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The magnetic and magnetoresonance properties of a new single-crystal compound Ni (TeO ) Cl5 3 4 2 are

studied. The measurements of the magnetization and magnetic susceptibility of the crystal in a wide temper-

ature range (5–300 K) made it possible to conclude that Ni (TeO ) Cl5 3 4 2 is a quasi-two-dimensional antifer-

romagnet with the easy magnetization axis a* directed perpendicular crystallographic plane bc and a mag-

netic ordering temperature TN � 21 K. The resonance measurements at 4.2 K in wide range of frequencies

(25–105 GHz) and magnetic field (up to 200 kOe) permitted us to obtain the frequency–field dependence of

AFMR spectrum for a field applied along the easy magnetization axis a*. It is shown that the magnetic field

directed along the antiferromagnetism axis (H||a*) induces the magnetic phase transition of a spin-flop type

which is found to be Hsf �120 kOe. The magnetic resonance experimental data are described qualitatively

in model of the biaxial antiferromagnet.

PACS: 76.50.+g Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance;
75.50.Ee Antiferromagnetics.

Keywords: low-dimensional magnet, frustration, magnetization, magnetic susceptibility, AFMR, magnetic
phase transition.

Recent increasing attention of scientists has been fo-

cused on «nonclassical» magnets in which of consider-

able importance are different kinds of topological

inhomogeneities, spin fluctuations, competition and frus-

tration of magnetic interactions, and so on. These pecu-

liarities result in a number of specific features of mag-

netic properties, a new type of excitation, peculiar

magnetic structures, nonlinear effects.

The above peculiarities are most pronounced for a sys-

tem of reduced dimension. Hence, the investigation of

two- and one-dimensional magnets is of obvious interest

and way involve the development of new models for

low-dimensional many-sublattice magnetic systems, es-

pecially as modern chemical technologies make it possi-

ble to produce new compounds of a given lattice symme-

try and dimension.

The paper concerns study of magnetic and resonance

properties of a new recent synthesized compound tellu-

rium oxychloride Ni (TeO ) Cl5 3 4 2 [1], belong to the

Ni (TeO ) X5 3 4 2 (X = Cl, Br, J).
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The x-ray diffraction analysis [1] shows that

Ni (TeO ) Cl5 3 4 2 is of monoclinic symmetry with the space

group C2/c. The cell parameters are as follows: a =

= 19.5674 �, b = 5.2457 �, c = 16.3084 �, � � 125°29�,

z = 4.

The compound has a clearly pronounced layered struc-

ture formed by the connected corners of [Ni5O17Cl2]

blocks that consist of five face-coupled octahedrons of

nickel. Nickel layers lie in bc plane and form complicated

three angular structure. In such geometry effects of mag-

netic frustration may play significant role.

The previous studies of temperature dependences of

magnetic susceptibility �( )T and optical far IR spectra

(10–100 cm–1) of Ni (TeO ) Cl5 3 4 2 [1,2] demonstrate that

at rather high temperatures the susceptibility can be de-

scribed by the Curie–Weiss law with a negative constant

� � �50 K. This suggests that exchange interaction is

of antiferromagnetic character. The temperature depend-

ence of susceptibility at T � 23 K exhibits an anomaly

which the authors relate to the transition to an antifer-

romagnetic state. The effective g factor determined from

the dependence �( )T was 2.21. In addition, at tempera-

tures below 23 K the authors of Ref. 1 observed the pro-

nounced dependence of magnetic susceptibility on exper-

imental conditions (ZFC and FC dependences �( )T ). The

investigation of magnetic susceptibility �( )T was carried

out on powdered samples. The optical measurements in

magnetic fields made it possible to recognize absorption

electron bands and to calculate the value of spin-flop tran-

sition field that appeared to be equal 100 kOe. It must

be noted, that magnetic and resonant properties of iso-

structural single crystal Ni (TeO ) Br5 3 4 2 were studied in

Refs. 3, 4.

The aim of the work under consideration was to

study comprehensively the static magnetic properties

Ni (TeO ) Cl5 3 4 2 single crystal in wide temperature range,

as well as magnetoresonance properties investigation of

this compound in a low-frequency diapason (25–100 GHz) at

helium temperatures to determine the values of typical

magnetic interaction.

