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1. Introduction 

In the presented talk we discuss some theoretical as-
pects of the physics of wind-driven sea. On our opinion, 
some important questions of this theory are not clarified 
enough and must be elucidated. This clarification is neces-
sary to provide an adequate comparison of the theory and 
the experiment, otherwise costly and laborious field and 
laboratory measurements could not be properly interpreted 
and understood. 

The first question is about the correct definition of wave 
action ( )kN t , which obeys the Hasselmann kinetic equa-
tion 

 in dis= ,nl
dN S S S
dt

+ +  (1.1) 

augmented by the source and the dissipation terms. How to 
find the current action spectrum ( )kN t  from experimental 
data? What is measured in the best experiments, is the 
space-time spectrum 

 2=<| | > .k kQ ω ωη  (1.2) 

Here kωη  is the Fourier transform of the surface elevation. 
The most advanced definition of wave action, used in 
many research papers (see, for example [1,2]), is the fol-
lowing: 

 
0

2= .k k
k

N Q d
∞

ω ω
ω ∫  (1.3) 

Formula (1.3) is certainly correct for waves of very small 
amplitude in the limit 0μ → , where μ  is a characteristic 
average steepness of the surface. At a finite steepness, it 
can be treated as the first term in expansion 

 2
0 1= ( ) ( ) .kN N k N k+μ +L  (1.4) 

Now 0 ( )N k  is given by (1.3), while 1( )N k  is the subject 
for determination. One can think that this question is not 
very important because even for the most steep young 
waves 2 0.01μ � , and the accuracy of (1.3) looks good. 
However, our preliminary estimates show that the ratio 

1 0( ) / ( )N k N k  is a fast growing function on k , thus for 
spectral tails the difference between kN  and 0 ( )N k  might 
be essential. 

Now we formulate the inverse problem. Suppose we 
know kN . How to find kQ ω ? 

In the linear approximation, at 0μ → , the answer is 
known: 

 ( )= ( ) ( ) .
2
k

k k k k kQ N Nω − −
ω

δ ω−ω + δ ω+ω  (1.5) 

What happens if μ  is finite? In the neighborhood of 
= kω ω  we should perform replacement 

 2 2
1( ) ,

( )
k

k
k k

Γ
δ ω−ω →

π ω−ω +Γ%
 (1.6) 

where 2
1=k k kω ω +μ ω +% L  is renormalized frequency 

and 4
k kΓ μ Γ +% L�  is effective dissipation due to four-

wave processes. As far as 2μ  is small, one can think that 
both shifting of kω  and blurring of δ -function are weak 
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effects. However, the quotients 1 /k kω ω  and /k kΓ ω%  are 
growing functions on k , thus for pk k�  ( pk  is the wave 
number of spectral peak) derivation from simple formula 
(1.5) could be essential. There is one more important ef-
fect. In the real sea all waves could be separated in two 
classes: «resonant waves» with kω ω∼  and «slave har-
monics» caused by quadratic nonlinearity of primitive dy-
namic equations. The slave waves do not obey dispersion 
relations, as a result their frequency spectrum for the given 
k  is a broad function, not concentrated at kω ω� . 

Accurate determination of 1( )N k  at given kQ ω  and 
kQ ω  at given ( )N k  is possible but it is technically cum-

bersome problem. In Chaps. 2, 3 we are taking first but 
important steps to their solution. In Chap. 4 we study axial-
ly symmetric solutions of equation 

 = 0,nlS  (1.7) 

that is known since 1966 ([3], see also [4,5]). This equation 
has exactly two powerlike solutions: 

 
1/3

1 2 4
1( ) = ,p

PN k c
g k

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (1.8) 

 
1/2

2 3/2 23/6
1( ) = .q

QN k c
g k

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (1.9) 

Solution (1.8) is known as Zakharov–Filonenko spectrum 
[4]. Here P  is the flux of energy from small wave num-
bers and Q  is the flux of wave action from high wave 
numbers. Kolmogorov constants pc  and qc  were not 
known but now they are calculated: 

 = 0.219, = 0.227.p qc c  (1.10) 

General isotropic solutions of Eq. (1.7) depend on two 
constants P  and Q . In Chapter 5 we discuss the general 
anisotropic solution of this equation. We show that the 
solution is defined by one arbitrary constant, the flux of 
wave action from high wave numbers, and one arbitrary 
function on angle. In the axially symmetric case this func-
tion degenerates to the constant P . The general anisotrop-
ic solution of (1.7) describes angular spreading of spectrum 
growing with frequency. The last Chapter 6 is the most 
important from the practical view-point. We discuss the 
balance equation in the universal domain pω ω� , 

 in dis = 0.nlS S S+ +  (1.11) 

Apparently in some domain on k -plane in dis > 0S S+ . 
Suppose that in = ( ) kS k Nγ . We notice that nlS  can be 
presented in the form 

 = ,nl k k kS F N−Γ  (1.12) 

and the nonlinear wave interaction process is predominat-
ing if k kΓ γ� . We show that this condition is satisfied in 
majority of realistic cases, if the waves are not very young. 

It means that, as we claimed before, the nonlinear wave 
interaction is the dominating process in the wind-driven 
sea. 

2. What is the wave action? 

This is the widely used Hasselmann equation: 

 = ,nl
N N S
t

∂ ∂ω∂
+

∂ ∂ ∂k r
%

 (2.1) 

2 2
, 1 2 31 2 3 1 2 3= | | ( ) ( )nl kk k k k k k kS g T k k k kπ δ + − − δ ω +ω −ω −ω ×∫

1 2 31 2 3 2 3 1 2 1 3( ) .k k k k k k k k k k k kN N N N N N N N N N N N dk dk dk× + − −   
   (2.2) 

Here = tanhk gk kHω , H  is depth, 1 2 3 1 2 3=kk k k k kk kT T =  

2 3 1 1 3 2=k k kk kk k kT T=  are coupling coefficients, and 

 , 11 1 1( ) = ( ) 2 kk kk kk k g T N dkω ω + ∫%  (2.3) 

is renormalized frequency. 
As it was mentioned before, the nonlinear interaction 

term nlS  can be presented in the form 

 = ,nl k k kS F N−Γ  (2.4) 

where 

 

2 2
1 2 31 2 3

1 2 31 2 3 1 2 3

= | | ( )

( )
k kk k k

k k k k k k k

F g T k k k k

N N N dk dk dk

π δ + − − ×

× δ ω +ω −ω −ω
∫

 (2.5) 

and kΓ , the dissipation rate due to the presence of four-
wave processes, is the following: 

2 2
, 1 2 31 2 3 1 2 3

1 2 31 2 1 3 2 3

= | | ( ) ( )

( ) .
k kk k k k k k k

k k k k k k

g T k k k k

N N N N N N dk dk dk

Γ π δ + − − δ ω +ω −ω −ω ×

× + −
∫   

   (2.6) 

One can say that in the real nonlinear sea the dispersion 
relation = kω ω  is renormalized and becomes a complex 
function 

 1 .
2k k kiω →ω + Γ%  (2.7) 

Equations (2.1), (2.2) are written for the wave action 
spectrum ( , )kN tr . What is the exact definition for the 
wave action? How ( , )kN tr  can be expressed through the 
observable measurable quantities? These are not that sim-
ple questions. 

Making a snapshot of the surface from two points one 
can get its stereoscopic image and restore the shape of ele-
vation ( )η r . If we perform nonsymmetric Fourier trans-
form and define 

 2
1= ( ) e ,

(2 )
ikr

k d−η η
π ∫ r r  (2.8) 

we can introduce the spatial spectrum 
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 2=<| | > .k kQ η  (2.9) 

Making a serial of snapshots in consequent moments of 
time one can restore the full space-time spectrum 

 2=<| | > .k kQ ω ωη  (2.10) 

Apparently, 

 = .k kQ Q d
∞

ω
−∞

ω∫  (2.11) 

What is the wave action kN ? In some articles and mo-
nographs we can find the following definition: 

 = .k
k

k

Q
N

ω
 (2.12) 

This is just a widely spread carelessness. Spectrum kQ  is 
an even function, =k kQ Q− , while kN  certainly does not 
obey this restriction. One can present the spatial spectrum 
in the form 

 = ( ),
2
k

k k kQ n n−
ω

+  (2.13) 

where kn  is the wave action. We deliberately denoted it by 
low-case letter, because kn  and kN  are different wave 
actions. 

