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Thermomagnetic instability in general, and dendritic flux avalanches in particular, have attracted con-

siderable attention of both scientists and engineers working on superconductor applications. Though being

harmful for the performance of many superconducting devices, the avalanches provide a fruitful playground

for experimental and theoretical studies of complex dynamics of the vortex matter. In this paper, we report

on the progress in understanding the mechanisms responsible for the development of the giant magnetic ava-

lanches. We review recent results on magneto-optical imaging of the fingering instability in superconduct-

ing films and analyze them basing on the recent theoretical model that establishes criteria for onset of the

dendritic avalanches.

PACS: 74.25.Qt Vortex lattices, flux pinning, flux creep;
74.25.Ha Magnetic properties;
68.60.Dv Thermal stability; thermal effects.

Keywords: superconducting films, flux avalanche, vortices in superconductor.

1. Introduction

1.1. Vortex pinning and motion

One of the characteristic features of superconductors

is perfect diamagnetism or expulsion of a weak external

magnetic field, H, from their interior, the so-called Meiss-

ner and Ochsenfeld effect. In type-II superconductors, the

perfect diamagnetism exists for applied fields below a

lower critical field, Hc1, and there is a broad domain of

magnetic fields, H H Hc c1 2� � , where the field pene-

trates into the sample in a form of quantized flux lines. In

a perfect sample these lines-vortices form an Abrikosov

lattice [1]. Above the upper critical field, Hc2 , the bulk

superconductivity seizes to exist. An isolated vortex con-

sists of a core where the superconducting order parameter

is suppressed, while the magnetic field reaches a local

maximum. The radius of the core is of the order of the co-

herence length, � . The magnetic field outside the core de-

cays exponentially over a distance of a magnetic penetra-

tion depth � , where also electrical current circulates

around the core. Each vortex carries one flux quantum

�0
152 2 07 10� � � �h e/ . Wb. The magnetic field is sup-

ported by circular currents around the core. The flux lines

repel each other, an interaction that can be understood ap-

plying the Ampere’s law to the circular currents. This re-

pulsion leads to a formation of a flux line lattice, most

typically a hexagonal and in some cases square. A number

of phases and dynamic effects in the flux line lattice was

reviewed in Refs. 2, 3.

The vortices interact with a transport current via the

Lorentz force per unit length

f j n� 	�0 [ ] ,

where j is the current density and n is the unit vector

along the flux line. Since the vortex motion implies mov-

ing of normal cores it is accompanied with dissipation,

which is proportional to the velocity. This dissipation can

be described by an effective viscosity, and the velocity is

determined by the balance between the Lorentz force and

the viscous force. Therefore a free vortex lattice would

move as a whole with a constant velocity resulting in a fi-

nite resistance of the sample.

Fortunately, in all real superconductors the flux lines

interact with material defects that act as pinning sites and
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hamper their motion. Besides the pinning barriers that

arise from rather inevitable structural irregularities such

as vacancies, dislocations, grain boundaries, etc., there

exists a rich zoo of artificially introduced pinning sites

like magnetic inclusions, phases of weaker (stronger) su-

perconductivity, lithographically patterned «antidots»,

magnetic dots, etc. According to the particular nature and

dimensionality of the defects the pinning potential has

different spatial extent, magnetic field and temperature

dependencies, see Ref. 4 for a review. When a supercon-

ductor is exposed to an increasing magnetic field (or self

field of a transport current), vortices are formed at the

edges and then propagate inwards. The presence of pin-

ning leads to formation of an inhomogeneous distribution

of the magnetic flux. According to the critical state model

[5] the stationary distribution can be found from Am-

pere’s law with the condition that the current density at

each point is equal to its local critical value, j Tc ( , )B , i.e.,


	 �B j� 0 , | | ( , )j B� j Tc .

The case where jc is independent on magnetic field is

called the Bean model [5]. The critical current density is

in practice a key measure of the applicability of supercon-

ductors since jc is the maximum current density in a ma-

terial for transport without energy loss. Microscopic eva-

luation of the critical current requires direct summation

of vortex–vortex interactions and all elementary pinning

forces, which all together is a rather unfeasible task.

