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A rigorous computational approach based on Green's second integral identity in the plane is used to calculate 
the transmission, reflection, and conversion into volume electromagnetic waves of a surface plasmon polariton 
incident on a nanoscale one-dimensional surface defect on an otherwise planar interface between vacuum and 
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The ability to control the propagation of surface plas-
mon polaritons is important for their use in nanoscale de-
vices [1–3]. A way in which the propagation of these sur-
face electromagnetic waves can be controlled is to scatter 
them from one- and two-dimensional nanoscale surface 
defects. In the case of one-dimensional defects, the surface 
plasmon polariton transmission and reflection coefficients, 
and the strength and angular dependence of the volume 
electromagnetic waves radiated into the vacuum above the 
surface, can be controlled by varying the size and shape of 
the defect [2]. The scattering of surface plasmon polaritons 
from isolated one-dimensional surface defects [4–9], and 
from arrays of a finite number of defects [10], has been 
studied in several recent theoretical investigations. 

All of these calculations have two features in common. 
They are based on the use of an impedance boundary con-
dition of one form or another, so that only the electromag-
netic field in the vacuum above the metal surface needs to 
be considered, and they all assume that the dielectric func-
tion of the metal is real. 

In this paper we study the scattering of surface plasmon 
polaritons incident normally on nanoscale one-dimensional 
surface defects on an otherwise planar lossy metal surface 
without invoking either of these approximations. 

The physical system we consider consists of vacuum in 
the region 3 1> ( )x xζ , and a metal, characterized by an 
isotropic, frequency-dependent, complex dielectric func-
tion 1 2( ) = ( ) ( )iε ω ε ω + ε ω  in the region 3 1< ( )x xζ . We 
are interested in the frequency range within which the real 
part of ( )ε ω , 1( )ε ω , satisfies 1( ) < 1ε ω − , which is the 
range in which surface plasmon polaritons exist. The im-
aginary part of ( )ε ω , 2 ( )ε ω , is non-negative for all fre-
quencies. The surface profile function 1( )xζ  is assumed to 
be a single-valued function of 1x , that is twice differentia-
ble, and is nonzero only in the interval 1/ 2 < < / 2L x L− . 

We assume that a p -polarized surface plasmon polari-
ton of frequency ω , whose sagittal plane is the 1 3x x  
plane, is incident on the surface defect from the planar re-
gion of the surface where 1 < / 2x L− . When the metal 
surface supporting it is lossy, the surface plasmon polariton 
is attenuated as it propagates in the 1x+  direction. But this 
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result also means that the amplitude of this wave grows 
exponentially as 1x →−∞ . This causes some of the inte-
grals that arise in the scattering theory to diverge. We can 
avoid these unphysical divergences by creating a source in 
the region 1 < / 2x L−  that launches surface plasmon pola-
ritons propagating in both the 1x+  direction and the 1x−  
direction, and therefore decaying in both directions. 

To do so we begin by writing the single nonzero com-
ponent of the magnetic field in the vacuum region 

3 1> ( )x xζ  as the sum of an incident and a scattered field 

 > > >
2 1 3 2 1 3 inc 2 1 3 sc( , | ) = ( , | ) ( , | ) ,H x x H x x H x xω ω + ω  (1) 

and in the region of the metal 3 1< ( )x xζ  as 

 < < <
2 1 3 2 1 3 inc 2 1 3 sc( , | ) = ( , | ) ( , | ) ,H x x H x x H x xω ω + ω  (2) 

where 

 
>
2 1 3 inc 1 0 1 0 0 3( , | ) = { ( )exp [ ( )( ) ( ) ]H x x x L ik x L xω θ + ω + −β ω +  

 1 0 1 0 0 3( ) exp [ ( )( ) ( ) ]}x L ik x L x+ θ − − − ω + −β ω , (3) 

<
2 1 3 inc 1 0 1 0 3( , | ) = { ( )exp [ ( )( ) ( ) ]H x x x L ik x L xω θ + ω + +β ω +

 1 0 1 0 3( )exp [ ( )( ) ( ) ]},x L ik x L x+ θ − − − ω + +β ω  (4) 

with 0 > / 2L L . In these expressions ( )xθ  is the Heaviside 
unit step function, 

