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We present experimental data and a theoretical analysis of nonequilibrium mobility of surface electrons

in liquid helium. The experiments are carried out in the temperature range where electron mobility is limited

by electron scattering at surface excitations of liquid helium (ripplons). Holding and driving electric fields

of wide ranges are used in measurements. Special attention is paid to the condition of strong holding fields

under which hot electrons are confined to the ground surface level. Depending on the relation between the

momentum relaxation rate and electron–electron collision frequency, different theoretical approaches are

used to describe the nonlinear mobility of surface electrons. The results obtained allow to estimate the range

of physical parameters where experimental data can be described by the theory of nonlinear electron trans-

port within the ground surface level.

PACS: 68.03.–g Gas–liquid and vacuum–liquid interfaces;
73.20.–r Electron states at surfaces and interfaces;
73.25.+i Surface conductivity and carrier phenomena.
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1. Introduction

Surface electrons (SEs) on liquid helium represent a

remarkable model system for studying transport phenom-

ena in highly correlated two-dimensional (2D) electron

liquids [1]. Since the energy relaxation rate of SEs in-

duced by scattering at helium vapor atoms and quantized

capillary waves (ripplons) is very low, the nonlinear

transport conditions can be achieved already at weak

driving electric fields E /|| � 1mV cm. Usually, the areal

density of SEs ns is changed by varying the holding elec-

tric field E� applied normally to the electron sheet. At the

same time, it is very attractive to carry out the mobility

measurements under conditions when the surface density

ns and E� are independent parameters. This allows to

study the SE transport for different relations between the

momentum relaxation rate � e r� and the electron–electron

collision frequency � e e� . Moreover, keeping ns small un-

der strong holding field conditions prevents evaporation

of hot SEs to higher surface levels and allows to perform

an accurate comparison with the theory of electron

transport within the ground surface level.

In our previous work [2] the nonequilibrium SE mobil-

ity was measured at fixed temperature and surface density

for different holding fields. The results were in a qualita-

tive agreement with theory though there was a noticeable

quantitative difference. That difference was a result of the

lack of the measurement accuracy caused by difficulties

in the experimental cell analysis. Later [3] an improve-

ment of this analysis had given better numerical agree-

ment with the theory at high holding fields.

In this work we present a systematic experimental study

of electron mobility � under nonequilibrium conditions

induces by an ac driving electric field. The experiments

are carr ied out at T � 0 52. K for ns � �1 46 10 8. ,cm –2

E || � 1–20 mV/cm, and E� � 200–1400 V/cm. The experi-

mental data of �( )||E are compared with theoretical results

obtained using different approaches applicable for differ-

ent ranges of the parameter � �e e e r� �/ . Such a comparison

allows to make important conclusions about mechanisms

of momentum and energy relaxations of SEs and to reveal

the influence of electron–electron collisions on nonlinear

electron mobility resulting in specific regimes of electron

transport.
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It is known that momentum and energy relations of hot

SEs on liquid helium are governed by different scattering

mechanisms. In particular, SE mobility is limited by one-

ripplon scattering processes involving long-wavelength

ripplons with typical wave-vectors q � 2 10 5 1k ~ cm �

(here k is the wave-vector of electrons). Such surface exci-

tations have very low energy quanta ��q T		 and, there-

fore, give very small contribution into SE energy relax-

ation. At the same time, energy relaxation is larger for

two-ripplon scattering processes. In this case an electron

can emit couples of short-wavelength ripplons with

2��q T~ and a small total momentum (
 
� �q q � 2k). Such

a difference between momentum and energy relaxations

leads to interesting nonlinear dependencies of electron mo-

bility on the driving electric field.

The article is organized as follows. In the Sec. 1, we

describe the experimental setup and measurement proce-

dure. Then, the theoretical approaches are described. The

experimental results and comparison between experiment

and theory are discussed. In Conclusion we summarize

the results of this work.