Therefore the critical state model has become a major pa-

radigm in the studies of electromagnetic properties of

type-II superconductors.

The critical state emerging from the balance between

the Lorentz and the pinning forces is metastable. Even a

slow increase in the external magnetic field may lead to

total collapse of the critical state and sudden large-scale

redistribution of the flux. Such dramatic events observed

experimentally as abrupt drops in the magnetization are

ascribed to a thermomagnetic instability where the local

heat dissipation associated with vortex motion reduces

the pinning, which in turn facilitates further vortex mo-

tion. With this positive feedback, a small perturbation can

quickly evolve into a flux avalanche [6–19].

1.2. Experimental methods

Experimental techniques used to investigate the ava-

lanches in the vortex matter are conventionally subdi-

vided in two groups: integral and spatially resolved. The

former one includes all types of magnetometry: inductive

coils, vibrating sample magnetometry, SQUID mag-

netometry [20]. These methods are sensitive to global re-

distributions of the flux, current flow, and the resulting

change in the total magnetic moment caused by an ava-

lanche in the sample. A drawback of the integral methods

is a lack of detailed information about the jumps, their lo-

cation in the sample, their morphology, etc. Moreover, the

relatively low sampling rate in these methods prevents

identification of jumps occurring with short time inter-

vals. Obviously there is no chance to separate simul-

taneous avalanches. Thus, measurement of the volume

averaged magnetization excludes a possibility to study

detailed statistics of flux jumps. Yet another disadvantage

is that it is impossible also to discriminate between small

jumps and instrument noise. These problems are partly

solved in locally resolved magnetometry, an overview of

available methods can be found elsewhere [21]. One of

the most powerful tools is magneto-optical imaging

(MOI), which combines high magneto-spatial resolution

and short acquisition times (restrained only by the

exposure time of a camera). This makes MOI the most

suitable real-time technique for investigation of flux

avalanches.

In our experiments we use MOI based on the Faraday

effect where the sensing element is an in-plane magne-

tized ferrite garnet film with strong Faraday rotation. The

film, which is grown separately on a transparent gadolin-

ium gallium garnet substrate, is placed directly on the top

of the sample under investigation. Stray fields from the

magnetic flux pattern of the sample locally remagnetize

the indicator, and when shining polarized light through

the film, the out-of-plane component of magnetization in-

duces Faraday rotation. The effect is doubled after the re-

flected light (either from the mirror layer or, in more rare

cases, from the sample surface) passes through the garnet

film again. Figure 1 illustrates the principal experimental

scheme. An analyzer set at 90° relative to the polarizer fil-

ters out the nonrotated light. The rotation angle, �, is a

monotonous function of the local magnetic field, B.

The transmitted light is projected on the matrix of a

CCD camera, its intensity, I, being related to the rotation

angle according to Malus’ law

I I Bo� 
sin [ ( ) ]2 � � .

Here � is an offset angle (equal to 0 when the polarizer

and the analyzer are crossed). The dependence �( )B can

be determined by a proper calibration of the indicator

film. Using this dependence together with Malus’ law one

can recalculate the distribution of the magnetic field

in the sample from the intensity map of the projected

light.

Since MOI was invented in the 1950s several materials

have been used as indicator films [22]. The MOI results

reported in the present paper were obtained utilizing

in-plane magnetized garnet films (Lu,Bi)3(Fe,Ga)5O12,

grown as a few micron thick epitaxial layer on gadolin-

ium gallium garnet (transparent) substrates. One limita-

tion of these indicator films is a relatively small magnetic
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field range: above � 100 mT the films reach saturation,

i.e., they become magnetized totally out-of-plane.