The wave field consists of «resonant» and «slave» har-
monics. The resonant harmonic with wave vector k  has a 
frequency close to the renormalized frequency kω% . The 
most strong slave harmonics appear as a result of interaction 
of two resonant harmonics. Suppose they have wave vectors 

1 2,k k . In the first order of nonlinearity they generate four 
slave harmonics with wave vectors 1 2 1 2, , ,− −p p p p  and fre-
quencies 1 2 1 2, , ,Ω Ω −Ω −Ω . Here 1 1 2= −p k k , 2 1 2= ,+p k k  
and 1 1 2 2 1 2= , =Ω ω −ω Ω ω +ω . There is no any definite 
relation between the wave vector and the frequency for 
slave harmonics. 

Returning to the wave action, let us explain now the dif-
ference between kn  and kN . kN  is the «refined» wave 
action that includes resonant harmonics and slave harmon-
ics of higher order only and kn  is the «total» wave action 
that includes both resonant and all slave harmonics. Ap-
parently, >k kn N  and is directly connected with experi-
mentally measurable spatial spectrum by relation (2.13). 
But kn  does not obey the Hasselmann equation. On the 
contrary, the «purified» wave action kN  in principle can-
not be measured in any kind of experiment. But exactly 
this sort of wave action satisfies the Hasselmann equation. 
As a result, all operational models solve the Hasselmann 
equation augmented with additional terms: inS , the input 
from wind, and disS , the dissipation due to wave breaking. 
Hence the operational models do predict kN . At the same 
time, experimentalists can measure the kn  only. 

On the first glance we see serious discrepancy, however 
nobody pays any attention. Why this happens? 

To give an answer we should estimate the relative dif-
ference between kn  and kN . Let us denote 

 ( ) = .k k

k

n N
k

n
−

α  (2.14) 

In a typical observed spectrum of wind-driven sea we 
should separate spectral area near to the peak frequency 

pω ω∼  and the tail pω ω� . In the energy capacitive 
spectral band close to pω , α  is small: 

 2.α μ∼   

The characteristic steepness μ  is defined as 

 
4

2 2
2 ,p

g

ω
μ σ�   

where σ  is the total energy of waves. Even for young 
waves 2 0.01μ ≤ , thus the relative difference between n  
and N  for deep water is not more than one percent and 
can easily be neglected. However, ( )kα  is a fast growing 
function on k . An accurate estimate of dependence α  on 
frequency at pω ≥ ω  is not a subject for current research. 
The article on this topic will be presented for publication 
soon, however our preliminary results show that this de-
pendence is very fast growing: 

 
3

2 .
p

⎛ ⎞ω
α μ ⎜ ⎟⎜ ⎟ω⎝ ⎠
�  (2.15) 

As it was mentioned above, in the area pω ω∼  one can 
neglect the difference between kn  and kN . In this area we 
can replace Eq. (2.9) by 

 = ( ).
2
k

k k kQ N N−
ω

+  (2.16) 

There is essential difference between (2.13) and (2.16). 
Because > 0kn  at any k , wave vectors of slave harmon-
ics cover all k -plane, thus determination of kn  from kQ  
is impossible in principle. On the contrary, in many prac-
tical cases kN  is nonzero only inside the bounded domain 
G  on the k -plane. At the same time 0kN− ≠  inside the 
domain G%  only, which is radially symmetric to G . In 
other words, if vector k  belongs to G , vector −k  belongs 
to G% . Suppose that G  and G%  have no intersection. In this 
case in the domain G  we have = 2 /k k kN Q ω . In spite of 
presence of factor 2 in (2.13) the integral identity 

=k k kQ dk N dkω∫ ∫  is the same as we would have used 
the naive and blatantly incorrect formula (2.12). 

In some important cases domains G  and G%  have inter-
section. In this case we face ambiguity in determination of 

kN  from (2.16). To overcome this ambiguity one should 
use the space-time spectrum ,kQ ω  and define 
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0

2= ( , ) .k
k

n Q k d
∞

ω ω
ω ∫  (2.17) 

The equivalent formula is presented in the monograph of 
Monin and Krasitsky [1] printed in Russia in 1985. It was 
also used by Rosental et al. [2] approximately in the same 
time. In this case again 

 = ( , ) .k kn dk Q k d dk
∞

−∞

ω ω ω∫ ∫  (2.18) 

Let us notice that formulae (2.13), (2.17) account slave 
harmonics and can be used with comparison of spectral 
tails obtained from the experiment and from solution of 
Hasselmann equation, both numerical and analytical, with 
caution. They work up to accuracy of 2μ  in the neighbor-
hood of spectral peak, but can lead to essential errors in 
area of spectral tails. Preliminary estimate for accuracy of 
expression (2.17) will be done in the next Chapter. 

3. How to separate resonant and slave harmonics? 

To make the accurate separation of resonant and slave 
harmonics and to find an explicit formula that connects 

( , )Q k ω  and kN , one should use Hamiltonian formalism 
and implement the canonical transformation, excluding 
cubic terms in the Hamiltonian. This is a cumbersome ma-
thematical procedure. In this Chapter we will demonstrate 
how it could be done in the most economic way. 

We study the weakly nonlinear waves on the surface of 
an ideal fluid of infinite depth in an infinite basin. The ver-
tical coordinate is 

 < < ( , ), = ( , ),H z r t r x y− η  (3.1) 

the fluid is incompressible, H  is the depth of fluid, 

 div = 0,V  (3.2) 

and velocity V  is a potential field 

 = ,V ∇Φ  (3.3) 

where potential Φ  satisfies the Laplace equation 

 = 0ΔΦ  (3.4) 

under boundary conditions 

 = =| = ( , ), | = 0.z z zr tη −∞Φ Ψ Φ  (3.5) 

The total energy of the fluid, =H T U+ , has the fol-
lowing terms: 

 21 1= ( ) = ,
2 2 nT d dz dS

η

−∞
∇Φ ΨΦ∫ ∫ ∫r  (3.6) 

 21= .
2

U g dη∫ r  (3.7) 

The Dirichlet–Neumann boundary problem (3.4), (3.5) 
is uniquely resolved; thus the flow is defined by fixation of 
η  and Ψ . This pair of variables is canonical; thus evolu-
tion equations for ,η Ψ  take the form [6]: 

 = , = .H H
t t

∂η δ ∂Ψ δ
−

∂ δΨ ∂ δη
 (3.8) 

After non-symmetric Fourier transform, 

2
1( ) = ( ) e , ( ) = ( ) e .