1/2
1 2( ) = ( / )[ ( ) / ( ( ) 1)] = ( ) ( )k c k ikω ω ε ω ε ω + ω + ω ,  

with 1( ) > 0k ω , 2 ( ) > 0k ω , is the wavenumber of the sur-
face plasmon polariton of frequency ω  at the planar inter-
face between vacuum and a metal whose dielectric func-
tion is ( )ε ω , while 1/2

0 ( ) = ( / )[ 1 / ( ( ) 1)]cβ ω ω − ε ω +  and 
1/2( ) = ( )( / )[ 1 / ( ( ) 1)]cβ ω −ε ω ω − ε ω +  are the inverse decay 

lengths of the electromagnetic field of the surface wave 
into the vacuum and the metal, respectively. 

The incident fields >,<
1 3 inc2 ( , | )H x x ω  given by Eqs. (3) 

and (4) satisfy the equations 

 

2 2 2
>
2 1 3 inc2 2 2

1 3

1 0 0 3 3 1

( , | ) =

2 ( ) ( )exp [ ( ) ] , > ( )

H x x
x x c
ik x L x x x

⎛ ⎞∂ ∂ ω
+ + ω⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

= ω δ + −β ω ζ , (5) 

 

2 2 2
<
2 1 3 inc2 2 2

1 3

1 0 3 3 1

( ) ( , | ) =

2 ( ) ( )exp [ ( ) ] , ( )

H x x
x x c
ik x L x x x

⎛ ⎞∂ ∂ ω
+ + ε ω ω⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

= ω δ + β ω < ζ . (6) 

The scattered fields >,<
1 32 ( , | )scH x x ω  satisfy the homo-

geneous forms of Eqs. (5) and (6), respectively. 
Thus, we have introduced a planar source perpendicular 

to the 1x  axis at 1 0=x L− , whose strength decreases ex-
ponentially with increasing distance from the interface into 
the vacuum and the metal. 

We now define two Green's functions 0 1 3 1 3( , | , )G x x x x′ ′  
and 1 3 1 3( , | , )G x x x xε ′ ′  as the solutions of the equations 

 

2 2 2

0 1 3 1 32 2 2
1 3

1 1 3 3

( , | , ) =

4 ( ) ( ) ,

G x x x x
x x c

x x x x

⎛ ⎞∂ ∂ ω ′ ′+ +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
′ ′= − πδ − δ −  (7) 

 

2 2 2

1 3 1 32 2 2
1 3

1 1 3 3

( ) ( , | , ) =

4 ( ) ( ) ,

G x x x x
x x c

x x x x

ε
⎛ ⎞∂ ∂ ω ′ ′+ + ε ω⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

′ ′= − πδ − δ −  (8) 

subject to outgoing wave boundary conditions at infinity. 
These functions can be represented by 

( )

(1) 2 2 1/2
0 1 3 1 3 1 1 3 30

1 1 0 3 3
0

( , | , ) {( / )[( ) ( ) ] }

2= exp [ ( ) ( )| |] 9
2 ( )

G x x x x i H c x x x x

dq i iq x x i q x x
q

∞

−∞

′ ′ ′ ′= π ω − + − =

π ′ ′− + α −
π α∫

 

and 

    

1 3 1 3
(1) 2 2 1/2

1 1 3 30

1 1 3 3

( , | , ) =

( ( )( / )[( ) ( ) ] )

2= exp [ ( ) ( ) | |] ,
2 ( )

G x x x x

i H c x x x x

dq i iq x x i q x x
q

ε

∞

−∞

′ ′

′ ′= π ε ω ω − + − =

π ′ ′− + α −
π α∫  (10) 

where (1)
0 ( )H x  is the Hankel function of the first kind and 

zero order, 2 2 1/2
0 ( ) = [( / ) ]q c qα ω − , with 0Re ( ) > 0qα , 

0Im ( ) > 0qα , and 2 2 1/2( ) = [ ( )( / ) ]q c qα ε ω ω − , with 
Re ( ) > 0qα , Im ( ) > 0qα . 