2. Dendritic flux avalanches

Thermomagnetic instabilities have been in focus of

many experimental and theoretical studies for decades

[11,23]. However, only with the use of MOI it has been

discovered that in most superconducting films, such

as MgB2, Nb, Pb, Nb3Sn, NbN, YBa Cu O2 3 x , and

YNi2B2C, the avalanches create dendritic flux patterns

(see Fig. 2) [6,11,12,17]. From the massive experimental

data collected on the subject one can identify some com-

mon features of the dendritic instability:

(i) It occurs below a certain temperature Tth where

T Tcth � .

(ii) It occurs in a limited range of applied fields:

H H H
1 2
th th� � , where H

1
th and H

2
th are the so-called

lower and upper threshold fields, respectively.

Shown in Fig. 3 is a set of images recorded during a

slow ramping up of the applied magnetic field in a thin

film of NbN after the sample was initially zero-field

cooled to T � 4 K. In the image taken at H � 8 Oe, there

is only a shallow penetration, with a flux front that gradu-

ally advanced during the field increase. This smooth

mode of penetration ended abruptly when reaching H �
= 12 Oe, where a flux avalanche suddenly occurred. As

the applied field increased further, more and more ava-
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Fig. 1. Schematic draft of a MOI setup. A sample is mounted

on a massive cold finger of a He-flow cryostat. Resistive coils

are used as a source of an external magnetic field. The light

from a mercury lamp shines through a polarizer and is guided

onto an indicator film, where it experiences the Faraday rota-

tion. The light becomes reflected by a thin mirror and pro-

jected through an analyzer on a CCD matrix of a computer-op-

erated camera.

Fig. 2. Dendritic flux avalanche observed in MgB2 film by

MOI. From Ref. 6.
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Fig. 3. Magneto-optical images of a NbN film at 4 K in in-

creasing applied field illustrating development of the dendritic

flux avalanches. From Ref. 24.



lanches took place, creating a complex pattern of flux

dendrites covering most of the sample area, Fig. 3 (H �
= 42.5 Oe). Then, as the field reached H � 357Oe, the av-

alanche activity stopped entirely although the field con-

tinued to increase. The advancing flux front now erased

the previously formed dendritic structures, see images

taken at H � 400 and 425 Oe, and the critical state mode of

flux penetration was restored. The bright fan-like features

in the lower part of the images are due to tiny film defects,

and are not related to the flux instability.

(iii) The formation of the dendritic instability is a sto-

chastic process.

Usually indentations on the sample edges serve as the

most probable origins of the avalanches, as they give a

significant local magnetic field amplification and in-

crease in the electric field [26]. Nevertheless, the exact

nucleation place of the next dendrite, field interval be-

tween two consecutive events, and the final shape of the

dendritic structure are nonreproducible. To illustrate this,

Fig. 4 shows three magneto-optical images of flux pene-

tration in a MgB2 film taken after three repeated expe-

rimental runs with initial zero-field-cooling the sample

9.2 K and applying a field of 20 mT. Image (b) was ob-

tained by superimposing the three original images co-

lored red, green, and blue, respectively. In those parts of

the final image where they overlap, i.e., the flux front’s

behavior is reproducible, one observes a gradation

of white. Different colors show the places where there

is no overlap, or the overlap is only partial. Strong irrep-

roducibility is seen in the dendrite shapes, while the pene-

tration near the edge and along static defects is repeat-

able. Randomness in the behavior of the vortex matter

also explains a large statistical variation of the measured

H
1 2,
th values, which will be discussed later.

(iv) The degree of branching of the dendrites, some-

times represented by their fractal dimensionality, and size

vary with temperature and the field.

Figure 5 illustrates typical behaviors of the dendrites

in a NbN film at different temperatures. At T � 4 K the

number of the dendritic avalanches per interval of the

field was higher compared to T � 6 K. The size of the den-

drites shows opposite trend — it increases when the tem-

perature approached Tth . Regarding the dependences on

magnetic field, at lower (slowly increasing) fields the

avalanches are smaller in size, but appear in larger num-

bers per field interval. At larger fields, the dendrites are

less frequent, but larger in size. Images in Fig. 3 taken at

H �12 and 357 Oe illustrate this property.