(2 )
ikr ikrr k dk k r dr−Ψ Ψ Ψ Ψ

π∫ ∫  (3.9) 

Equation (3.8) reads: 

 * *= , = ,
k k

H H
t t

∂η δ ∂Ψ δ
−

∂ ∂δΨ δη

% %
 (3.10) 

 0 1 22
1= =

4
H H H H H+ + +

π
% L (3.11) 

In [7–9] was shown that Hamiltonian H%  can be expanded 
in Taylor series in powers of kkη : 

 { }2 2
0

1= | | | | , = tan
2 k k k kH A g dk A k kHΨ + η∫  

(1)
1 1 2 1 2 3 1 2 31 2 3

1= ( , ) ( ) .
2 k k kH L k k dk dk dkΨ Ψ η δ + +∫ k k k

  (3.12) 

(2)
2 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1= ( , , , )
2

( ) .

k k k k

k k

H L k k k k

k k k k dk dk

Ψ Ψ η η ×

× δ + + + η η

∫  

Here 

 (1)
1 2 1 2 1 2( , ) = ( , ) k kL k k k k A A− − , (3.13) 

 

(2) 2 2
1 2 3 4 1 2 2 1

1 2 1 3 2 4 1 4 2 3

1( , , , ) = ( )
2

1 ( ) .
4

L k k k k k A k A

A A A A A A+ + + +

+ +

+ + + +
 

Now we can introduce normal variables ka : 

 
1/4

*1= ( )
2

k
k k k

A
a a

g −
⎛ ⎞

η +⎜ ⎟
⎝ ⎠

,  

 
1/4

*= ( )
2k k k

k

i g a a
A −

⎛ ⎞
Ψ −⎜ ⎟

⎝ ⎠
. (3.14) 

Normal variables obey the following Hamiltonian equa-
tions: 

 * = 0k

k

a Hi
t a

∂ δ
+

∂ δ
. (3.15) 

All terms in the expansion of Hamiltonian (3.11) must be 
expressed in terms of ka : 
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 2
0 = | |k kH a dkω∫ ,  

(1,2) * * *
1 1 2 1 21 2 1 22

1= ( ) ( )
2 k k k k k kkk ka

H V a a a a a a k k k dkdk dk+ δ − − +∫  

(0,3) * * *
1 2 1 21 2 1 22

1 ( ) ( ) ,
6 k k k k k kkk ka

V a a a a a a k k k dkdk dk+ + δ + +∫ (3.16) 

1/41/4
(1,2) (1)

1 21 2
1 2

1/4 1/4
(1) (1)1 2

1 2
2 1

= ( , )
2 2

( , ) ( , ) ,

k
kk k

k k

k k

k k k k

AgV L k k
A A

A A
L k k L k k

A A A A

⎧⎛ ⎞⎪⎜ ⎟ −⎨⎜ ⎟⎪⎝ ⎠⎩
⎫⎛ ⎞ ⎛ ⎞ ⎪⎜ ⎟ ⎜ ⎟− − − − ⎬⎜ ⎟ ⎜ ⎟ ⎪⎝ ⎠ ⎝ ⎠ ⎭

(3.17) 

1/41/4
(0,3) (1)

1 21 2
1 2

1/4 1/4
(1) (1)1 2

1 2
2 1

= ( , )
2 2

( , ) ( , ) .

k
kk k

k k

k k

k k k k

AgV L k k
A A

A A
L k k L k k

A A A A

⎧⎛ ⎞⎪⎜ ⎟ +⎨⎜ ⎟⎪⎝ ⎠⎩
⎫⎛ ⎞ ⎛ ⎞ ⎪⎜ ⎟ ⎜ ⎟+ + ⎬⎜ ⎟ ⎜ ⎟ ⎪⎝ ⎠ ⎝ ⎠ ⎭

 (3.18) 

Now we can define the «total» or rough action: 

 *( ) = < > .k k kn k k g a a ′′δ −  (3.19) 

It is clear that fundamental relation (2.13) is satisfied. 
Then, we perform the Fourier transform in time 

 1= ( , ) e
2

i t
ka a k t dt− ω
ω π ∫  (3.20) 

and introduce 

 *
,( ) ( ) = < > .k k kn k k g a a ′ ′ω ω ω′ ′δ − δ ω−ω  (3.21) 

The space-time spectrum of elevation is simply 

 , , ,= ( )
2
k

k k kQ n nω ω − −ω
ω

+ . (3.22) 

To separate resonant and slave harmonics we must perform 
a canonical transformation to new variables, excluding 
cubic terms in the Hamiltonian. This is a standard proce-
dure known in celestial dynamics down to nineteenth cen-
tury. However in our case this procedure is rather cumber-
some. It was first done by Krasitski [9]. He found 
transformation of initial canonical variables ka  to new 
canonical variables kb , which contain first order slave 
harmonics only. Variables ka  are presented by infinite 
series in new variables kb : 

 (1) (2) (3)= .k k k k ka b a a a+ + +  (3.23) 

He calculated first two terms in this expansion and 
found the following expressions: 

(1) (1)
1 2 1 2 1 21 2= ( , , ) ( )k kka b b dk dkΓ δ − − −∫ k k k k k k  

 
(1) *

2 1 1 2 1 21 2
(2) * *

1 2 1 2 1 21 2

2 ( , , ) ( )

( , , ) ( ) ,

k k

k k

b b dk dk

b b dk dk

− Γ δ + − +

+ Γ δ + +

∫
∫

k k k k k k

k k k k k k  
 

(2) *
1 2 3 1 2 3 1 2 31 2 3= ( , , , ) ( )k k kka B b b b dk dk dkδ + − − +∫ k k k k k k k k L

  (3.24) 

where 

 
(1,2)

(1) 1 2
1 2

1 2

( , , )1( , , ) =
2 ( )k k k

V
Γ −

ω −ω −ω
k k k

k k k ,  

 
(0,3)

(2) 1 2
1 2

1 2

( , , )1( , , ) =
2 ( )k k k

V
Γ −

ω +ω +ω
k k k

k k k , (3.25) 

and 

       

1 2 3
(1) (1)

1 2 1 2 3 3
(1) (1)

1 3 1 3 2 2
(1) (1)

2 2 3 1 3 1
(1) (1)

1 3 1 3 2 1 2 1
(1) (1)

1 1 2 3 2 3
(2)

1

( , , , ) =

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , ,

B

= Γ − Γ − +

+ Γ − Γ − −

− Γ − Γ − −

− Γ − Γ − −

− Γ + Γ + +

+ Γ − −

k k k k

k k k k k k k k

k k k k k k k k

k k k k k k k k

k k k k k k k k

k k k k k k k k

k k k (2)
1 2 3 2 3) ( , , ) .Γ − −k k k k k  (3.26) 

On our opinion, Krasitski used a rather long way for 
calculation of terms in expansion (3.23). He directly 
checked the validity of canonicity condition 

 * *{ , } = = 0k k k k
k k

k kk k

a a a a
a a dk

b bb b
′ ′

′
′′ ′′′′ ′′

⎧ ⎫δ δ δ δ⎪ ⎪ ′′−⎨ ⎬
δ δδ δ⎪ ⎪⎩ ⎭

∫ ,  

* *
*

* *{ , } = = ( ).k k k k
k k

k kk k

a a a a
a a dk k k

b bb b
′ ′

′
′′ ′′′′ ′′

⎧ ⎫δ δ δ δ⎪ ⎪ ′′ ′− δ −⎨ ⎬
δ δδ δ⎪ ⎪⎩ ⎭

∫ (3.27) 

Calculation of (3)
ka  by this method is just impossibly 

complicated task. The canonical transformation can be 
found using more sophisticated methods. The first one was 
offered in the article [7] in 1998. Let us consider that ka  is 
a solution of Hamiltonian system 

 * = 0k

k

a Ri
a

∂ δ
+

∂τ δ
 (3.28) 

where τ  is «artificial time» and R  is an efficient Hamil-
tonian 

 
(1) * * *

1 2 1 21 2 1 22 2
= ( ) ( )k k k k k kkk kR i a a a a a a k k k dkdk dkΓ − δ − − +∫

(2) * * *
1 2 1 21 2 1 21 2

( ) ( ) .
3 k k k k k kkk k
i a a a a a a k k k dkdk dk+ Γ − δ + +∫ (3.29) 

Equations (3.28), (3.29) must be augmented with initial 
condition 
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 =0| = .k ka bτ  (3.30) 

The needed canonical transformation is obtained if we put 
= 1τ . Expanding the solution in Taylor series of τ  and 

putting = 1τ  at the end, we reproduce the result of Kra-
sitski (3.24)–(3.26) in a much more economical way. 

Now we demonstrate another, more traditional way for 
constructing of canonical transformation, which is based 
on finding of generating function. We present ka  in the 
form 

 * *1= ( ), = , =
2k k k k k k ka q ip q q p p− −+ . 