When we apply Green's second integral identity in the 
plane [11] to the regions 3 1> ( )x xζ  and 3 1< ( )x xζ  in 
turn, the preceding results enable us to write the equations 
satisfied by >,<

1 32 ( , | ),H x x ω  respectively, as 

> >
3 1 2 1 3 2 1 3 inc

1 0 0 3

0 0 0

1 0 1 3 1 3 1
= ( )3 1

0 1 3 1 3 = ( ) 13 1

( ( )) ( , | ) = ( , | )

exp [ ( ) ( ) ]
( )

2 ( )[ ( ) ( )]

1 ( , | , ) ( | )
4

[ ( , | , )] ( | ) ,

x x

x x

x x H x x H x x

iq x L i q xdqk
q i q

dx G x x x x H x
N

G x x x x L x

∞

−∞
∞

′ ′ζ−∞

′ ′ζ

θ −ζ ω ω +

+ + α
+ ω +

π α β ω + α

⎧ ∂⎡ ⎤′ ′ ′ ′+ ω −⎨⎢ ⎥′π ∂⎣ ⎦⎩

⎫′ ′ ′− ω ⎬
⎭

∫

∫

(11) 

[ ]

< <
1 3 2 1 3 2 1 3 inc

1 0 3

1 1 3 1 3 1
= ( )3 1

1 3 1 3 1= )3 1

( ( ) ) ( , | ) = ( , | )

exp [ ( ) ( ) ]
( )

2 ( )[ ( ) ( ))]

1 ( , | , ) ( | )
4

( ) ( , | , ) ( | ) .

x x

x x

x x H x x H x x

iq x L i q xdqk
q i q

dx G x x x x H x
N

G x x x x L x

∞

−∞
∞

ε
′ ′ζ−∞

ε ′ ′ζ

θ ζ − ω ω +

+ − α
+ ω −

π α β ω + α

⎧ ∂⎪⎡ ⎤′ ′ ′ ′− ω −⎨⎢ ⎥′π ∂⎣ ⎦⎪⎩
⎫′ ′ ′− ε ω ω ⎬
⎭

∫

∫

(12) 
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In writing these equations we have introduced the source 
functions 1( | )H x ω  and 1( | )L x ω  that are defined by 

 >
1 2 1 3 = ( )3 1( | ) = ( , | ) |x xH x H x x ζω ω , (13) 

 >
1 2 1 3 = ( )3 1( | ) = ( , | ) | ,x xL x H x x

N ζ
∂

ω ω
∂

 (14) 

where 1 1 3/ = ( )( / ) ( / )N x x x′∂ ∂ −ζ ∂ ∂ + ∂ ∂ . We have also used 
the boundary conditions at the interface 3 1= ( )x xζ  namely 

> <
2 1 3 2 1 3( , | ) = ( , | )H x x H x xω ω , and >

2 1 3( , | )/H x x N∂ ω ∂ =  1
2 1 3( )( ( , | ) / )H x x N− <= ε ω ∂ ω ∂ . 

The equations satisfied by the source functions 
1( | )H x ω  and 1( | )L x ω  are obtained by setting 

3 1= ( )x xζ +η , where η  is a positive infinitesimal, in 
Eqs. (11) and (12). The resulting equations are 

1 1 inc

1 0 0 1

0 0 0

1 0 1 3 1 3 1

= ( )3 1
= ( )3 1

0 1 3 1 3 = ( ) 13 1
= ( )3 1

( | ) = ( | )

exp [ ( ) ( ) ( )]
( )

2 ( )[ ( ) ( )]

1 ( , | , ) ( | )
4

[ ( , | , )] (

x x
x x

x x
x x

H x H x

iq x L i q xdqk
q i q

dx G x x x x H x
N

G x x x x L x

∞

−∞

∞

−∞
′ ′ζ
ζ +η

′ ′ζ
ζ +η

ω ω +

+ + α ζ
+ ω +

π α β ω + α

⎧⎡ ⎤
∂⎪⎢ ⎥′ ′ ′ ′+ ω −⎨⎢ ⎥′π ∂⎪⎢ ⎥⎣ ⎦⎩

′ ′ ′−

∫

∫

| )
⎫
⎪ω ⎬
⎪⎭

(15) 

and 

1 0 1
1 inc

1 1 3 1 3 1

= ( )3 1
= ( )3 1

1 3 1 3 = ( ) 13 1
= ( )3 1

exp[ ( ) ( ) ( )]
0 = ( | ) ( )

2 ( )[ ( ) ( )]

