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A differential self-consistent equation has been obtained for a dimensionless magnetic flux in a NS struc-

ture, which is responsible for the magnetic moment jumps in the system.
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The law of conduction electron dispersion manifests

itself in all properties of the metal. The knowledge of the

spectrum enables one to calculate the thermodynamic

properties of metallic samples. B.I. Verkin has contrib-

uted much to investigations of a quasiparticle spectrum in

normal metals. He supported and promoted research in

physics of coherent phenomena in normal metals and su-

perconductors.

The coherent phenomena modified by the proximity

effect in cylindrical mesoscopic normal metal (N)–super-

conductor (S) structures have been considered. Such

structures (superconducting Nb wires with radii R of tens

of microns covered with a thin layer d of a pure normal

metal Ag, Au or Cu) were investigated experimentally by

Mota et al. [1–3]. The magnetic susceptibility of these NS

structures [1–3] exhibited an anomalous behavior in weak

magnetic fields at millikelvin temperatures. The phenom-

enon was called a reentrant effect. For a long time no ade-

quate theory was proposed to interpret it. Its origin have

been explained in Refs. 4–6. The theory of the reentrant

effect is essentially based on the properties of the

Andreev levels [7] in a NS structure experiencing a mag-

netic field. The fields are taken to be so weak that the

bending of quasiparticle paths is negligible. The role of

the field reduces to displaying the Aharonov–Bohm ef-

fect [8], i.e., to accounting for the incursion in of the wave

function phase of a quasiparticle on its movement along

the trajectory in the vector potential field. The spectrum

of quasiparticles was taken in Refs. 4, 5 using the method

of multidimensional quasiclassics [9,10]. It has the

form [5]
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Here v q p q mL F
( ) / *� �2 2 , q is the component of the

quasimomentum along the symmetry axis of the cylinder,

m* is the effective mass of a quasiparticle, d is the N-layer

thickness, � is the angle of the quasiparticle dielectric

boundary collision, � is the energy gap. The � in the last

term of Eq. (1) has the meaning of a «phase»
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Note that the quasiparticle spectrum in Eq. (1) cannot be

identified unambiguously unless the dependence of the

«phase» �on the magnetic field is calculated. This fact is

of fundamental importance for understanding the physics

of the reentrant effect.

The spectrum in Eq. (1) features an important pro-

perty: when the «phase» � changes, the density of states
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exhibits resonance spikes [4,5]. Every time when the

Andreev level coincides with the chemical potential of

the metal, the state of the NS structure experiences strong

degeneracy seen as a spike.

To calculate the «phase» �( , )T h , one should know

how the vector potential field is distributed inside the nor-

mal metal. It is shown by Zaikin [11] that the distribution

of the vector potential field in the N layer is inhomo-

geneous. He derived an algebraic self-consistent equation

for a dimensionless flux («phase» �)

� �( , ) ( )T H h j� � �const , (3)

where h H H� / 0 , H d0 0
2

0� � / ( )� � , �0 is the magnetic

permeability in vacuum.

The term j( )� in Eq. (3) is described by Eq. (13) of

Ref. 11, which was obtained proceeding from Eilenberger

equations [12].

Our calculation of the magnetic moment (persistent

current) is based on the thermodynamic interpretation of

current as
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where � �( ) is the thermodynamic potential of the struc-

ture (the Boltzmann constant is unity):
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where summation is over the spin s and all the states relat-

ing to the quasiparticle trajectories with � �� c , � c is the

angle at which the trajectory touches the NS boundary,

sin / ( )� c R R d� � . The trajectories � � c do not collide

with the NS boundary and do not contribute to the

Andreev spectrum. They are therefore disregarded in fur-

ther consideration.

