a bath both energy and particles, the oc-
cupation of single-particle energy levels ( )nε Φ  are given 
by the Fermi distribution function 0 ( )nf ε  with a bath 
temperature T  and chemical potential μ . In this case aver-
aging over the multi-particle spectrum ( )kE Φ  with the 
Gibbs distribution function ( )kw Φ  is identical (for non-
interacting particles) to averaging over the single-particle 
spectrum ( )nε Φ  with the Fermi distribution function 

0 ( )nf ε . Therefore, instead of Eqs. (23) and (24) we can 
write 

 0( ) = ( ) ( ),n n
n

I I i fΦ ≡ Φ ε∑  (26) 

 [ ]22
0= ( ) ( ) ( ),n n

n
I i I fδ Φ − Φ ε∑  (27) 

where ( ) = ( ) /n ni Φ −∂ε Φ ∂Φ  is a single-electron current. 
Then using Eq. (25) with 2 2

0= / ( )n n
n

fγ ∂ ε ∂Φ ε∑  we 
find 

 2 2 2= ( ) ( ),n n
n

I i Nδ Φ δ Φ∑  (28) 

where 2
0 0( ) = ( )[1 ( )]n n nN f fδ Φ ε − ε  is the mean square 

fluctuations of the occupation number of a level with ener-
gy ( )nε Φ . 

In a ring with many electrons, Fμ Δ� , we can simpli-
fy Eq. (28) noting that only the levels close to the Fermi 
energy contribute to fluctuations (we assume Bk Tμ� ). 
For these levels the absolute value of a current is roughly 
the same. Then we can write 

 2 2 2= ( ) ,FI i Nδ Φ δ  (29) 

where ( )Fi Φ  is a current for an electron with Fermi ener-
gy, 2N〈δ 〉  is the mean square fluctuations of the electron 
number in the ring: 

 2 2
0 0( ) = ( )[1 ( )] .n n n

n n
N N f fδ ≡ δ Φ ε − ε∑ ∑  (30) 

Therefore, for rings with fixed chemical potential, either 
clean or with disorder, the thermal current fluctuations are 

due to fluctuations of the number of particles. In contrast, 
for rings with fixed number of particles, for which we can 
use Eqs. (24), (25), the current fluctuations are due to tran-
sitions of an entire electronic system between levels sup-
porting different currents. 

Below we illustrate this general consideration with 
some simple examples. We start with a ballistic ring mo-
del. 

3.2. Ballistic ring with fixed number of electrons 

To clarify the effect of temperature as much as possible, 
we analyze the simplest model, which includes 0N  spin-
less noninteracting ballistic electrons confined in a 1D 
ring. This system is coupled to a thermal reservoir with 
temperature T , while the particle exchange is forbidden. 
To describe this model we use the Lagrangian LLL , 
Eq. (2), with =ρ σθ θ ≡ θ , and the Lagrangian ABL , 
Eq. (3), without the spin current, = 0jσ  and with 

= 2j jk kρ . The topological number is = 0jk  if 0N  is odd 
and is = 1jk  if 0N  is even. The twisted boundary condi-
tion reads 

 2 1 2
1 1( , ) = ( , ) ,k x k L x k nθθ τ + β + θ τ +
π π

 (31) 

where 1k , 2k , and nθ  all are integers. The extremal tra-
jectories obeying this boundary condition, 

ext ( , ) = /x nθθ τ π τ β , define the magnetic-flux dependent 
factor of the partition function ( )Z Φ . For odd 0N  it is 

2 /
3( ) = ( ,e )T FABZ −π ΔΦ θ ϕ  [32]. For even 0N  we should 

replace 1 / 2AB ABϕ → ϕ + . Using the Poisson summation 
formula one can rewrite ( )Z Φ  as follows [24]: 

 
( )

=
( ) = e ,

Ek
k TB

k
Z

Φ∞ −

−∞
Φ ∑  (32) 

 
2

0

0

1
( ) = mod 1 .

2k F
N

E k
⎛ ⎞−Φ

Φ Δ + +⎜ ⎟Φ⎝ ⎠
  

Here ( )kE Φ  is the spectrum of the system of 0N  (non-
interacting and spinless) electrons in the ring. It is easy to 
see, that Eq. (32) is not changed under the magnetic flux 
reversal, Φ→−Φ . Therefore, the partition function, hence 
the free energy, is an even function of Φ . 