Experimental technique

The magnetization measurements were performed in a

temperature range 5–300 K at a constant magnetic field

up to 50 kOe with the use of a SQUID magnetometer

MPMS 5 Quantum Design. The resonance experiments

were carried out with a pulsed tuned-frequency radio-

spectrometer in a magnetic field up to 200 kOe at helium

temperature.

The sample of Ni (TeO ) Cl5 3 4 2 was a single crystal

plate. The b and c axes lie in plate plane. The sample

mass and the volume were m = 13.927 mg and V �

= 2.6·10–3 cm3, respectively.

Magnetic measurements

The experimental data on temperature dependence of

magnetization in temperature range from 5 to 300 K are

shown in Figs. 1–3. The measurements were carried out

in magnetic fields of 100 and 1000 Oe.

The dependences M(T) obtained for Ni (TeO ) Cl5 3 4 2

permitted us to determine the easy magnetization axis a*

which is perpendicular to the bc plane layers. The high-

temperature region of the temperature dependence of

magnetic susceptibility for the easy magnetic axis from

80 to 300 K can be described by the Curie–Weiss law

�( ) / ( )T C T� �� (see Fig. 2,b) with a negative constant

� � �49 K which is typical of antiferromagnetic exchange

interaction. On further decreasing temperature below

80 K, � continues its monotonic rise reaching its peak at

Tmax � 30 K and then it reduces (Figs. 1 and 2,a). The per-

pendicular susceptibility also have some peculiarity at

temperature 30 K (see Fig. 3). At T � 21K there is a kink

in the parallel susceptibility curve (Fig. 1) while the per-

pendicular one exhibits a local minimum (Fig. 3). We as-

sociate in accordance with [1] anomaly at 21 K with phase

transition in antiferromagnetic state. Anomalies at 30 K

remain unclear. Most probably they related to low

dimensionality of this system, but the ultimate answer

calls for further investigation (for example specific heat).

As mentioned above, the experiments in Ref. 1 re-

vealed that below the magnetic ordering temperature

the temperature behavior of magnetic susceptibility was

dependent on cooling method. The ZFC and FC

dependences measured in fields of 100 Oe, 1 kOe and

10 kOe were substantially different. As for our similar

studies (Fig. 1), we did not observe any dependence on

cooling method. As is evident from the figure, the ZFC
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Fig. 1. The temperature dependence of magnetization and

magnetic susceptibility of the single crystal Ni (TeO ) Cl5 3 4 2.

The measurements were made in H = 100 Oe directed along

the easy magnetization axis a* after the sample cooling down

to 5 K without magnetic field (the ZFC dependence) and in the

field of 100 Oe (the FC dependence).



and FC dependences of parallel susceptibility of the

Ni (TeO ) Cl5 3 4 2 single crystal measured in a field of 100 Oe

show a good coincidence. It must be noted, that analogous

measurements for isostructural Ni (TeO ) Br5 3 4 2 [4] don’t

display any dependence of results from cooling regime. It

may be that the effect observed in Ref. 1 is related to the

powdered sample structure.

Of particular importance for magnetic ordered systems

is the existence of magnetic spin-reorientation phase tran-

sitions. For such transitions to be detected, the field

dependences of magnetization were measured at different

temperatures in an external magnetic field directed along

the easy magnetization axis. The measurement data are il-

lustrated in Fig. 4. As is seen, the field dependences M(H)

exhibit a slight nonlinearity. But at fields up to 50 kOe the

dependences M(H) do not demonstrate any dramatic

changes in magnetization or kinks, suggesting that there

are no magnetic phase transitions in Ni (TeO ) Cl5 3 4 2

within the magnetic field range studied. For comparison,

Fig. 4 shows the dependence M(H) measured at T = 10 K

in a magnetic field perpendicular to the easy magnetic

axis. This dependence is linear in a filed range of 0 to

50 kOe.