Functions ,k kq p  obey equations 

 * *= , =k k

k k

q pH H
t tp q

∂ ∂δ δ
−

∂ ∂δ δ
, (3.31) 

where H  is the same Hamiltonian expressed through kq , 
kp . Now 

 2 2
0

1= (| | | | )
2 k k kH q p dkω +∫ , (3.32) 

   
1 1 2 1 21 2 1 2

1= ( )
2 kk k k k kH L q p p k k k dkdk dkδ + +∫ , (3.33) 

 
1/4 1/4

(1)
1 2 1/4 1/2 1 2

1 2

= k
kk k k k

k k

g A
L L

A A
−

−
. (3.34) 

We will perform transformation to new variables ,k kR ξ  
using the following generation function (see also [10]): 

1 2 1 21 2 1 2
1= ( )
2k k kk k k k kS R q dk A q q R k k k dkdk dk+ δ + + +∫ ∫

      
1 2 1 21 2 1 2

1 ( )
3 kk k k k kB R R R k k k dkdk dk+ δ + +∫ . (3.35) 

The «old momentum» kp  and «new coordinates» kξ  are 
expressed as follow 

, , 1 2 1 21 2 1 2= = ( ) ,k k k k k k k
k

Sp R A q R k k k dk dk
q −
−

δ
+ δ − −

δ ∫ (3.36) 

 
*

, , 1 2 1 21 2 1 2
1= = ( )
2k k k k k k k

k

S q A q q k k k dk dk
R −
−

δ
ξ + δ − − +

δ ∫
 , , 1 1 21 2 1 2 ( 2)k k k k kB R R k k k dk dk−+ δ − − −∫ . (3.37) 

Apparently 1 2kk kB  is symmetric with respect to all 
permutations and 1 2 2 1=kk k kk kA A . To find ,A B  we notice 
that in the first approximation 

 , , 1 2 1 21 2 1 2
1= ( )
2k k k k k k kq A k k k dk dk−ξ − ξ ξ δ − − −∫  

, , 1 2 1 21 2 1 2 ( )k k k k kB R R k k k dk dk−− δ − −∫ . (3.38) 

and in (3.36) we can replace k kq → ξ . Now we plug 
,k kq p  to (3.32). In (3.33) we can just replace k kq → ξ  

and k kp R→ . From the condition of eliminating cubic 
terms that are proportional to 1 2k k kξ ξ ξ  and 1 2k k kp pξ , 
and the symmetry conditions we find after some calcula-
tions the following nice and elegant expressions for ,A B : 

 

0 1 2 0 1 2
1 2

0 1 2 0 1 2

0 1 2 1 0 2

0 1 2 1 0 2

1=
4

1 ,
4

kk k
L L L L L L

A

L L L L L L

⎛ ⎞+ + + −
− + +⎜ ⎟ω +ω +ω ω +ω −ω⎝ ⎠

⎛ ⎞− − − −
+ +⎜ ⎟ω −ω −ω ω −ω −ω⎝ ⎠

 (3.39) 

 

0 1 2 0 1 2
1 2

0 1 2 0 1 2

1 0 2 2 0 1

1 0 2 2 0 1

1=
4

1 .
4

kk k
L L L L L L

B

L L L L L L

⎛ ⎞+ + − −
− + −⎜ ⎟ω +ω +ω ω −ω −ω⎝ ⎠

⎛ ⎞− − − −
− +⎜ ⎟ω −ω −ω ω −ω −ω⎝ ⎠

 (3.40) 

Here 

 0 1 21 2 1 2 2 1= , = , =kk k k kk k kkL L L L L L , 

 0 1 21 2= , = , =k k kω ω ω ω ω ω . (3.41) 

To reproduce the results of Krasitski one has to expand old 
variables ,k kq p  in powers of new variables ,k kRξ , then 

kb  as follow 

 
1/4 1/41=

2
k

k k k
k

Agb i R
A g

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟ξ −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
. (3.42) 

New normal variables kb  satisfy Zakharov's equation [6] 

   
*

1 2 31 2 3 1 2 3 1 2 3 = 0 .
2

k
k k

kk k k k k k k k k k

b
i b

t
i T b b b dk dk dk+ − −

∂
+ ω +

∂

+ δ∫  (3.43) 

Here 1 2 3kk k kT  is the same as in (2.2). An explicit expres-
sion for 1 2 3kk k kT  is too complicated to be presented here. 
Notice that now we can calculate 2=| |k kn a  by use of 
expansion (3.23). We will assume that triple correlations of 
new variables are zero 

 *
1 2 1 2< > = 0, < > = 0k k k k k kb b b b b b  (3.44) 

We use also the Gaussian closure for quartic variables 

* *
1 2 3 1 2 1 3 3 1 2< > = ( )k k k k k k k k k k k k k kb b b b N N − − − −δ δ +δ δ . (3.45) 

Here kN  is the «refined» action. After some calculations 
we find that kn  and kN  are connected by the following 
relation (it can be found in [8]):
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(1,2) 2
1 2

1 2 1 21 2 1 22
1 2

| ( , , ) |1= ( ) ( )
2 ( )

k k k k k k k k
k k k

V
n N N N N N N N dk dk+ − − δ − − +

ω −ω −ω∫
k k k

k k k  

(1,2) 2
1 2

1 2 1 21 2 1 22
1 2

| ( , , ) |1 ( ) ( )
2 ( )

k k k k k k
k k k

V
N N N N N N dk dk+ + − δ − − +

ω −ω −ω∫
k k k

k k k   

(1,2) 2
2 1

2 1 1 21 2 2 12
2 1

| ( , , ) |1 ( ) ( )
2 ( )

k k k k k k
k k k

V
N N N N N N dk dk+ + − δ − − +

ω −ω −ω∫
k k k

k k k  

 
(0,3) 2

1 2
1 2 1 21 2 1 22

1 2

| ( , , ) |1 ( ) ( )
2 ( )

k k k k k k
k k k

V
N N N N N N dk dk+ + + δ + +

ω +ω +ω∫
k k k

k k k . (3.46) 

 _______________________________________________ 

The difference between kn  and kN , 

 = ,k k
k

k

n N
N
−

Δ
 

 

is essential on shallow water. However, even on deep wa-
ter kΔ  is a fast growing function on k . 

The relation between space-time spectra of «total» kn ω  
and «purified» kN ω  versions of wave action is not known 
so far. This is a subject for future research. However, kN ω  
can be presented in the form 

 2 2
1=

( )
k k

k
k k

N
N ω

Γ
π ω−ω +Γ%

 (3.47) 

and we can put approximately 

 

,

2 2 2 2

1= ( ) =
2

1
2 ( ) ( )

k k k k

k k k k

k k k k

Q N N

N N

ω ω − −ω

− −

ω +

⎧ ⎫Γ Γ⎪ ⎪= +⎨ ⎬
π ω−ω +Γ ω−ω +Γ⎪ ⎪⎩ ⎭% %

. (3.48) 

After integration by ω  and assuming that 
arctan / /k k k kΓ ω Γ ω∼ , one gets the following relation 

 
0

1= ( , ) k k k k
k

k k

N N
N N k d

∞
− −

−

⎛ ⎞Γ Γ
ω ω+ −⎜ ⎟π ω ω⎝ ⎠

∫ . (3.49) 

From (3.48) we see that identity 

 
0

= ( , )kN N k d
∞

ω ω∫  (3.50) 

is valid up to the relative accuracy /k kΓ ω . The value of 
this accuracy will be discussed in Chap. 6. Near the spec-
tral peak it is of order 44πμ . Identity (2.17) is satisfied 
with much less accuracy. Even near the spectral peak the 
accuracy is of order 2μ  and it becomes worse at pk k� . 
An explicit expression for ( , )Q k ω  through kN  will be the 
subject of a separate article. 