Calculating the relevant free energy, ( ) = ln ( ),BF k T ZΦ − Φ  
and the persistent current ( ) = ( ) /I FΦ −∂ Φ ∂Φ , we can see 
that Eq. (23) holds. After simple transformations one can 
get [32] 

 00

0 =1
2

sin 2
2

( ) = ( 1) .

sinh
/

mNB

m B

F

m
k T

I
k Tm

∞
⎛ ⎞Φ
π⎜ ⎟Φπ ⎝ ⎠Φ −

Φ ⎛ ⎞
⎜ ⎟⎜ ⎟Δ π⎝ ⎠

∑  (33) 
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Changing 0N  by 1  is equivalent to changing Φ  by 0Φ . 
This is a manifestation of the parity effect mentioned 
above. 

At zero temperature the system is in its ground state 
which has energy 0E  at = 0Φ . In the ground state we 
have 0 = 1w  and = 0kw  for 0k ≠ . At nonzero tempera-
ture the system is excited to higher states, 0kw ≠ . There-
fore, at nonzero temperature many states do contribute to 
the current. This leads to persistent currents fluctuations 
that can be understood as follows. The probability kw  
characterizes how long on average the system stays in the 
state with energy kE . While in this state there is a current 

kI  flowing in the ring. After (on average) the time period 
1=k kCw−τ  the system jumps into another state, say, with 

energy kE ′  and the circulating current changes to kI ′ . Due 
to these changes the current does fluctuate. These are clas-
sical (or quasistationary in terminology of Ref. 41) fluctua-
tions. Since the persistent current is quantum, we conclude 
that the fluctuations under discussion are classical (quasi-
stationary) fluctuations of the quantum quantity. 

Note that the proportionality factor C  defining the 
scale of time depends crucially on the strength of coupling 
between the ring and the thermal reservoir. With increasing 
coupling, when kτ  becomes comparable with the time of a 
single turn around the ring, this classical approach should 
fail and the fluctuations should be treated quantum-
mechanically. 

For a ballistic ring with fixed number of electrons we 
use the spectrum ( )kE Φ  given in Eq. (32) and find 

 2
2
0

2( )= .F
B

II k T
⎛ ⎞Δ∂ Φ

δ +⎜ ⎟⎜ ⎟∂Φ Φ⎝ ⎠
 (34) 

The mean square current fluctuations is given in Fig. 3 
for different temperatures. At low temperatures, a dash-
dotted line in Fig. 3, the fluctuations depend on a magnetic 
flux. Their maximal value agrees with Eq. (21). While with 
increasing temperature fluctuations become insensitive to a 
magnetic flux. In particular at 2/FT Δ π� , when the per-
sistent current vanishes, ( ) 0I Φ ≈ , the Eq. (34) leads to a 
linear in temperature mean square fluctuations: 

 2 2
0= 2 .B

F

k T
I Iδ

Δ
 (35) 

Interestingly, this result is also valid for a ballistic ring in 
the grand canonical case [24]. 

The persistent current fluctuations in ballistic rings, 
Fig. 3, show several rather counter-intuitive properties: 
(i) insensitivity to a magnetic flux at high temperatures and 
(ii) enhancing of the magnitude of mean square fluctua-
tions at half of the magnetic flux quantum where the cur-
rent vanishes. These properties are a consequence of a di-
rect level crossing inherent to a ballistic model. Any small 

disorder would open gap at level crossings leading to va-
nishing of the fluctuations at both = 0Φ  and 0= / 2Φ Φ . 
To illustrate it we consider the next model. 

3.3. Single impurity in the ballistic ring with fixed  
chemical potential 

Let a single point impurity with a potential 
( ) = ( )U x g xδ  is embedded into a one-dimensional ballis-

tic ring of a length L  with spinless noninteracting elec-
trons coupled to a bath with temperature T  and chemical 
potential μ . The eigenvalue equation for an electron wave 
vector k  is (see, e.g., Ref. 7) 

 
0

exp ( )cos 2 = ,ikL
t

⎛ ⎞Φ −⎛ ⎞π ℜ⎜ ⎟ ⎜ ⎟Φ ⎝ ⎠⎝ ⎠
 (36) 

where = / ( )t i v i v g−h h  (with = / ev k mh  a velocity) is a 
transmission coefficient through the potential ( )U x . For a 
strong potential, | | 1t � , we find a single-electron spect-
rum: 

2 2 2
2

2
0

2 | |( ) = 1 ( 1) cos 2 (| | ).
2

n
n

e

n t O t
nm L

⎧ ⎫⎛ ⎞π Φ⎪ ⎪ε Φ + − π +⎨ ⎬⎜ ⎟π Φ⎪ ⎪⎝ ⎠⎩ ⎭

h
 (37) 

Here = 1, 2,n K  is an integer, 2(| | )O t  denotes small 
terms of order 2| |t  and higher. 