2. Experiment

Mobility measurements were carried out using the ex-

perimental cell of circular geometry. The cell is described

in detail in Ref. 2. The principal part of the cell is a plane

capacitor situated horizontally. The charged surface of

liquid helium is in the middle of the capacitor gap. The

positive potential is applied to the bottom electrode to in-

cite electrons to be trapped at the helium surface. The up-

per electrode is actually a set of measuring electrodes al-

lowing to create an ac electric field of frequency � in the

electron layer and to measure an electron response to this

field as an ac output voltage. The output voltage is a result

of a current in electron layer, and therefore depends on

complex conductivity of the layer. To find the relation-

ship between the conductivity and the output-input signal

ratio, we solved the Maxwell equations for electromag-

netic field in the cell with appropriate boundary condi-

tions [2]. As a result, two equations were found for two

components of the cell conductance G G i G� �1 2� . The

conductance depends on real and imaginary components

of electron layer inverse conductivity 1 and  2:

G G A G G A G1 1 1 2 2 2 1 2 0� � �( , , , ); ( , , , )  �   � . (1)

Here A denotes parameters depending on the cell geome-

try, G0 is the empty cell conductance. The solution of

Maxwell equations allows also to estimate the radial dis-

tribution of the electric field operating in the electron

layer and depending on the layer conductivity.

The cell conductance can be easily obtained from the

output-input signal ratio, taking into account parameters

of the measuring line found independently. Therefore, in

order to find the inverse conductivity of the electron sheet

i.e., 1 and  2 one needs to solve the system of Eqs. (1).

It should be noted that the real experimental cell is

some different from the idealized one, described above

using Maxwell equations. The difference appears, for ex-

ample, when comparing the calculated and measured val-

ues of the empty cell conductance. Such a difference is

possibly arisen due to intractable parasitic electric links

between the electrodes and the grounded cell body. How-

ever the main difference between the real and idealized

experimental cells is due to grounding the central measur-

ing electrode. This grounding can be taken into account if

one multiplies the values of G1, G2, and G0 by the

S S Sout out ground/ ( )� , where Sout and Sground are the sur-

faces of the output and grounded electrodes, respectively.

To account extra differences, we introduce a fitting im-

pedance between the input and ground electrodes and use

such an impedance in all our calculations.

When SEs are overheated by the driving electric field,

electron mobility is high and, therefore, one have to mea-

sure rather small phase changes. To reduce the influence

of uncontrolled factors, the empty cell conductance was

measured under the same experimental conditions and in

the same runs as those of the cell with electrons. The G0 in

Eqs. (1) reflects a connection between the input and out-

put electrodes, which does not depend on the electron

layer conductivity, and the relevant part of the cell con-

ductance should be subtracted of the solution of Eqs. (1).

The presence of the electron layer in the cell changes,

due to screening effects, the connection between the input

and output electrodes. Also it changes the parasitic links

between the electrodes and the cell body. Therefore to

solve Eqs. (1) properly, a correction to the value of G0 is

necessary. The correction was made for every measure-

ment basing on the criterion that the solution of Eqs. (1)

should give a proper value of the imaginary part of the in-

verse conductivity  2. Note that the value of  2 is propor-

tional to the effective electron mass which is equal to the

free electron mass if electron temperature is higher than

the Wigner solid melting temperature.

The stability of solutions of Eqs. (1) is limited by the

measurement accuracy since  2 1		 . Because of this in-

equality the value of  2 rather reflects the inaccuracy of

measurements than the physically-meaning imaginary

part of inverse conductivity. Previously, when solving

Eqs. (1) [2,3] either the value  2 was disregarded or the

set of Eqs. (1) was reduced to a single equation for certain

chosen value of  2. The method of calculation based on

solving the set of Eqs. (1) used in the present work and

that of solving the reduced single equation give almost

the same results. Nevertheless we prefer the first method

as more strict.

To simplify the analysis of results initial data were ap-

proximated by a smooth curve before being used for esti-
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mation of the cell conductance under solution of Eqs. (1).

Results of averaging of four measurements series for the

empty cell are presented in Fig. 1. The phase change and

output voltage amplitude are measured for different am-

plitudes of the input voltage (circles). The measurements

are performed in temperature range T � 0 55. –0 76. K. In

addition to quite expected linear dependence between the

input and output amplitudes the increase of phase with in-

creasing the input voltage is observed. The possible

reason for such nonphysical dependence may be a

nonlinearity in the measuring circuits appearing as a result

of difference between real and idealized cells. As we noted

above, to take this dependence into account, the fitting im-

pedance was used in data processing. The smoothing of the

experimental data is demonstrated by lines in Fig. 1. Note

that we did not observe the influence of the holding poten-

tial on the conductance G0 of the empty cell.