When treating the experimental data obtained on the

powdered Ni (TeO ) Cl5 3 4 2 samples, the authors of Ref. 1

suggested that there was a weak ferromagnetic moment in

the antiferromagnetic studies. For such a weak ferromag-

netic moment to be detected in our single crystal

Ni (TeO ) Cl5 3 4 2 the dependences M(H) were measured in

low magnetic field at T � 5 K with an external field ap-

plied along and perpendicular to the easy magnetization

axis. The dependence M(H) at a magnetic field directed
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Fig. 2. (a) The temperature dependence of magnetization for

Ni (TeO ) Cl5 3 4 2. The measurements were made in the magnetic

field H �1000 Oe directed along the easy magnetization axis

a* after the sample cooling down to 5 K without magnetic

field (the ZFC dependence). (b) The temperature dependence

of inverse magnetic susceptibility calculated from the data

shown in Fig. 2,a.
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Fig. 3. The temperature dependence of magnetization and

magnetic susceptibility for the Ni (TeO ) Cl5 3 4 2 single crystal

measured at H �1000 Oe parallel and perpendicular to the easy

magnetization axis a*. Prior to the measurements the sample

was cooled down to 5 K without magnetic field (the ZFC de-

pendence).
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Fig. 4. The field dependences of magnetization for

Ni (TeO ) Cl5 3 4 2 measured at temperatures of 5, 10, 15 and 20 K

in the magnetic field applied along the easy magnetization axis

a*. For comparison, shown also is the dependence M(H) mea-

sured at T �10 K in the field perpendicular to the easy axis.



along the easy magnetization axis is shown in Fig. 5,a.

When measuring, the magnetic field was varied from

–100 to 100 Oe and then from 100 to –100 Oe. As is evi-

dent from the figure, there is no magnetic hysteresis in the

M(H) curve. All the experimental points fit in well

straight line that passes through the point M � 0 at H � 0.

The dependence M H( ) measured at a magnetic field nor-

mal to the easy magnetization axis is illustrated in

Fig. 5,b. In this case the field was varied from 0 to

1000 Oe, and the experimental points also fit in well the

straight line that passes through the origin of coordinates.

Thus, the magnetically ordered single crystal of

Ni (TeO ) Cl5 3 4 2 did not display any weak ferromagnetic

moment either along the easy magnetization axis a* or in

the plane normal to it.

Our experimental data on temperature dependence of

magnetization M(T) were used to estimate the value of ex-

change interaction. The exchange field H e may be esti-

mated in the framework of the molecular field theory [5]

from the phase transition temperature TN . The exchange

field H e can be calculated by the expression:

H
k T

g S S
e

B N

B

�
	

3

1
 ( )
, (1)

where k B is the Bolzmann constant, TN = 21 K is the Neel

temperature, S �1 is the spin, 
 B is the Bohr magneton,

g � 2.2 is the g factor. The calculation gives estimate

value H e � 213 kOe. This value is close to the estimation

obtained in Ref. 2 by the same method.

The above experimental data indicate that the com-

pound Ni (TeO ) Cl5 3 4 2 is a close realization of quasi-

two-dimensional antiferromagnet.

Magnetic resonance measurements

In the paramagnetic state the ground term of a Ni2+ ion

is F (S = 1), and the lowest lying orbital level is a singlet.

Therefore, for low-symmetry crystals there is a triplet

structure with a large initial splitting (up to ten or even

more inverse centimeters) at a zero magnetic field what is

due to the single-ion anisotropy. Experimental study of

magnetic resonance in such systems requires high fre-

quencies and strong magnetic field both in paramagnetic

and magnetically ordered states.

The resonance measurements of the magnetically or-

dered single crystal of Ni (TeO ) Cl5 3 4 2 were carried out in

a frequency region of 25 to 105 GHz at helium tempera-

tures in high magnetic fields. Magnetic fields up to

200 kOe produced by the pulsed technique were much

higher than the magnetic anisotropy field. In our experi-

ments the polarization H h� was used and the external

magnetic field H was applied along the easy magnetiza-

tion axis. These experimental conditions permitted us to

observe two antiferromagnetic resonance (AFMR) lines

corresponding to collinear and spin-flop magnetic phases

and to study the frequency–field dependences of the spec-

trum. The behavior of the frequency–field dependence of

the AFMR spectrum in an external magnetic field di-

rected along the easy magnetization axis is shown in

Fig. 6. As is evident from the figure, the AFMR lines

moves forwards each other with decreasing frequency,

and at � � 30.8 GHz and H � �( )120 2 kOe they are coin-

cident. The value of magnetic field corresponds to the

experimental value of spin-flop transition field. The fre-

quency–field dependence can be described by the theoret-

ical relations for a biaxial antiferromagnet in collinear

and spin-flop phases with an external magnetic field di-

rected along antiferromagnet vector L.
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Fig. 5. (a) The field dependence of magnetization for the sin-

gle crystal Ni (TeO ) Cl5 3 4 2 measured at T � 5 K in the magnetic

field applied along the easy magnetization axis a*. Points (�)

and (�) correspond measuring with varying magnetic field

from –100 to 100 Oe and from 100 to –100 Oe, respectively.