Using Eq. (37) in Eq. (28) we calculate the mean square 
current fluctuations in the ring with impurity (for 

,F Bk Tμ Δ� ): 

 
( )

22 2 22
0

0

2
2

2
=1

= 2 ,sin

cos 282= 1 ,
4sinh

F

FB

F F q B

F

I I t N

q qk Lk TTN
k Tq

∞

⎛ ⎞Φ
δ π δ⎜ ⎟Φ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟π

δ +⎜ ⎟
Δ Δ ⎛ ⎞π⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟Δ⎝ ⎠⎝ ⎠

∑
(38) 

where the lower index F  denotes quantities calculated at 
the Fermi energy, 2N〈δ 〉  is a mean square fluctuations of 
the number of electrons in the ring. We stress here FΔ  is a 
level spacing near the Fermi energy in the similar but bal-
listic ring. The level spacing in the ring with strong poten-
tial, | | 1Ft � , is two times smaller. 

At high temperatures, 2/ (4 )B Fk T Δ π� , we have 
2 2 / FN T〈δ 〉 ≈ Δ  and the fluctuations grow linearly with 

temperature. However in contrast to the ballistic case, 
Eq. (35), now, see Eq. (38), the fluctuations vanish at 

= 0Φ , 0 / 2Φ  simultaneously with the vanishing of the 
persistent current. 

To illustrate a crossover to the ballistic case we solve 
Eq. (36) at arbitrary transmission amplitude t  and get a 
spectrum close to the Fermi energy:
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2

0( )
arccos | | cos 2

( ) ,
2 2 2

F
F F

n
F

t
n

n
±

⎧ ⎫⎡ ⎤⎛ ⎞Φ
π⎪ ⎪⎢ ⎥⎜ ⎟ΦΔ θ⎪ ⎪⎝ ⎠⎣ ⎦ε Φ ≈ − ±⎨ ⎬

π π⎪ ⎪
⎪ ⎪
⎩ ⎭

 (39) 

where n  is chosen to be positive, Fθ  is the phase of the 
transmission amplitude: = | | e Fi

F Ft t θ , Fn  is the serial 
number of the level closest to the Fermi level. 

Then, using Eq. (29), we calculate the persistent current 
fluctuations at high temperatures (see Fig. 4) 

 

2 2

02 2
0

2 2

0

| | 2sin
= 2 .

1 | | 2cos

F
B

F
F

t
k T

I I
t

⎛ ⎞Φ
π⎜ ⎟Φ⎝ ⎠δ

Δ ⎛ ⎞Φ
− π⎜ ⎟Φ⎝ ⎠

 (40) 

This equation reproduces both the ballistic case at 
| | = 1Ft , Eq. (35), and the case with a single strong impur-
ity at | | 1Ft � , Eq. (38) at high temperatures. 

So, from Fig. 4 one can see that the presence of even a 
weakly reflecting potential ( | | 1Ft � ) removes the coun-
ter-intuitive features characteristic for the persistent current 
fluctuations in purely ballistic rings. 

4. Conclusion 

Using a simple model, a one-dimensional ballistic ring 
with noninteracting electrons, we have shown several ge-
neric fluctuation effects. We have considered effects of a 
high magnetic field and a high temperature on persistent 
currents. 

With increasing magnetic field the Zeeman splitting 
leads to crossing of levels corresponding to electrons with 
opposite spins. For an equidistant spectrum such crossing 
occurs periodically in magnetic field with period dictated 

by the level spacing for the ballistic ring. At these particu-
lar magnetic fields the number of spin excitations in the 
ring fluctuates. As a result the first harmonics of the persis-
tent current becomes suppressed, hence the period of a 
current as a function of the Aharonov–Bohm flux through 
the ring's opening is halved. At finite temperatures the 
magnitude of the second harmonics is generally smaller 
than the magnitude of the first one. Therefore, the period 
halving is accompanied by current quenching, see Fig. 2. 

With increasing temperature more and more excited 
energy levels in the ring are involved, hence the phase 
space accessible for an electron system is increased. This 
results in a finite time spent by the system at some particu-
lar energy level, i.e., the position of a system in phase 
space fluctuates. These fluctuations, first, affect the magni-
tude of the persistent current and, second, lead to fluctua-
tions of the persistent current. At high temperatures the 
magnitude of a current is exponentially suppressed. How-
ever, the mean square current fluctuations in the presence 
of the Aharonov–Bohm magnetic flux grows linearly with 
temperature. The existence of persistent current temporal 
fluctuations indicates that the system remains phase-
coherent. 

I am grateful to Markus Büttiker for encouraging me to 
write this paper, for numerous fruitful discussions, and for 
careful reading of a manuscript. 
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