The approximation of the initial data under evaluation

of SE mobility was also performed. As an example, the

data on electron mobility at the holding field 1190 V/cm

are shown in Fig. 2. Fig. 2,a and 2,b illustrate, respec-

tively, the relationship between the output voltage phase

shift and amplitude and the input voltage amplitude.

Points indicate the experimental data and lines are results

of the approximation used in further calculations. The es-

timated electron mobility is shown in Fig. 2,c (solid line).

The dashed and dotted lines correspond to theoretical cal-

culation in one-electron and complete control approxima-

tions, respectively (we discuss these approaches in next

Section). The points are experimental data obtained with-

out the initial data approximation. They illustrate data er-

rors. The errors increase with decreasing the holding po-

tential and increasing the electron mobility increase.

Regarding evaluation of the driving field operating in

the electron sheet plane we should like to note the follow-

ing. The solution of Maxwell equations allows to calcu-

late the radial distribution of the driving field in the elec-

tron layer E r||( ). It is essential that the field value depends

on the layer conductivity. The solution of Eqs. (1) was ob-

tained for the linear regime where the relation between lo-

cal current and local field is given by Ohm’s law and the

conductivity does not depend on E || [2].

In present work, we study the nonlinear conductivity

which depends on the field. Under such condition the so-

lution of Eqs. (1) obtained in Ref. 2 does not correspond

exactly to experimental situation. Though there are two

factors which justify using the linear calculation in the

nonlinear case. First, high rate of electron–electron relax-

ation prevents temperature gradients in the electron layer

so it is quite possible that the field distribution differs un-

essentially from the linear mode at some averaged value
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Fig. 1. The amplitude A and phase shift �� of the empty cell as
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Fig. 2. The amplitude A V( )|| (a), phase shift ��( )||V (b) for the experimental cell with surface electrons, and SE mobility as a function of

driving field E|| (c) for holding field E� �1190 V/cm. Points indicate the experimental data and lines are results of the approximation.

The dashed and dotted lines correspond to theoretical calculations in one-electron and complete control approximations, respectively.



of the driving field. Second, the driving field influence on

the conductivity is not drastic even though being

well-pronounced. Therefore the linear solution can be a

quite reasonable approximation to the actual experimen-

tal conditions though the level of errors in this case is not

clear a priori.

In our work, the mobility of electrons is measured as a

function of driving electric field which is a result of some

averaged radial driving electric field across the cell

taking into account its dependence on layer conductivity.

We estimated such an averaged field as

E || �
1

0
R

E r dr

R

el

el

| ( )|||� .

Here Rel is the radius of electron layer.

3. Theory

3.1. Mobility as a function of the effective electron

temperature

We shall confine ourselves to electron scattering

within the ground surface level only. In this case the

wave function of a SE is usually written as� 1, ( , )k rz �
� � �2 1

3 2
1� �/ exp( )z z ikr , where the parameter �1 is found

by variation to minimize the ground energy. For

zero holding field, � �1 1
0� �( )

m� 0
2/ � , where � 0 �

� ( )(e /2 4 º – 1)/(º + 1), º is the liquid helium dielectric

constant, e and m are electron charge and mass, respec-

tively. The above given wave-function is found assum-

ing that the electron potential barrier at the interface

V0 � �. For the real value of V0 1� eV, penetration of

the electron wave-function into liquid helium is de-

scribed by the parameter �0 0
72 5 10� �mV /� � cm �1

which is much larger than �1.

SEs on liquid helium represent a highly correlated

electron liquid of which the average Coulomb interaction

energy is much larger than the average kinetic energy.