3. Theory of the dendritic flux jumps

There exist numerous experimental indications that

the instability is a rather unavoidable generic feature of

the vortex matter in superconductor thin films. The con-

ventional theory of the thermomagnetic instability con-

sidered only «uniform» flux jumps, where the flux front is

smooth and essentially straight [23,27]. The problem of

the flux pattern formation was examined in the slab ge-

ometry [28] and more recently in thin films placed in per-

pendicular magnetic field [29,30]. The criteria for the in-

stability onset were obtained from the linear analysis of

small coordinate-dependent perturbations in the electric

field, E, and temperature, T [25,31]. The problem was

solved for a thin (thickness d is much less than the
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500 m�

Fig. 4. MOI demonstrating irreproducibility of the flux distri-

bution that results from the dendritic avalanches. (a) Three im-

ages were taken under identical experimental conditions.

(b) Image obtained by superimposing the three images above.

Repeatable parts of the flux front appear as gradations of

white. From Ref. 25.

a

b

Fig. 5. Magneto-optical images of dendritic flux avalanches in

a NbN film taken at a) T � 4 K and b) T = 6 K.



width 2w) superconducting strip infinite in y direction,

placed in a transverse magnetic field, H, and thermally

coupled to the substrate (Fig. 6).

3.1. Model and basic equations

The thermomagnetic instability can be described by

the set including the Maxwell equations and the equation

for thermal conduction:

curl B j�� 0 , (1)

curl E
B

� �
�
�t

, (2)

C
T

t
T

�
�

� 
��
2

jE .
(3)

In the above equations, j is the current density, E is the

electric field, B is the magnetic induction, B H�� 0 ; C is

the specific heat, � is the thermal conductivity. The heat

release into substrate is taken into account by applying

the boundary condition

��nT h T T� � �0 0( ) (4)

to both film surfaces. Here T0 is temperature of the sub-

strate, while h0 characterizes heat transfer through the in-

terface between the sample and the substrate. The above

set should be supplemented by a relation between the cur-

rent density, and the electric field, j j E B T� ( , , ). This rela-

tion is chosen as

j E� j T g E Ec ( ) ( ) ( / ) . (5)

Here g E( ) represents a very steep E j( ) curve having large

logarithmic derivative,

n E E j j Ec( ) ln / ln /� � � � ��� 1, (6)

where � is the differential electrical conductivity,

�( ) /E j E� � � . Parameter n stands for the exponent in the

frequently used power-law relation E jn� . A strong

nonlinearity of the function g E( ) leads to a formation of a

quasistatic critical state with j j Tc� ( ), where jc is the

critical current density. Note that in this model B-depen-

dence of jc is neglected, as in the Bean’s model [5]. We

will come back to this assumption later.

The key dimensionless parameter of the model is the

ratio of the thermal and magnetic diffusion coefficients

[23],

� � ��� 0 / C . (7)

The smaller is �, the slower heat diffuses from the pertur-

bation region into the surrounding areas. Hence, one can

expect that for smaller � the superconductor is more un-

stable, and the formation of instability-induced nonuni-

form structures is more likely. Solutions of Eqs. (1)–(5)

were sought within linear perturbation analysis in the

form

T T x y z t
 � ( , , , ), E E
 � ( , , , )x y z t , j j
 � ( , , , )x y z t

with perturbations � �T Ex y, , , and �jx y, determined via

corresponding dimensionless Fourier amplitudes �, �,
and i:

� � � � �T T t t ik ikx y� 
 
* exp ( / )0 ,

� � � � �E E t t ik ikx y x y x y, , exp ( / )� 
 
0 ,

� � � �j j i t t ik ikx y c x y x y, , exp ( / )� 
 
0 .
(8)

These components can be regarded as z-independent for a

thick slab. For the case of a thin film they should be prop-

erly averaged over z, see Ref. 31 for details.