Let us introduce dimensionless parameters
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The spectrum in Eq. (1) becomes:

� � �n nn u� � �[ ]arccos �v , (6)

where 0 � �u �, � � �� � � �sin sinc cv and the spectrum

symmetry � �� �� � �| | | |( , , ) ( , , )n nu uv v� �1 is taken into ac-

count.
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we can write the expression for the derivative of the ther-

modynamic potential with respect to the flux M *( )� �
� �d d� & � . This quantity differs from the magnetic mo-

ment
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We obtain a differential equation for �( , )T h instead of

Eq. (3):
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where ) � d / R H2 2
0 03( )� . It is of great importance for

calculating the magnetic moment (current) of the NS

structure.

The dimensionless flux � is depended both on the

magnetic field and on temperature. The magnetic moment

(screening current) of the NS structure contains the factor

( (�( , )T h / h. The condition of self-consistency describes

the nonlinear behavior of the flux � as a function of the

magnetic field. The magnetic susceptibility is defined as a

derivative of the magnetic moment with respect to the
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magnetic field in the limiting case of weak magnetic field.

Therefore, in weak fields ( (�( , ) /T h h is a constant and

the screening current-magnetic flux dependence is linear.

However, the nonlinearity effect becomes essential in

a growing magnetic field, which leads to unusual de-

pendences of current (magnetic moment) on the magnetic

field.

The dependence �( , )T h obtained through a numerical

solution of self-consistent Eq. (8) exhibits jumps (see

Fig. 1).

Figure 2 illustrates the dependence M *( )� of Eq. (7)

calculated numerically for a particular NbAu sample [3].

The sample sizes are R � 8 �m, d � 3.3 �m. The cha-

racteristics of the material are Tc(Nb) = 9.26 K, kF (Au) �
� �12 108. cm/s, � �& *� (the critical angle of the trajec-

tory), H0 = 0.31 Oe (+ 51 A/m); )c3
35 10� � , � � 064. are

the dimensionless quantities.

The numerically calculated isothermal dependence of

the magnetic moment of the NS structure upon the mag-

netic field is shown in Fig. 3. It is seen that the magnetic

moment of the NS structure is always diamagnetic, but its

magnitude changes stepwise with an increasing magnetic

field. This behavior can be attributed to the «paramag-

netic» additive appearing in the magnetic moment. It af-

fects the stable state of the NS structure and thus triggers

its transition to another stable state. The magnetic field

jumps and takes a larger volume in the N layer. The new

state has a smaller diamagnetic moment which is inter-

preted experimentally as a «paramagnetic» additive to

current.

The numerical renormalized density of states of the NS

structure is shown in Fig. 4 as a function of flux at the en-

ergy equal to the Fermi energy. It is seen that the period of

the density of states jumps decreases as the critical angle

� c increases. Finally, at � �& ,c � the jumps vanish and

the density of states is described by a smooth curve.

The authors of Ref. 13 assumed � �& ,c � at which the

jumps of the density of states were smoothed. This led the
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Fig. 1. The dependence � ( , )T h as a function of magnetic

field h.
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Fig. 2. The ratio M M* ( ) / * ( )min� � (Eq. (7)) as a function of

the flux �.
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Fig. 3. The behavior of the magnetic moment of the NS struc-

ture as a function of the field h.
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Fig. 4. The density of states near E = 0 as a function of the flux

� at various � c: � / 2 (1); � / 3 (2); � / 4 (3); � / 6 (4).
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authors to a wrong conclusion about the absence of a

«paramagnetic» additive to the current of the NS struc-

ture.

The dependences of the density of states on energy at

different fixed values of the flux � = 0.1 and 2 are illus-

trated in Figs. 5 and 6, respectively. It is seen that all the

features � �( , )� become smoothed at � �c � / 2 .

Detailed information about the isothermal reentrant ef-

fect in a NS structure is to appear in another publication.

The authors thank A.N. Omelyanchouk for discus-

sions.
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Fig. 5. The density of states as a function of energy at various

� c: � / 2 (1); � / 3 (2); � / 4 (3); � / 6 (4).
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Fig. 6. The density of states as a function of energy at various

� c: � / 2 (1); � / 3 (2); � / 4 (3); � / 6 (4).