This means that an electron is frequently reflected by a re-

pulsion potential barrier of other electrons. The fre-

quency of such electron–electron collisions � e e� can be

estimated as a frequency of harmonic oscillations in the

field of other electrons fixed in a 2D triangular lattice

�0
2 3 42 1� . /e /mns [4]. This frequency is always much

higher than the electron energy relaxation rate ~�e r� which

is about 10 6 s �1 at Te ~ 1 K. Therefore, in the nonlinear

transport experiment SEs can be characterized by an ef-

fective electron temperature Te which can be substan-

tially higher than the ambient temperature T .

Regarding momentum relaxation which is much higher

than energy relaxation, two opposite extreme regimes can

be realized for SEs on liquid helium: � �e e e r� �		 and

� �e e e r� ��� . In the first regime, electron momentum re-

laxation is governed by electron–ripplon scattering, and

the momentum distribution function is found as a solution

of the kinetic equation for noninteracting SEs. The effec-

tive electron temperature is just a parameter found from the

energy balance equation. In the second regime, momentum

relaxation is governed (controlled) by electron–electron

collisions, and the momentum distribution function is just

the equilibrium distribution function f /Tk e0[( ) ]� � �ku

shifted according to the drift velocity u (here � k �
� �

2 2 2k / m). The drift velocity is found from the total mo-

mentum balance equation. This regime is sometimes called

as the complete control regime. Because of extremely low

energy relaxation, the main nonlinear effect comes from

electron heating (T Te � ). The other nonlinear parameter

�ku / Te is assumed to be small. In this case, we can expand

the distribution function in �ku / Te only up to the linear

term, keeping in mind that the effective collision frequency

(momentum relaxation rate) now depends on the electron

temperature T Ee ( )|| .

The above described two approaches lead to different

mobility equations. The mobility found in the single-elec-

tron treatment is given by

�
�

( )

( )

exp( )

( )

1

1

0

e

e r
e

e

m

x x

x
dx�

�

�

�

� , (2)

where

� �e r
e ex

T

T

J x

x
� �( )( )

( )
;1

0 �
�

� �0
0
2 28

�
T

�
; � 0

0

2
�

m�

�

.

The dimensionless function J x( ) is defined by electron–

ripplon coupling

J x x
T x

de( ) sin sin

/

�
�

�
�
�

�

�
�
� ��2 2

0

2

1

4 ! ! !
�

�

�
�

�

�
�

�

�

�
�

�

�
�
�

�

�
�
�

� �
2

3

3

0
2

1 2

0

2

1

2�

� �T
x

T x

e

e

/ /

sin sin !
�

! !
�

d
Te

� �

18

3

0
2

�

�
,

(3)

where

 ( )
( )

ln
/

y
y y

y

y
� �

�
�

�

� ��

�

�
��

�

�

�
��

1

1

1

1

1 1

2 2 3 2

2

, (4)

� 0 1
2

0 1
2 2( ) ( ) ( )� � � / m and we introduce the notation

� � �� �
2 2 2� / m( ) where � � ��3 23 2meE / ( )� . The func-

tion  ( )y describes the contribution from polarization in-

teraction between SEs and interface displacements [5]. If

one applies the approximation  ( ) ( )y / y�1 3 numerically

justified for y ~ 1, the expression for J x( ) simplifies con-

siderably and � e r
e x�

( )( )1 is now reads as
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�
� �e r

e
p

e

p

e

x
e

E
T

T

E E

x

T

T
�

�
�

�

�
��

�

�
�� �

�

�
�( )

/

( )1
2

2
1 2

4

4 2
�

�
�

�

�
��

"

#

$
$

%

&

'
'

�E

x

2

;

E
mT

e
p �

2

3

0 1� �

�
. (5)

At T � 0 5. K the typical value of E p is about 300 V/cm.