(b) The field dependence of magnetization for Ni (TeO ) Cl5 3 4 2

measured at T � 5 K in the magnetic field normal to the easy

magnetization axis.



For fields lower than the field of spin-flop transition

H sf the observed AFMR can be given by the expression

[6,7]

( / )

{ [ ( ) ( ) ] },/


 � 2

2
1 2

4 2
1 2 2 1

2 1 21

2
2

�

� 	 	 � 	 	 	 �H C C H H C C C C

(2)

where � � g
B/�, C H e1 2� H a1 , C H He a2 22� .

For the field H H H Hsf e a� � �( ) /2 1201
1 2 kOe one

can observe a spin-reorientation magnetic phase transi-

tion followed by the formation of the spin-flop phase. Our

experimental value of the sp³n-flop transition is some-

what higher that calculated in Ref. 2, H sf = 100 kOe, be-

cause the authors of the Ref. 2 experienced difficulties

with precise extrapolation of the transition field by the

initial portion of the frequency–field dependence. For a

biaxial antiferromagnetic the spin-flop transition field in

the general case is equal to the low-frequency gap of

magnon excitation ( / )
 �1
2

12� H He a . Hence, knowing

the value of exchange interaction effective field, one can

estimate the magnetic anisotropy field H a1 that equals

34 kOe. Using Eq. (2), we estimate the values of magnon

high-frequency gap and magnetic anisotropy field H a2

and obtain 434 GHz and 47 kOe, respectively. At fields

higher than spin-flop transition the frequency–field de-

pendence is of the form [6,7]

( / )
 � 2 2 2� �H H sf . (3)

Equations (2) and (3) give the best fit of the experimental

dependences �(H) for the following parameters values:

H e � 213 k O e , H a1 34� k O e , H a2 47� k O e , H sf �

�120 kOe, �1 371� GÍz, �2 434� GHz, g � 2.21. It is ev-

ident that description is rather qualitative.

Now we can try to compare our experimental data in

0.1–3.5 cm–1 frequency range with optical far IR spectra

(10–100 cm–1) taken from paper [2]. Figure 7 represents

these data for lowest resonant mode below the spin-flop

field H sf . Line labeled as 1 is fitting curve from Ref. 2

based on assumption a collinear spin structure. It is seen

that low-frequency region does not described and spin-

flop field is too small comparing with the experiment. The

line 2 corresponds to our expression (2) with mention-

ed above parameters. In this case we obtain energy

gap 371 GHz (12.37 cm–1) 9% less experimental value

405 GHz (13.5 cm–1). The curve 3 also corresponds to

Eq. (2) when constants are fitted so that we obtain experi-

mental value of energy gap. In this case we must suppose

the spin-flop field H sf = 130 kOe (8% more than experi-

ment). As is seen in all cases there is rather qualitative

agreement with experiment. Evidently the model of two-

sublattice biaxial antiferromagnet is too simple for this

compound to say nothing about rough estimated para-

meters.

Thus, the complex study of magnetic and resonance

properties of the Ni (TeO ) Cl5 3 4 2 single crystal made it

possible to obtain the following results:

1. The investigation of the magnetization of the

Ni (TeO ) Cl5 3 4 2 single crystal in a wide temperature

range demonstrates that the crystal is a quasi-two-dimen-

sional antiferromagnetic with the easy magnetization axis

a* directed perpendicular crystallographic plane bc and

a magnetic ordering temperature TN � 21 K. No a weak

ferromagnetic moment has been observed in the

Ni (TeO ) Cl5 3 4 2 single crystal.

2. The frequency–field dependence of the AFMR

spectrum in Ni (TeO ) Cl5 3 4 2 in external magnetic field di-

rected along the antiferromagnetism axis of the crystal
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Fig. 6. The frequency–field dependence of AFMR spectrum

for the external magnetic field applied along the easy magneti-

zation axis a* of Ni (TeO ) Cl5 3 4 2 , T � 4.2 K.
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(H||a*) was studied. It was shown that in H||a* there

occurs a spin-flop magnetic phase transition at H sf �

�120 kOe.

3. The magnetic resonance experimental data can be

described qualitatively in model of the biaxial antiferro-

magnet.
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