4. Stationary solutions of kinetic equation:  
isotropic case 

In this chapter we address the following question: How 
to solve the stationery kinetic equation 

 0?nlS ≡  (4.1) 

Formally speaking, this equation has thermodynamical-
ly equilibrium solutions 

 = ,k
k

TN
ω +μ

 (4.2) 

where temperature T  and μ  are constants. It might sound 
like paradox, but in fact spectrum (4.2) in not a real solu-
tion of equation (4.1). Since this moment we discuss only 
the case of deep water and consider = gkω . Also we 
denote that =| |k k . 

To justify this statement we notice that in two particular 
cases, = 0μ  and = ,T cμ μ →∞ , solution (4.2) takes form 

 1/2= =
k

T TN k
g

−

ω
,    =N c . (4.3) 

Both these solutions are isotropic powerlike functions 

 = x
kN k−  (4.4) 

with particular values = 1/ 2, 0x . Let us study the general 
powerlike solution of (4.1). By plugging (4.4) into (4.1) we 
find that each particular term in nlS  is diverging, but in 
different terms the divergence can be cancelled, thus there 
is a «window of opportunity» for the exponent x . As a 
result, 

 3/2 3 19/2= ( ) .x
nlS g k F x− +  (4.5) 

Here ( )F x  is a dimensionless function, defined inside 
interval 1 2< <x x x . The edges of the window, 1x  and 2x , 
are the subject for determination. Outside the «window of 
opportunity», at 1<x x  and 2>x x , ( ) =F x ∞ . Thus all 
admitted values of x  must be posed between 1x  and 2x . 
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Let the quadruplet of waves be formed of wave vectors 
satisfying resonant conditions 

 
1 2 3 4

1 2 3 4

= ,
= .k k k k

+ +

ω +ω ω +ω

k k k k
 (4.6) 

Suppose that 1| | | |k k� . The three-wave resonant condi-
tion, 

 2 3 2 3= , = ,k k k+ ω ω +ωk k k  (4.7) 

cannot be satisfied, thus one of vectors 2 3,k k  must be 
small. If 3 2| | | |k k� , then 

 2 1 3= ,+ −k k k k   

 1 3
2 2

( , )1( ) = 1
2

k
k gk

k

−⎛ ⎞
ω + +⎜ ⎟

⎝ ⎠

k k
L . (4.8) 

In the first approximation by small parameter 1| | / | |k k  
one can put 2 1 3( ) = ( ), ( ) = ( )k k k kω ω ω ω  and 3 1| | | |k k� . 
In other words, vectors 1 3,k k  are small and have approx-
imately the same length 1k . If vector k  is directed along 
axis x , the coupling coefficient 1 2 3kk k kT  depends on four 
parameters 1 1 3, , ,k k θ θ . Here 1 3,θ θ  are angles between 

1 3,k k  and k . Remembering that 1k k� , we calculate 
the coupling coefficient in this asymptotic domain. A te-
dious calculation presented in [11] leads to the following 
compact result: 

 2
1 ,1 2 3 1 3

1 ,
2kk k kT kk Tθ θ�   

, 1 3 1 3 1 31 2 =2(cos cos ) sin( )(sin sin ).Tθ θ θ + θ − θ −θ θ − θ  (4.9) 

On the diagonal 3 1=k k , 3 1=θ θ  we get a very simple 
expression published in 2003 [29]: 

 2
1 11 2 cos .kkT k k θ�  (4.10) 

Suppose that spectrum is separated to the low-frequency 
component 0 ( )N k  and the high-frequency component 

1( )N k . We assume that 1 0N N�  and take into account 
the interaction between 0N  and 1N  only. One can see that 

1N  satisfies the linear diffusion equation 

 2
1 1= ,ij

i j
N D k N

t k k
∂ ∂ ∂
∂ ∂ ∂

 (4.11) 

where ijD  is the tensor of diffusion coefficients, 

 

2
3/2 17/2

1
0 0

2
2

3 1 3 3
0

= 2

| ( , ) | ( , ) ( , ) ,

ij

i j

D g dq q d

d T p p N q N q

∞ π

π

π θ ×

× θ θ θ θ θ

∫ ∫

∫  (4.12) 

 1 1 3 2 1 3= cos cos , = sin sinp pθ − θ θ − θ . 

If spectrum is isotropic and does not depend on angle θ , 
we get the further simplification: 

    
3 3/2 17/2 2

0

5= , = ( ) .
8ij ijD D D g q N q dq

∞

δ π ∫  (4.13) 

The diffusion coefficient D  diverges at 0k → , if 
> 19 / 4x . Thus 2 = 19 / 4x . 
Let us find behavior of function ( )F x  near 2=x x . In 

the isotopic case equation (3.9) reads 

 31
1= .

N D k N
t k k k

∂ ∂ ∂
∂ ∂ ∂

 (4.14) 

If 19 / 4k → , we get the following estimate: 

 
319 11 5 1 126.4( ) =

4 4 16 19 / 4 19 / 4
F x

x x
π

− −
�  (4.15) 

To find 1x , the lower end of the window, we should 
study the influence of short waves to the long ones. Let us 
suppose that 1 2| |,| |k k k� . In the first approximation 

3| |=| |k k , and the resonant interaction nlS  can be sepa-
rated into two groups of terms: (1) (2)=nl nl nlS S S+ . For (1)

nlS  
the integrand includes product 1 2k kN N . If we put 1 2= ,k k  
we get the following expression for the low-frequency tail 
of spectrum: 

(1) 2 2 2
, , 11 1 3 3 3 1

=2 | | ( )( ) .kk k k k k knl kS g T N N N dkπ δ ω−ω −∫ (4.16) 

Notice, if 1| | | |k k� , then 2 2
, , 11 1 3| |kk k kT k� , and integrand 

in (4.16) is proportional to 2 2
1 1k

k N . If < 2x , the integral 

diverges. 
The group of terms linear with respect to the high-

frequency tail of spectrum is more complicated: 

 (2) 2 2
1 2 3 3 1 2= 2 | | ( )k kk k k k k knlS g N T N N Nπ − ×∫  

1 2 3 1 2 31 2 3( ) ( ) .k k k k k k k k dk dk dk×δ ω +ω −ω −ω δ + − −  (4.17) 

We can perform expansion 

 31 3
1

= , = ( ) .k k i i i
i

NN N p p k k
k
∂

− −
∂

 (4.18) 

In the general anisotropic case the integrand is proportional 
to 2

1 1( )kk p N∇  and the divergence occurs if 1= = 3x x . 
However, in the isotropic case this term, the most diver-
gent one, is cancelled after integration by angles. In this 
case we should study quadratic terms in expansion of the 
integrand in powers of parameter 2

1 1( , ) /P k k . The most 
aggressive term appears from the expansion of δ -function 
on frequencies 1 1 3( )k k p k k+δ ω −ω +ω −ω . Performing 
integration by angles we end up with equation 

 7= ,k
k

N Nqk N
t k

∂ ∂
∂ ∂

 (4.19) 
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 3 3/2 3 3/2 3/2

0

25 25= = .
16 8 kq g E g k N dk

∞

π π ∫
 

 

Here E  is the total energy. Thus in the isotropic case 
1 = 5 / 2x  and we get for function ( )F x  the following es-

timate: 

 35 25 1 241.86= = .
2 8 5 / 2 5 / 2

F
x x

π
− −

 (4.20) 

On Fig. 1,a is presented the plot of function ( )F x  for 
isotropic case that we calculated numerically. One can see 
that in the interval 1 2< <x x x  function ( )F x  has exactly 
two zeros at 

 1 2
23= = 4, = = .
6

x y x y  (4.21) 

To prove this result, let us consider that spectra are iso-
tropic and present conservation laws of energy and wave 
action in the differential form: 

 = 2 = ,k k
k

I N Pk
t t k

∂ ∂ ∂
π ω −

∂ ∂ ∂
 (4.22) 

 
0

= 2 ,
k

k nlP k S dkπ ω∫  (4.23) 