For the complete control regime (� �e e e r� ��� ) the

many-electron expression for SE mobility can be found as

�
�

( )

( )

me

e r
me

e

m
�

�

, (6)

where the effective collision frequency � e r
me
�

( ) is defined

by

�
�
�  e r

me e eT

T
x

T x
�

�

�
�

�
�

�

�
�
(
)
*

+*

�

�
�
�

�

�
�
��( ) / e

2
0

3 2

0

2

1�
xp( )� �x dx

�
�

�

�
�

�

�

�
�

�

�
�
�

�

�
�
� �� �

2

3

3

0
2

1 2

1 2

0

2

1

�

� �T
x

T x

e

e

/

/

/

exp(

�

 x dx
Te

) .�
,
-
*

.*
��

9

3

0
2

�

�

(7)

For  ( ) ( )y / y� 1 3 , the Eq. (7) is reduced to

�
� �

e r
me

p
e

p
e

e
E

T

T
E E

T

T
� �� �

�

�
��

�

�
�� �

�

�
��

�

�
�( )

/2
2

1 2

4

4

2�
�

"

#

$
$

%

&

'
'

�E 2 .

(8)

Consider asymptotic limits of SE mobility as a func-

tion of E� given by Eqs. (2)–(8). In the limit E E p� 		 ,

where electron–ripplon scattering is due to polarization

interaction between SEs and interface displacements, one

obtains

� �
�

�

( ) ( )1
3

2
0
2

0
2

9e me e

m T
� �

�

�
. (9)

The asymptote (9) describing SE mobility within the

ground level l �1does not depend on Te and hence on the

driving electric field even for hot electrons. This property

was firstly found using one-electron approach [6]. For the

equilibrium case (T Te � ), the relationship between � ( )1e

and � ( )me given by Eq. (9) was obtained and observed ex-

perimentally for E E p� 		 and different electron densi-

ties [7,8]. Of course, heating of SEs by the driving electric

field can make Te comparable with the energy difference

between the ground and excited surface levels. This leads

to evaporation of SEs from the ground surface level and

to a sharp increase of their mobility [9,10] even at low

driving fields. Under such conditions, instead of Eq. (6),

we have a more complicated dependence of electron mo-

bility on Te , which was found qualitatively using certain

approximations and simplifications.

In the opposite limit E E p� �� , the contribution from

the holding field term of the electron–ripplon coupling

predominates, and SE mobility is given by

� �
�( ) ( )1

2
2

8e me eT

meE T
� �

�

�

. (10)

In this case, SE mobility within the ground surface level is

a linear function of Te in agreement with Ref. 11, and� ( )me

found for � �e e e r� ��� is half as much the single-electron

mobility � ( )1e . The experimental confirmation of mobility

expressions of Eqs. (9) and (10) under equilibrium condi-

tions (T Te � ) for different holding fields had given the

evidence of realization of the complete control regime in

the system of SEs on liquid helium [7,8].

Giving correct theoretical description of SE mobility

in the extreme regimes (� �e e e r� �		 and � �e e e r� ��� )

the results of Eqs. (2)–(10) are not suitable in the interme-

diate case when � / �e e e r� � . One can expect a smooth

transition between these two asymptotes when varying

the parameter � �e e e r� �/ by changing electron density or

the holding electric field. A theoretical description of SE

mobility applicable for arbitrary relation between � e e�
and � e r� was found in Ref. 12:

� �
� �

� �
�

�

�

�

�

�
�

�

�

�
�

� �

� �

( )
( )

( )

me e r
me

e e

e r
e

e e
1

, (11)

where � �e r
e ee/m� �( ) ( )1 1 . This expression reproduces Eqs.

(6) and (2) as the opposite limiting cases � �e e e r
me

� ��� ( ) ,

�e r
e
�

( )1 and � � �e e e r
me

e r
e

� � �		 ( ) ( ), 1 , respectively. Fitting ex-

perimental data by Eq. (11) one can estimate � e e� for dif-

ferent holding and driving electric fields.

3.2. Energy relaxation

In our experiment, the SE mobility �( )||E was mea-

sured as a function of the driving electric field. In order to

compare data with theoretical evaluations of �( )Te , we

use the energy balance equation which establishes the re-

lationship between E || and Te :

e T E Qe� ( ) �
||
2 � , (12)

where �Q is the energy transferred by an electron to ripplons

per unit time. For electron scattering which involves two

ripplons with 
 
� � 		 �q q q q, , it is given by [14]

� ( ) ( )Q
m

W q
q

N�

2
1

2

2

0

3
2

�0 �

�

� � 1
q

q

1 �
�

�
�
�

�

�
�
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�

�
�
�

�

�
�
�

"

#
$
$

%

&
'
'

exp exp
2 2� �� �q q

T T
dq

e

, (13)
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where W q( ) is the electron–two-ripplon coupling func-

tion which plays a crucial role in finding �Q. Different ap-

proaches to finding W q( ) are discussed in literature.