1 ( , | , ) ( | )
4

( )[ ( , | , )] ( | )

x x
x x

x x
x x

iq x L i q xdqH x k
q i q

dx G x x x x H x
N

G x x x x L x

∞

−∞

∞

ε
−∞

′ ′ζ
ζ +η

′ ′ε ζ
ζ +η

+ − α ζ
ω + ω −

π α β ω + α

⎧⎡ ⎤
∂⎪⎢ ⎥′ ′ ′ ′− ω −⎨⎢ ⎥′π ∂⎪⎢ ⎥⎣ ⎦⎩

⎫
⎪′ ′ ′− ε ω ω ⎬
⎭

∫

∫

,
⎪

(16) 

where >
1 inc 2 1 3 inc = ( )3 1( | ) = ( , | ) |x xH x H x x ζω ω . 

Equations (15) and (16) are solved numerically for 
1( | )H x ω  and 1( | )L x ω  in exactly the same way as this 

was done in [12]. 
We wish to obtain the fraction ( )R ω  of the power in 

the incident surface plasmon polariton that is converted 
into the reflected surface plasmon polariton, the fraction 

( )T ω  transmitted beyond the defect in the form of a sur-
face plasmon polariton, and the fraction ( )S ω  converted 
into volume electromagnetic waves in the vacuum. 

We begin with a calculation of the total time-averaged 
flux incident on the defect. This is given by 

 

/22
>

inc 1 2 3 1 1 3 inc
/2 02

0
<

3 1 1 3 inc

( ) = Re ( , | )

Re ( , | ) ,

L
c

L

c

P x dx dx S x x

dx S x x

∞

−

−∞

⎡
⎢ ω +
⎢⎣

⎤
⎥+ ω
⎥⎦

∫ ∫

∫  (17) 

where ( = 1, 2)iL i  is the length of the surface along the ix  
axis, and where >,<

1 1 3 inc( , | )cS x x ω  is the 1-component of the 
complex Poynting vector, 

 

>,<
1 1 3 inc

>,<2
1 3 inc >,< *2

1 3 inc2
1

( , | )) =

( , | )
( , | ) ,

8

cS x x

H x xci H x x
x

ω

∂ ω
= − ω

πωε ∂
(18) 

where ε  the dielectric constant of the medium in which the 
field is calculated. Thus, the incident flux in the region 

0 1< / 2L x L− ≤ − , obtained from the first term on the 
right-hand sides of Eqs. (3) and (4), together with Eqs. (17) 
and (18), is 

 

2
1

inc 1 2 *
0 0

1 1 2 2
2 2 *
1 2

2 1 0 0 1

( )
( ) =

8 ( ) ( )

( ) ( ) ( ) ( ) 1
( ) ( ) ( ) ( )

exp [ 2 ( )( )] , < / 2 .

kcP x L

k k

k x L L x L

⎡ ω
+⎢

πω β ω +β ω⎢⎣
⎤ω ε ω + ω ε ω

+ ×⎥
ε ω + ε ω β ω +β ω ⎥⎦

× − ω + − ≤ −  (19) 

In the region 1 / 2x L≤ − , 3 > 0x  in front of the defect 
the magnetic field of the reflected surface plasmon polari-
ton has the form 

   
>
2 1 3 ref 1 0 3( , | ) = ( ) exp [ ( ) ( ) ] ,H x x r ik x xω ω − ω −β ω  (20) 

while in the region 1 / 2,x L≤ −  3 < 0x  it is given by 

 <
2 1 3 ref 1 3( , | ) = ( ) exp [ ( ) ( ) ] .H x x r ik x xω ω − ω +β ω  (21) 

The total time-averaged reflected flux is then obtained 
from Eqs. (17) and (18) with «inc» replaced by «ref», with 
the result that 

 

2
2 1

ref 1 2 *
0 0

1 1 2 2
2 2 *
1 2

2 1 1

( )
( ) = | ( ) |

8 ( ) ( )

( ) ( ) ( ) ( ) 1
( ) ( ) ( ) ( )

exp [2 ( ) ], < / 2 .

kcP x L r

k k

k x x L

⎡ ω
− ω +⎢

πω β ω +β ω⎢⎣
⎤ω ε ω + ω ε ω

+ ×⎥
ε ω + ε ω β ω +β ω ⎥⎦

× ω −  (22) 

In the region 1 3/ 2, 0x L x≥ ≥  beyond the defect the to-
tal magnetic field of the surface plasmon polariton has the 
form 