 2 = ,kN Qk
t k

∂ ∂
π

∂ ∂
 (4.24) 

 
0

= 2 .
k

nlQ kS dkπ∫  (4.25) 

Here P  is the flux of energy directed to high wave num-
bers, while Q  is the flux of wave action directed to small 
wave numbers. Equations 

 0 0= = const, = = constP P Q Q  (4.26) 

apparently are solutions of stationary equation = 0nlS . 
We will look for the solution in the powerlike form 

= xN k−λ ; then Eqs. (4.23), (4.25) read 

 2 3 3( 4)
0

( )= 2
3( 4)

xF xP g k
x

− −π λ
−

, (4.27) 

 3/2 3 3( 26/3)
0

( )= 2
3( 26 / 3)

xF xQ g k
x

− −− π λ
−

. (4.28) 

One can see that 0P  and 0Q  are finite only if (4) = 0F  
and (26 / 3) = 0F , moreover, if (4) > 0F ′  and 

(26 / 3) < 0F ′ . We conclude that equation = 0nlS  has the 
following solutions: 

 
1/3

(1) 0
2 4

1= ,pk
P

N c
g k

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (4.29) 

 
1/3

(2) 0
3/2 23/6

1= .qk
Q

N c
g k

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (4.30) 

Here ,p qc c  are dimensionless Kolmogorov constants 

 
1/3 1/3

3 3= , = .
2 (4) 2 | (23 / 6) |p qc c

F F
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟′ ′π π⎝ ⎠ ⎝ ⎠

 

On Fig. 1,b is presented the zoom of function ( )F x  in 
vertical coordinate. The numeric gives (4) = 45.2F ′  and 

(23 / 6) = 40.4F ′ − . In the area of zeros ( )F x  can be ap-
proximated by parabola, 

 ( ) 256.8( 23 / 6)( 4) .F x x x− −�  (4.31) 

Let us notice that 

 (9 / 2) = 85.6F  (4.32) 

thus we get 

 = 0.219, = 0.227,p qc c  (4.33) 

and see that the both Kolmogorov constants are numerical-
ly small. 

In the isotropic case, the energy spectrum ( )F ω  can be 
expressed through kN , 

 ( ) = 2 ,k kF d N k dkω ω πω  (4.34) 

Fig. 1. Plot of function ( )F x  (a). Plot of function ( ) :F x  zoom
in the vertical direction (b). 
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and the energy spectrum corresponding to solution (4.29) 
has the following form, called Zakharov–Filonenko spec-
trum: 

 
1/3 2

(1)
2 4( ) = 4 .p

P gF c
g

⎛ ⎞
ω π ⎜ ⎟⎜ ⎟ ω⎝ ⎠

 (4.35) 

This spectrum was found as a solution of equation = 0nlS  
[3]. For the spatial spectrum 

 = 2 ( ) ,k kI dk N k k dkπω  (4.36) 

solution (4.30) transforms to 

 
1/3 1/2

(1) 2.5
2 5/2= 2 .pk

P gI c k
g k

−⎛ ⎞
π ⎜ ⎟⎜ ⎟

⎝ ⎠
�  (4.37) 

Spectra (4.29), (4.35), (4.37) are realized if we have a 
source of energy that is concentrated at small wave number 
and generates the amount of energy P  in a unit of time. 
For the spectrum (4.30), first reported by Zakharov in 
1966 [3], 

 (2) 1/3 7/3 1/3 2.33= 2 2 ,q qkI c Q k c Q k−π π�  (4.38) 

 
4/3

(2) 1/3
11/3( ) = 4 .q

gF c Qω π
ω

 (4.39) 

Spectra (4.30) and (4.38) can be realized in the case of 
source of wave action in the high wave numbers area. 

The described spectra exhaust all powerlike isotropic 
solutions of the stationary kinetic equation = 0nlS . It is 
important to stress that thermodynamical solutions 

= constN  and 1/2= /N c k  are not the solutions of this 
equation, because their exponents = 0x  and = 1 / 2x  are 
far below the lower end of the «window of possibility» 

1 = 5 / 2x . This fact means that thermodynamics has noth-
ing in common with the theory of wind-driven sea. 

Solutions (4.29) and (4.30) are not the unique stationary 
solutions of = 0nlS . The general isotropic solution de-
scribes the situation when both the energy source at small 
wave numbers and the wave action source exist simulta-
neously and have the following form: 

 
1/3 1/2 1/2

(3)
2 4

1= .pk
P g QkN c L

Pg k

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (4.40) 

Here L  is an unknown function of one variable, 

      

1/31 0, ( ) .q

p

c
L at k L at k

c
→ → ξ → ξ →∞  (4.41) 

Let us notice that if there is no flux of wave action from 
infinity, we must put = 0Q . Under this constrain, the gen-
eral isotropic solution is the Zakharov–Filonenko spectrum 

(4.29), parametrized by a single arbitrary constant P , 
which is a flux of energy to k →∞ . 

Frequency spectra with tails in the form 4( )F −ω ω�  
were observed in numerous field experiments [11–16] and 
were obtained in numerical experiments as well [17–19]. 
Spatial spectra with asymptotics 5/2

kI k�  were observed 
also in many experiments [20–22]. A more careful study of 
experimental results show that in the majority of cases the 
spectral area right behind the spectral peak can be better 
approximated by tail 11/3−ω  in frequency spectrum and by 
tail 7/3k−  in spatial spectrum. It is seen especially clear in 
the experiments by Huang and collaborators ]20]. Figure 2 
taken from this article demonstrates coexistence of both 
types of Kolmogorov–Zakharov (KZ) spectra. 

5. Stationary solutions of kinetic equation:  
Anisotropic case 

To study anisotropic solutions of Eq. (4.1) we introduce 
polar coordinates on k -plane and put 2 = /k gω . There-
after we will use notation 

 ( , ) = ( ) ,N d d N dω φ ω φ k k   

 
3

2
2( , ) = ( ) .N N
g
ω

ω φ k  (5.1) 

In the spatially homogenous case ( , )N ω φ  satisfies equa-
tion 

 ( , ) = ( , ) .nl
N S

t
δ ω φ

ω φ
∂

 (5.2) 

In new variables:
 

Fig. 2. Dimensionless wavenumber spectral coefficient iβ  plot-
ted in logarithmic scales (a) and linear scales (b), taken from 
[20]. Here crosses represent omnidirectional (averaged by angles) 
spectrum and dots correspond to 0.5 2.5

*( ) = 2 Ik u g k− −ξ β . The 
solid line on (a) and solid curve on (b) correspond to 

7/3( )k k−ξ � . 
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2 2 2 2 2 2
, , , 1 2 3 1 1 2 2 3 31 2 3( , ) = 2 | | ( ) ( cos cos cos cos )nlS g Tω ω ω ωω φ π δ ω+ω −ω −ω δ ω φ+ω φ −ω φ −ω φ ×∫

{2 2 2 2 3 3
1 1 2 2 3 2 1 1 2 2 3 3 1 2 2 3 3( sin sin sin sin ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )N N N N N N× δ ω φ+ω φ −ω φ −ω φ ω ω φ ω φ ω φ +ω ω φ ω φ ω φ −  

  
}2 2

2 1 1 3 3 3 1 1 2 2 1 2 3 1 2 3( , ) ( , ) ( , ) ( , ) ( , ) ( , ) .N N N N N N d d d d d d− ω ω φ ω φ ω φ −ω ω φ ω φ ω φ ω ω ω φ φ φ  (5.3) 

 _______________________________________________ 

Exactly this form of nlS  is used for numerical simula-
tion of Hasselmann equation. Suppose that ( , ) = zN −ω φ ω  
is isotropic spectrum. Then 

 
3 13

3 13
4 4

3 ( )= = ,
24

z
z

nl
z G zS F

g g

− +
− +ω +⎛ ⎞ ω⎜ ⎟

⎝ ⎠
 (5.4) 

where ( )F x  is defined by (4.5). Now the «window of op-
portunity» is: 2 < < 13 / 2z . Zeros of ( )G z  are posed at 