According to the previously given analysis [15], for

electron scattering within the ground surface level we can

represent W q( ) as a sum of long-wavelength and short-

wavelength parts:

W q W q q q W q q q( ) ( ) ( ) ( ) ( )( ) ( )� � � �� �! !0 0 . (14)

Here ! ( )x is the unit step-function, q0 0 12� � � �

� 1 6 10 7 1. � �cm , and

W q W
m

( )( ) ;� � �0 0

2
1
2

4
2

�
��

W q
q

m

q
( )( )� � �

�

�
��

�

�
��

"

#
$

%

&
'

�
2

1
2 2

0

1 12
1

2

� �

�


�
.

The function ( )x has a rather cumbersome form:

 2
3 2

3
3

3
3( ) ( )

exp( )
� �

"

#
$
$

%

&
'
'

�
�

�
4

1
22

2 2

2

0
x

K x d ,

where K xn ( ) is the modified Bessel function of the sec-

ond kind.

Placing Eq. (14) into Eq. (13), we arrive to the follow-

ing expression for the energy transferred to ripplons per

unit time:

� ~ ( )Q T T
T

T
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��� 4 (15)
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previously obtained in the Ref. 14 is also plotted in this

figure as a dashed line. It is interesting to note that the

solid line representing 4 ( / )T Te is numerically close to

the intuitively introduced function F T T T Te e2 1( / ) /� �
(dotted line) which was widely used in previous theoreti-

cal treatments of hot SEs. Still, at x ~ 1the difference be-

tween functions 4 ( )x and F x2( ) is quite noticeable. In

present work we use Eq. (15) with 4 ( )x of Eq. (16).

Strictly speaking, for high enough E� , the one-ripplon

process contribution into energy relaxation frequency

should be considered in addition to that of two-ripplon

processes. The estimates [11] show however that one can

disregard the one-ripplon contribution to energy relax-

ation for holding fields E� 	 1500 V/cm of the range

applied in the actual experiment. Only for E� close to

3000 V/cm the one-ripplon processes do contribute in en-

ergy relaxation. For this reason we restrict ourselves to

energy relaxation limited by two-ripplon processes.

4. Results and discussion

Typical experimental results for SE mobility as a func-

tion of driving electric field are plotted in Fig. 4 for

T � 0 52. K and different holding fields. The electron den-

sity is1 46 10 8. � cm–2. Similar data were obtained for other

temperatures and electron densities. The experimental

data (points) are compared with theoretical curves calcu-

lated for single-electron approximation (solid line) and

the above given many-electron treatment (dotted line) as-

suming that SEs populate only the ground surface level

( l �1). Figure 4 displays results obtained for different

holding fields. Strong discrepancy between experimental

data and theoretical curves observed at low holding fields
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Fig. 3. The functions 4( / )T Te (1), F T Te1( / ) (2), and F T Te2( / )

(3) for T � 0 52. K.



is attributed to effect of SE «evaporation» from the

ground level to higher surface levels (l � 1). Sharp in-

crease in � with E ||, a local maximum and the following

slow decrease are in qualitative agreement with calcula-

tions performed previously for the all-level treatment

under conditions T � 0 6. K and E� � 300 V/cm [10]. Still,
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Fig. 4. The SE mobility as a function of driving electric field for different holding fields. Points are the experimental data. The

solid and dotted lines correspond to theoretical calculations in one-electron and complete control approximations, respectively.



in those calculations there was also a substantial decrease

in the ground level mobility of hot electrons caused by

employment of a low-temperature approximation for

electron–ripplon coupling  ( )y . Similar sharp increase in

the nonlinear mobility and complicated nonohmic curves

induced by SE evaporation were theoretically obtained in

Ref. 9. The discrepancy noted above could also be attrib-

uted to the lack of experimental accuracy under high elec-

tron mobility conditions leading to very small values of

the phase shift which are of the same order as the sensitiv-

ity of experimental procedure.