3.2. Criteria for dendritic instability in thin films

Here we will focus on the analysis of the main results

of Ref. 31. Provided there exists a set of parameters that

satisfies Re ( , )� k kx y � 0, the superconductor becomes

unstable. The wave vectors kx and k y characterize the

extent of the flux front perturbations in corresponding

directions. Instability would develop to a fingering pat-

tern if k kx y�� � 0. The critical k y
* and kx

* for the finger-

ing instability can be found from the requirement

max{Re ( )}� k y � 0 for k y � 0 in the limit d l/ 2 1�� (nota-

tions follow from Fig. 6):

k
n nh

n
x
* �


 �1 �

�
,

k
nh n nh

n
y
*

/ /( ) ( )
�


 
 � 
� �

�

1 1 11 4 1 2

,

h
h C

j d j Tc c

�
� �

2 0

0
2� � ( ln / )

.

(9)

Dendritic flux avalanches in superconducting films

Fizika Nizkikh Temperatur, 2009, v. 35, Nos. 8/9 793

z

l

no flux

j, E

d/2

–d/2

H

0 x

y

flux

substrate

w
m

id
dl

e
of

th
e
st
rip

Fig. 6. One half of a superconductor strip on a substrate. The

dark gray area is the flux-penetrated region (Ref. 31).



Since the front penetration depth, l, is related to the ap-

plied field according to Ref. 32, the quantity k lx
* /�1 de-

termines the applied magnetic field at which the instabi-

lity first takes place. The quantity k y
* determines spatial

scale of the fingers. Dispersion relations Re ( , )� k kx y for

arbitrary k y are presented in Fig. 7. For small � and large

kx , i.e., small magnetic field, Re � is negative for all k y

(Fig. 7,a), meaning the superconductor is stable. At small

kx , Re � becomes positive in some finite range of k y ,

which implies that perturbations with finger patterns of

elevated T and E will start growing perpendicular to the

flux front, giving rise to the dendritic instability. For

large �, i.e., large heat diffusion, at small kx the maximum

of Re � corresponds to k y � 0, and the uniform perturba-

tion will be dominant (Fig. 7,b).

One of the most important results that can be directly

tested in experiments is the threshold flux penetration

depth l* , when the superconductor becomes unstable

[25]. Putting in Eqs. (9) l k y
* */�1 one obtains:

l
j E

h

nd j Ec c

*

| | | |
�

�
�

�

�

�
�
�

�

 
!
!

�
" �
2

1
2 0

1

. (10)

Here �jc is the temperature derivative of the critical

current density. By combining Eq. (10) with the Bean

model expression for the flux penetration depth of a thin

superconducting strip in transverse field [32] one imme-

diately arrives at the expression for the threshold field:

H
j d w

w l

c
th arccosh�

�

�

�
��

�

 
!!" *

. (11)

Equations (10), (11) set the most practically important

relations between the external parameters, such as the

field and temperature, on one hand, and the sample prop-

erties (�, h0 , jc , w) on the other. In order to check the va-

lidity of the model, the threshold field was measured first

in a series of MgB2 samples of different width. A set of

eight thin film samples was deposited in one run to allow
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for a direct comparative analysis and shaped later by

photolithography into 3 mm long rectangles having dif-

ferent widths ranging from 0.2 to 1.6 mm. In Fig. 8 pre-

senting the results of MOI experiments, the dendrites pro-

nouncedly invade the wider strips, while there are fewer

of them in the samples with smaller widths, and no den-

drites at all in the one with w � 02. mm. The quantitative

results for H wth ( ) are summarized in Fig. 9. The fitted

data reproduce the experimentally observed tendency of

the threshold field to diverge as the strip becomes nar-

rower. Rephrasing the latter statement, the narrower is the

superconductor the more thermomagnetically stable it is.