1 = 5z  and 2 = 14 / 3z  and near these zeros ( )G z  can be 
presented as parabola, 

 ( ) 16.05( 5)( 14/3) .G z z z− −�  (5.5) 

To make the motion constants more conspicuous, we in-
troduce the elliptic differential operator 

 
2 2

2 2 2
2( , ) = ( , )L f f

⎛ ⎞∂ ∂
ω φ + ω φ⎜ ⎟⎜ ⎟∂ω ω ∂φ⎝ ⎠

 (5.6) 

with following parameters: 0 < < , 0 < < 2ω ∞ φ π . Equa-
tion 

 = ( ) ( )LG ′ ′δ ω−ω δ φ− φ  (5.7) 

with boundary conditions 

 0| = 0, < , (2 ) = (0) ,G G G Gω→ ω→∞ ∞ π   

can be resolved as 

 

( )

=

1( , , ) = e
4

( ) ( ) ,

in

n

n n

G
∞

′φ−φ

−∞
Δ Δ

′ ′ ′ω ω φ−φ ωω ×
π

⎡ ⎤′ω ω⎛ ⎞ ⎛ ⎞′ ′× ⎢ Θ ω −ω + Θ ω−ω ⎥⎜ ⎟ ⎜ ⎟′ω ω⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∑

 (5.8) 

where 2= 1/ 2 1 8n nΔ + . Now we present nlS  in the 
form: 

    

2

0 0

( , ) = ( , , ) ( , ).nlA d d G S
∞ π

′ ′ ′ ′ ′ ′ω φ ω φ ω ω φ− φ ω φ∫ ∫  (5.9) 

Notice that ( , )A ω φ  is a regular integral operator and 
suppose that ( , ) = zN −ω φ ω . Then 

 
3 15

4[ ] = ( ),
z

zA H z
g

− +
− ω

ω   

 ( )( ) = .
9( 5)( 14 / 3)

G zH z
z z− −

 (5.10) 

Function ( )H z  is positive and has no zeros. If ( )G z  is 
presented by parabola (5.5), ( )H z  is just a constant: 

 0( ) = = 16.05 / 9 = 1.83.H z H  (5.11) 

This fact leads to a bold idea. If we assume that 

 15 30
4= ,

H
A N

g
ω  (5.12) 

the nonlinear term nlS  turns to the elliptic operator: 

 
2 2

15 30
4 2 2 2

2= .nl
H

S N
g

⎛ ⎞∂ ∂
+ ω⎜ ⎟⎜ ⎟∂ω ω ∂φ⎝ ⎠

 (5.13) 

This is a so-called «diffusion approximation», introduced 
in article [23]. Being very simple, it grasps the basic fea-
tures of wind-driven sea theory. We will refer mostly to 
this model, having in mind that the real case (5.9) does not 
differ much from it, at least qualitatively. 

Let us integrate equation (5.2) by angles. We get: 

 ( , ) = .N t Q
t

∂ ω ∂
∂ ∂ω

 (5.14) 

Here 
2

0

( , ) = ( , )N t N d
π

ω ω φ φ∫ . Then 

 
2

0

( , ) = cos ( , ) ,
2
gB t N d

π

ω φ ω φ φ
ω ∫  (5.15) 

and the flux of wave action is: 

 
2

0

= , = ( , ) .KQ K A d
π∂

ω φ φ
∂ω ∫  (5.16) 

After multiplication of Eq. (5.14) by ω  one obtains equa-
tion 

 ( , ) = 0,F t P
t

∂ ω ∂
+

∂ ∂ω
 (5.17) 

where = /P K K−ω∂ ∂ω  is the flux of energy. 
Let us introduce now the following definitions: the in-

tegrated by angle spectral density of momentum 

 
22

0

( , ) = cos ( , ) ,xM t B d
g

πω
ω φ ω φ φ∫  (5.18) 

the quantity 
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2

2

0

( , ) = ( , ) ,cos
2xC t N d

g

πω
ω φ ω φ φ∫  (5.19) 

and the flux of momentum 

 
2 2

0

= cos ( ) .
2x

AR A d
π ω ∂

φ ω − φ
∂ω∫  (5.20) 

All these quantities are connected by equation 

 = 0.x xM R
t

∂ ∂
+

∂ ∂ω
 (5.21) 

Equations (5.14), (5.17) and (5.21) are averaged by angle 
balance equations for the basic conservative quantities. 

Now we can return to the question formulated above. 
How many solutions has the stationary kinetic equation 
(1.5), (4.1)? Notice that we simplified it to the linear equa-
tion 

 
2 2

2 2 2
2 = 0.A

⎛ ⎞∂ ∂
+⎜ ⎟⎜ ⎟∂ω ω ∂φ⎝ ⎠

 (5.22) 

In particulary, kinetic equation has anisotropic KZ solution 

 1= cos ,
2

xR
A P Q⎧ ⎫+ ω + φ⎨ ⎬

π ω⎩ ⎭
 (5.23) 

where P  and xR  are fluxes of energy and momentum at 
ω→∞  and Q  is the flux of wave action directed to small 
wave numbers. In a general case, (5.23) is a nonlinear 
integral equation, however in the diffusion approximation 
the KZ solution can be found in the explicit form: 

   

1/34/3

1/3 5
0

1( , ) = cos .
(2 )

xRgN P Q
H

⎛ ⎞ω φ +ω + φ⎜ ⎟ω⎝ ⎠π ω
 (5.24) 

By comparison with (4.35), (4.38) we easily find that in 
this case 

 01/3
0

1= = = 0.223, = 1.83.
2(2 )

p qc c H
Hπ

 

This is exactly the arithmetic mean between the values of 
Kolmogorov constants given by (3.31). 

By multiplication of (5.24) to 2πω  we get the general 
KZ spectrum in the diffusion approximation: 

 
1/34/3

4( ) = 2.78 cos .xRgF P Q⎛ ⎞ω +ω + φ⎜ ⎟ω⎝ ⎠ω
 (5.25) 

We must be sure that in the isotropic case = 0xR , expres-
sion 

 ( )
4/3

1/3
4( ) = 2.78 gF P Qω +ω

ω
 (5.26) 

approximates the generic KZ spectrum with accuracy up to 
few percent. 

If somehow we know the value of ( , )A ω φ  on the circle 
0=ω ω , we can solve the external and internal Dirichlet 

boundary problem for Eq. (5.22) with boundary condition 
( , ) <A ω φ ∞  at ω→∞ . Suppose that 

 

1
0 0

21/2 1/4 4
0

=2

( , ) = ( ) = cos

cos .
n

n
n

A
A A A

A n
− + +∞

ω φ φ + φ+
ω

ω⎛ ⎞+ φ⎜ ⎟ω⎝ ⎠
∑  (5.27) 

First two terms in (5.27) present the KZ spectrum with 
0 1= 0, = 2 , = 2n xQ P A R Aπ πω . The next terms describe 

the fast stabilization of any arbitrary solution to the KZ 
spectrum at 0/ω ω →∞ . The first additional term in 
(5.27) decays as 3.53

0( / ) cos 2ω ω φ . 
This stabilization to KZ spectrum is actually the «angu-

lar spreading» of wind-driven wave spectra that is usually 
observed in field experiments (see, for instance [12]). If 

= 0Q , the general KZ solution (5.25) at 0ω→  is the 
following spectrum: 

 4/3 1/3
4

2.78 1( ) 1 cos .
3

xR
F g p

P
⎛ ⎞

ω → + φ+⎜ ⎟ωω ⎝ ⎠
L  (5.28) 

Similar results were predicted by Kontorovich and Kats 
[30] and Balk [31]. 