 >
2 1 3 tr 1 0 3( , | ) = ( ) exp [ ( ) ( ) ],H x x t ik x xω ω ω −β ω  (23) 

while in the region 1 3/ 2, 0x L x≥ ≤  it has the form 

 <
2 1 3 tr 1 3( , | ) = ( )exp [ ( ) ( ) ] .H x x t ik x xω ω ω +β ω  (24) 
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The total time-averaged power carried by the surface 
plasmon polariton in the region 1 / 2x L≥  is then given by 

 

2
2 1

tr 1 2 *
0 0

1 1 2 2
2 2 *
1 2

2 1 1

( )
( ) = | ( ) |

8 ( ) ( )

( ) ( ) ( ) ( ) 1
( ) ( ) ( ) ( )

exp [ 2 ( ) ] , / 2 .

kcP x L t

k k

k x x L

⎧ ω⎪ω +⎨
πω β ω +β ω⎪⎩

⎫ω ε ω + ω ε ω ⎪+ ×⎬
ε ω + ε ω β ω +β ω ⎪⎭

× − ω ≥  (25) 

The magnetic component of the field scattered into the 
vacuum region can be written in the far zone as 

>
2 1 3 rad 1 0 3( , | ) = ( , )exp [ ( ) ] ,

2
dqH x x R q iqx i q x

∞

−∞

ω ω + α
π∫ (26) 

where from Eq. (11) we find that 

0

0 0 0

1 1 0 1 1
0

1 0 1

exp ( )
( , ) = ( )

( )[ ( ) ( )]

{ [ ( ) ( )] ( | ) ( | )}
2 ( )

exp [ ( ) ( )] .

iqL
R q k

q i q

i dx i q x q H x L x
q

iqx i q x

∞

−∞

ω ω +
α β ω + α

′+ ζ −α ω − ω ×
α

× − − α ζ

∫
(27) 

The 3-component of the time-averaged Poynting vector 
of the field scattered into the vacuum is 

/21

rad 1
/21

/22 >2
> *2 1 3 rad

2 2 1 3 rad
3/22

/2
2

2 0
/

= Re

( , | )
( , | )

8

= ( ) | ( , ) |
8 2

L

L

L

L

c

c

P dx

H x xicdx H x x
x

c dqL q R q

−

−

ω

−ω

×

⎡ ⎤∂ ω
× − ω =⎢ ⎥

πω ∂⎢ ⎥⎣ ⎦

α ω
πω π

∫

∫

∫ (28) 

in the limit as 1L →∞ . With the change of variable 
= ( / )sin sq cω θ  Eq. (28) becomes 

 
/2

rad rad
/2

= ( ) ,s sP d P
π

−π

θ θ∫  (29) 

where 

 22
rad 2 2( ) = | (( / )sin , ) | .cos

16
s s sP L R cω
θ θ ω θ ω

π
(30) 

We can now obtain expressions for the surface plasmon 
polariton reflection, transmission, and radiation coeffi-
cients, ( )R ω , ( )T ω , and ( )S ω , respectively. These are 
given by the total time-averaged powers in the reflected 
and transmitted surface plasmon polaritons, and in the vo-
lume waves in the vacuum, normalized by the incident 
power. However, due to the presence of damping in the 
metal, each of these fluxes depends on the coordinate 1x . 

Therefore we have to indicate at which value of 1x  each 
flux is calculated. For the incident flux it seems natural to 
evaluate it at 1 = / 2x L− , i.e., at the point where the inci-
dent surface plasmon polariton meets the defect. We will 
evaluate the reflected flux at the same value of 1x , namely 
at the value 1 = / 2x L−  at which the reflected surface 
plasmon polariton leaves the region of the defect. We will 
evaluate the transmitted flux at 1 = / 2x L , namely at the 
value of 1x  at which the transmitted surface wave leaves 
the region of the defect. 

With these choices the surface plasmon polariton reflec-
tion coefficient ( )R ω  is given by 

 

ref

inc
2

2 0

| ( / 2) |
( ) =

( / 2)

=| ( ) | exp [2 ( )( )] .

P L
R

P L

r k L L

−
ω =

ω ω −  (31) 

The surface plasmon polariton transmission coefficient 
becomes 

 

tr

inc
2

2 0

( / 2)
( ) =

( / 2)

=| ( ) | exp [2 ( )( )] .