When increasing the holding field the experimental

data become closer to theoretical curves obtained for the

one level model. For E� ��740 840 V/cm, data are close

the theoretical curve calculated in the single-electron ap-

proach. The most interesting behavior of mobility is ob-

served at higher E� . The experimental data enter the in-

terval between two theoretical curves and coincide with

the complete control curve at highest holding fields. A

similar tendency was observed in Ref. 7 where SE mobil-

ity was measured in the linear transport regime.

To make a situation more clear, in Fig. 5 we depicted the

dependencies �( )E� measured for fixed values of E ||. The

graphics illustrate the transition between two scattering re-

gimes under increasing the holding potential. One should

emphasize the transition is observed for the range of hold-

ing field of 800–1300 V/cm for all three driving fields.

As we mentioned above, the general expression for SE

mobility was obtained in Ref. 12 for arbitrary relation be-

tween the frequency � e e� of inter-electron collisions and

relaxation frequencies in one-electron and complete con-

trol regimes. Adjusting our experimental data to Eq. (11)

we can estimate the frequency � e e� . The results are pre-

sented in Fig. 6 for 1000 V/cm 	 	�E 1400 V/cm.

Note that the accuracy of experiment is not satisfac-

tory for holding field close or smaller than 1000 V/cm

where the experimental points are rather close to the theo-

retical curve of one-electron approach. For E� higher

than 1000 V/cm, we observed the � e e� which depends

weakly on holding field (decreases a little for holding

fields close to 1000 V/cm and then increases in the range

of holding field where experimental accuracy is satisfac-

tory) and decreases under increasing E ||. The values of

� e e� change in the range ~ ( )2 8 10 8� � s–1.

To elucidate the problem of energy balance in the SE

system, we applied the approach where experimental data

for �( )||E were compared with theoretical curves calcu-

lated using two approaches for �( )Te (open and solid cir-

cles represent the single-electron and complete control

approaches, respectively). Such a comparison gives a
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possibility to obtain the dependence E Te||( ) (Fig. 7). The

same figure contains the theoretical curves T Ee ( )|| of two

mobility regimes obtained from the energy balance

equation (12) using different approximations for 4 ( )T /Te

presented in Fig. 3. One can see that the one-level theory

and experiment disagree strongly at low holding fields.

The same behavior is observed in Fig. 4. At higher holding

fields the agreement between experimental points and the-

oretical curves becomes better. Note that the best agree-

ment is attained for the function4 ( )T /Te of Eq. (16).

In Fig. 8, we plotted experimental dependencies

E Te||( ) obtained under assumption that Te is calculated

using either � ( )( )1e
eT or � ( )( )me

eT . At low holding fields

where the experimental accuracy is not high we observe

the practical independence of driving field in the whole

range of effective electron temperature. In other words

the effective electron temperature increases sharply with

the driving electric field. It means that the possibility to

overheat the electron sheet is very high. When increasing

the holding potential we enter the range of holding fields

where SEs mostly occupy the ground surface level and

the one-level theory gives the adequate description of SE

mobility. Under such a condition the dependencies E Te||( )

and consequently T Ee ( )|| are increasing functions in

agreement with theoretical estimation of Ref. 11.
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5. Conclusion

We presented the results of experimental and theore-

tical studies of nonlinear mobility of SEs along the

liquid–vapor interface limited by electron–ripplon scat-

tering under conditions where the effective electron tem-

perature is substantially higher than the ambient tempera-

ture. It is shown that for high holding electric fields,

mobility of SEs occupying the ground surface level in-

creases with the driving electric field in agreement with

the theoretical model of highly correlated electron gas.

For low holding fields, electron evaporation to higher

surface levels induced by heating becomes important

which complicates experimental curves and theoretical

analysis. Energy relaxation of SE system is shown to be in

agreement with the model of SE scattering by pairs of

short-wavelength ripplons q q k, � �� 2 , which takes into

account the reduction in electron–two-ripplon coupling

induced by transition to the adiabatic scattering regime

[Eq. (16)]. The experimental technique and theoretical

formalism developed can be used for further studies of

nonlinear transport of SEs on liquid helium.
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