From (5.27) one can see that ( , )A ω φ  is parametrized 
by function of one variable, 0 ( )A φ . In presence of flux of 
action Q  from infinity one should add to (5.27) an addi-
tional term Qω . Thus in a general case, a freedom for de-
termination of A  consists of the function that has one va-
riable and one constant. We silently assume that the 
mapping N A→  is uniquely inversible. This fact is not 
proven but it is very plausible. 

6. Damping due to nonlinear interaction 

How we must compare nlS  and inS ? 
In this Chapter we show that nlS  is the leading term in 

the balance equation (1.11). In fact, the forcing terms inS  
and disS  are not known well enough, thus it is reasonable 
to accept the most simple models of both terms assuming 
that they are proportional to the action spectrum: 

 in in= ( ) ( ) ,S k N kγ  (6.1) 

 dis dis= ( ) ( ) .S k N k−γ  (6.2) 

Hence 

 in dis( ) = ( ) ( ) .k k kγ γ − γ  (6.3) 

In reality dis ( )kγ  depends dramatically on the overall 
steepness μ . So far, let us notice that the balance kinetic 
equation (1.24) can be written in the form 

 ( ) = 0,nl kS k N+ γ  (6.4) 

and present the nlS  term as 
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 =nl k k kS F N−Γ . (6.5) 

The definition of kΓ  and kF  are given by (2.5), (2.6). 
The solution of stationary equation (6.4) is the fol-

lowing: 

 = .k
k

k k

F
N

Γ − γ
 (6.6) 

The positive solution exists if >k kΓ γ . The term kΓ  can 
be treated as the nonlinear damping that appear due to 
four-wave interaction. This damping has a very powerful 
effect. A «naive» dimensional consideration gives 

 
2

10 24 ,k k
k

g k Nπ
Γ

ω
�  (6.7) 

however, this estimate works only if pk k� ; pk  being the 
wave number of the spectral maximum. 

Let pk k� . Now for kΓ  one gets 

  
2 2

, 1 21 3 1 3 1 3= 2 | | ( ) .k kk kk k k k kg T N N dk dkΓ π δ ω −ω∫  (6.8) 

The main source of kΓ  is the interaction of long and short 
waves. To estimate integral (2.6) more accurately, we as-
sume that the spectrum of long waves is narrow in angle, 

1 1 1 1( , ) = ( ) ( )N k N kθ δ θ% . Long waves propagate along the 
axis x  and k  is the wave vector of short wave propagat-
ing in direction θ . For the coupling coefficient we must 
put 2

, , 11 2 3 2 coskk k kT k k θ� . Then 

 3/2 2 13/2 22
1 1 1

0

= 8 ( ) .cosk g k k N k dk
∞

Γ π θ∫ %  (6.9) 

Even for the most mildly decaying KZ spectrum, 
23/6

kN k−� , the integrand behaves like 7/6
1k−  and the 

integral diverges. For more steep KZ spectra the diver-
gence is stronger. 

Let us estimate kΓ  for the case of «mature sea», when 
the spectrum can be taken in the form 

 
3/2

4
3 ( ) .
2

p
k p

kEN k k
g k

θ −�  (6.10) 

Here E  is the total energy. By plugging (6.10) to (6.9) one 
gets equation 

 
3

4 2= 36 ,cosp
p

ω
⎛ ⎞ω

Γ πω μ⎜ ⎟ θ⎜ ⎟ω⎝ ⎠
 (6.11) 

that includes a huge enhancing factor: 36 113.04π� . For 
the very modest value of steepness, 0.05pμ � , we get 

 
3

4 27.06 10 .cos
p

−
ω

⎛ ⎞ω
Γ ⋅ ω⎜ ⎟ θ⎜ ⎟ω⎝ ⎠

�  (6.12) 

In the isotropic case, to find kΓ  for / 1pω ω �  we 
need to perform simple integration over angles that yields 

 
2 2

2 2
1 2,1 2

0 0

5= (2 ) ,
2

T d d
π π

θ θ θ θ π∫ ∫   

thus instead of (6.11) we get: 

 3/2 2 13/2 2
1 1 1

0

= 5 ( )k g k k N k dk
∞

Γ π ∫ %  (6.13) 

or 

 
3

3/2 445= .
2 p

p
gω

⎛ ⎞π ω
Γ ω μ⎜ ⎟⎜ ⎟ω⎝ ⎠

 (6.14) 

Finally, assuming that 

 5/2
3 ,
2k p

p

EN
gk

�   

we get from (6.8) the following estimate for == |p k kpΓ Γ : 

 49 .p p pΓ πω μ�  (6.15) 

Even in this case we have a pretty high enhancing factor: 
9 28.26π� . In fact in all known models kΓ  surpasses kγ%  
at least in order of magnitude even for these very smooth 
waves. 

In the presence of peakedness 

 4 .p p pΓ Λω μ�  (6.16) 

Here 4 /pΛ πω δω�  is the enhancing factor due to peaked-
ness. If 2 1pΛμ ∼ , then pΓ  is associated with the maximal 
growth of modulational instability for monochromatic 
wave: 2

modp p pΓ γ ω μ� ∼ . If 21/ pΛ μ∼ , the nonlineari-
ty becomes so strong that the weak-turbulent statistical 
approach is not applicable. This is quite realistic situa-
tion. Suppose that 0.11pμ �  and / 5pω δω� . Then 

2 0.76pΛμ ∼  and the weak turbulent description is hardly 
correct. In the situation of strong nonlinearity the wind-
driven sea generates freak waves (see [24,25]). The very 
fact of their existence as a common phenomenon is an im-
plicit proof of nlS  domination in the energy balance. 

Notice that kΓ  diverges for KZ spectra. However, it 
does not hurt the spectra existence because in the full ki-
netic equation the divergence in kΓ  is cancelled by diver-
gence in kF . Indeed, if we consider the contribution of 
small wave-numbers in integral (2.5), we end up with the 
following expression: 

2

2
, 1 31 3 1 3 1 3

= 2

| | ( ) .
k k

kk kk k k k k k k

F g N

T N N dk dk N

π ×

× δ ω −ω Γ∫ �  (6.17) 

In negligence of kγ , Eq. (4.1) is satisfied automatically. 
The results obtained in this Chapter show that the four-

wave nonlinear interaction is a very strong effect. Strong 
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turbulence of near-surface air boundary layer makes the 
development of reliable theory of air-water interaction, 
including a well-justified analytical calculation of kγ , an 
extremely difficult task. Field and laboratory measure-
ments of kγ  are difficult either, and the scatter in determi-
nation of kγ  is of order of kγ  itself. Anyway, comparison 
of calculated above kΓ  with experimental data on kγ  
shows that kΓ  surpasses kγ  at least in the order of magni-
tude. This fact is demonstrated on Fig. 3, where experi-
mental data are taken from [26]. 

As a result, we can make the conclusion that nlS  is the 
leading term in the balance equation (1.11) and that the 
rear face of the spectrum is describes by solution of equa-
tion (4.1), which has a rich family of solutions. In particu-
lary, this equation describes the angular spreading. 

On Fig. 4 we demonstrate that for the nonlinear interac-
tion term =nl k k kS F N−Γ  the magnitudes of constituents 

kF  and k kNΓ  essentially exceed their difference. They 
are one order higher than the magnitude of nlS ! 

The dominance of nlS  was not apparent until now for 
two reasons. First, it is not correct to compare nlS  and 

in ;S  instead one should compare kΓ  and kγ . Second, the 
widely accepted models for disS  essentially overestimate 
dissipation due to white capping. As a result, the domin-
ance of nlS  is masked. We offer an alternative model for 

disS , which will be published in forthcoming article [27]. 

Preliminary results obtained in this direction were re-
ported on ICNAAM-2009, Crete, Rethimno, September 
2009 [28]. 

Author is grateful to Vladimir Geogjaev and Sergei Ba-
dulin for permission to include the results of numerical 
computations presented in Fig. 1 and Fig. 4 to this talk. 
The details of these simulations will be published soon. 
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