P L
T

P L

t k L L

ω =
−

ω ω −  (32) 

The fraction of the total time-averaged incident flux 
that is converted into bulk electromagnetic waves in the 
vacuum is then given by 

 rad

inc
= ,

( / 2)
P

S
P L−

 (33) 

while the fraction of the total time-averaged incident flux 
that is converted into bulk electromagnetic waves propa-
gating in the angular interval ( , )s s sdθ θ + θ  is 

 rad

inc

( )
( ) = .

( / 2)
s

s
P

S
P L

θ
θ

−
 (34) 

It remains only to determine the reflection and trans-
mission amplitudes ( )r ω  and ( )t ω , respectively. Far from 
the surface defect, where 1 1=x L− , with 1 0| |x L , the 
total field evaluated on the surface 3 = 0x , 

>
2 1 1( ,0 | ) ( | )H L H L− ω ≡ − ω  is the sum of the fields of the 

incident and reflected surface plasmon polaritons, 
1 1 0 1( | )=exp [ ( )( )] ( )exp [ ( ) ]H L ik L L r ik L− ω ω − + ω ω . From 

this result we obtain 

1 1 0( ) = ( | )exp [ ( ) ] exp [ ( ) ].r H L ik L ik Lω − ω − ω − − ω  (35) 

In a similar fashion we argue that far from the defect, 
where 1 1= / 2x L L , the total field evaluated on the sur-
face 3 = 0x , >

2 1 1( ,0 | ) ( | )H L H Lω ≡ ω  is given by 
1 1( | ) = ( )exp [ ( ) ]H L t ik Lω ω ω . It follows, therefore, that 

 1 1( ) = ( | )exp [ ( ) ].t H L ik Lω ω − ω  (36) 

We now illustrate the preceding results by applying 
them to several examples. 
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We consider first the scattering of a surface plasmon 
polariton from a defect defined by a Gaussian surface pro-
file function 

 2 2
1 1( ) = exp ( / )x x aζ δ −  (37) 

on a silver surface. This defect is a ridge if δ  is positive, 
and a groove if δ  is negative. 

In the numerical calculations the frequency of the inci-
dent surface plasmon polariton was assumed to be given by 

= 1.96ωh  eV, which corresponds to a vacuum wavelength 
= 632.8λ  nm. This is the wavelength of the light used in 

photon scanning tunneling microscope (PSTM) experi-
ments [13–16] to excite surface plasmon polaritons on sil-
ver surfaces. The dielectric constant of silver at this wave-
length is ( ) = 17.2 0.479iε ω − +  [17]. The values of L , 0L , 
and 1L  assumed in carrying out these calculations were 

= 240 m,L μ  0 = 30 m,L μ  and 1 = 8 m.L μ  
In Fig. 1 we plot the dependence on /a λ  of the coeffi-

cients ( )R ω , ( )T ω , and ( )S ω  for Gaussian ridges and 
grooves of amplitudes / = 0.05δ λ  and 0.2 . From the plot 
it seen that for wide defects all of these coefficients practi-
cally coincide for the ridges and grooves of the same δ ; the 
difference between the results for the ridges and grooves 
displays itself only for narrow defects < / 2a λ . 

The reflection coefficient ( )R ω  of surface plasmon po-
laritons from ridges or grooves is significant only for very 
narrow surface defects. In Fig. 1 it is seen to attain its max-
imum value for a value of a of the order of opt 0.1a ≈ λ , 
irrespective of the value of δ , but shifted slightly to small-
er values of a  for ridges. The maximum reflectivity, how-
ever, increases with increasing δ , and is slightly larger for 
ridges than for grooves. Such defects have been called 
plasmon mirrors [4,15,16]. 

The transmissivity ( )T ω  of a surface plasmon polari-
ton propagating through a ridge or a groove, after a drop 
for very narrow defects, increases monotonically with in-
creasing defect width. This is in contrast to the results of 
Ref. 5, where the transmissivity of a surface plasmon pola-
riton propagating through a groove increased in an oscilla-
tory fashion with increasing defect width. 

The total normalized power ( )S ω  scattered from a sur-
face defect, also in contrast to Ref. 5, has a maximum for a 
very narrow defect, and decreases monotonically with in-
creasing defect width. It is larger for larger δ , but the 
overall behavior of ( )S ω  is the same for grooves and 
ridges. Thus both narrow ridges and narrow grooves can 
act as light emitters, i.e., as surface defects that convert a 
large fraction of the power in the incident surface plasmon 
polariton into volume electromagnetic waves in the va-
cuum region. 

The absence of the oscillations observed in Ref. 5 in our 
results for ( )T ω  and ( )S ω  for the deep groove could be 
due to the presence of losses that lead to the overdamping 
of local shape resonances 

Fig. 1. Surface plasmon polariton reflection (a) and transmission 
(b) coefficients ( )R ω  and ( )T ω , respectively, and the total nor-
malized scattered power ( )S ω  (c), as functions of the 1 / e  half 
width of a Gaussian surface defect: = 632.8λ  nm and 

( ) = 17.2 0.479iε ω − + . Long dashed curve: = 0.2δ λ ; solid curve 
= 0.2δ − λ ; dot-dashed curve: = 0.05δ − λ ; dotted curve: 
= 0.05δ λ . 
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The frequency dependencies of ( )R ω , ( )T ω , and 
( )S ω  were studied in Ref. 6 and display interesting fea-

tures. In Fig. 2 we have plotted the analogous dependen-
cies for a Gaussian ridge and groove, defined by Eq. (37), 
with = 785δ  nm and = 157a  nm. In obtaining these re-
sults the frequency dependence of ( )ε ω  was assumed to be 
given by 2( ) = 1 / ( ( )p iε ω −ω ω ω+ γ , with = 157pλ nm and 

= 0.009681 pγ ω . In the case of a Gaussian ridge all of 
these coefficients display a weak dependence on the fre-
quency: the transmissivity ( )T ω  decreases monotonically, 
with increasing frequency, while ( )R ω  and ( )S ω  increase 
with increasing frequency, displaying weak structure. We 

note that the in this case most of the energy of the incident 
surface plasmon polariton is radiated into the vacuum. In 
contrast, in the case of a Gaussian groove all of these coef-
ficients are strongly frequency dependent, with large oscil-
lations (resonances) corresponding to strong transmission 
or radiation within some frequency ranges. The reflectivity 

( )R ω  oscillates weakly but increases with increasing fre-
quency. 

In this paper we have presented a rigorous approach to 
the scattering of a surface plasmon polariton incident nor-
mally on a one-dimensional defect on the otherwise planar 
surface of a metal that also takes into account ohmic losses 
in the metal. Expressions for the surface plasmon polariton 
reflection ( ( )R ω ) and transmission ( ( )T ω ) coefficients, 
and for the total normalized power of the volume electro-
magnetic waves radiated into the vacuum above the metal 
surface ( ( )S ω ), have been obtained in terms of the solu-
tions of a pair of coupled inhomogeneous integral equa-
tions. These equations have to be solved numerically, but 
this can be done by standard methods. 

This approach has been illustrated by applying it to the 
calculation of ( )R ω , ( )T ω , and ( )S ω  for the scattering 
of a monochromatic surface plasmon polariton from a na-
noscale Gaussian ridge or groove on a silver surface. These 
results demonstrate that our approach is computationally 
tractable. When they are compared with the results of ear-
lier calculations of these coefficients, in which an imped-
ance boundary condition was used to simplify the calcula-
tions, and the metal supporting the surface plasmon 
polariton was assumed to be lossless, qualitative agreement 
is found. However, the two sets of results also reveal some 
qualitative discrepancies. 

The theoretical/computational study of properties of 
surface plasmon polaritons have now advanced to such a 
level that simplifications of the kind used in earlier scatter-
ing calculations are no longer needed. The success of the 
approach to such calculations presented here would seem 
to validate this point of view. It is expected that it will be 
useful in studies of other scattering problems, such as the 
scattering of surface plasmon polariton pulses from one-
dimensional surface defects [6,7], or scattering from an 
array of such defects [10], which until now have been in-
vestigated only by approximate methods. 
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coefficients ( )R ω  and ( )T ω , respectively, and the total norma-
lized scattered power ( )S ω  (dashed curve), of a Gaussian surface
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groove, = 785δ −  nm (b). = 2 /p pcω π λ , where = 157pλ  nm
(Ag). 
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