A good agreement between the theory and experiment

was also obtained for the threshold field as a function of

temperature. To fit the H Tth ( ), observed in Nb and MgB2

thin films (Fig. 10), some assumptions for temperature

dependent model parameters had to be made. The as-

sumed cubic dependencies for the thermal conductivity,

� �� ~( / )T Tc
3 , and the heat transfer coefficient, h0 �

�
~

( / )h T Tc0
3 , were based on the low-temperature data for

MgB2 [33] and the acoustic mismatch model [34], respec-

tively. The critical current density was assumed to depend

linearly on temperature: j j T Tc c c� �0 1( / ). Given a pin-

ning potential, U T Tc� �( / )1 , the exponent n U kT~ / be-

comes T-dependent, n n� ~ ( / )T Tc �1 . The model clearly

reproduces the property (i) mentioned above — existence

of a threshold temperature Tth such that for T T� th the in-

stability is absent, and a steep increase of the threshold

field H th when T approaches Tth .

4. Reentrant stability of superconducting films

Although the existence of the lower threshold mag-

netic field, H
1
th , was explained in Sec. 3, the origin of the

upper threshold field, H
2
th , above which the flux distribu-

tions are stable, was not discussed. Recently, we managed

to put the existence of an upper threshold into the frame-

work of the model described in the previous section [24].

As it follows from Eqs. (10) and (11), the threshold

field depends nonmonotonously on the critical current

density, as shown in Fig. 11. For intermediate jc the

threshold field is nearly constant, and increases slowly as

jc becomes larger giving eventually a sublinear asymp-

totic dependence, H jcth ~ /3 4 . More importantly, when jc
decreases the threshold field diverges at some finite jc ,
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corresponding to l jc
* ( ) approaching w. Taking into ac-

count that the critical current density most commonly de-

creases with the field, it follows that the field range with

unstable behavior can indeed have both a lower and upper

limit, H
1
th and H

2
th , as indicated in the figure. Evidently, it

is essential how fast jc is decreasing with the field. In par-

ticular, along the Bean model (constant jc), or with a jc
having only weak field dependence, the conditions for

having an upper threshold will never be met. Note also

that if jc is sufficiently small, e.g., because of a larger

temperature, the thermomagnetic avalanches will not

occur at any magnetic field.

This idea was supported by MOI experiments on a

NbN superconductor thin film. To measure both jc and

the upper and lower instability threshold fields the sample

was field-cooled to 4 K in various constant magnetic

fields, H fc . The field-dependent critical current density

j Hc ( )fc was determined from the depth of the penetra-

tion front in the middle section of the rectangular sample

[32,35]. A nearly exponential decay was found, with jc
decreasing from 76 1010. � A/m2 at zero field to almost one

half at H fc � 300 Oe, which agrees well with the results

obtained earlier from ac susceptibility measurements [36]

on the same type of films. The threshold fields were deter-

mined by slowly ramping up the additional field after an

initial field-cooling in extern field H fc . Figures 12

and 13 present the experimentally obtained functions

j Hc ( )fc and H H
1 2,

( )th
fc , which were used to make the

parametric plot of the instability onset field #H �
� �H H

1
th

fc shown in Fig. 14. Note that under field-cool-

ing the vortices are distributed homogeneously inside this

superconductor where pinning is fairly strong.

Application of additional field leads to a build-up of

the critical state, which collapses due to the thermomag-

netic instability as soon as the flux front advances over

the threshold length l* corresponding to applying the ad-

ditional field #H. Figure 14 demonstrates an excellent

quantitative agreement between the experimental data for

NbN (symbols) and theoretical curve obtained from

Eqs. (10) and (11), using only two fitting parameters,

�T Eth / � 500 mA and h T nE0 5700th / � A/m (these pa-

rameter values can be achieved, e.g., with the combi-

nation � � 25 mW/(K·m), h0 1424� W/(K·m2), n � 5,

E � 055. V/m, Tth �11 K). As mentioned above, the den-

drite formation process is stochastic, which is reflected in

a noticeable dispersion of the measured threshold fields

and the error bars in the figures, calculated as a standard

deviation for repeated experiments.
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5. Summary and conclusions

In this work, we review both well established facts and

the results of very recent experiments on dendritic insta-

bilities in superconductor films. The most common prop-

erties of the dendritic instability are summarized in

Sec. 2. In Sec. 3 we introduced the recent theoretical

model allowing to understand key features of the instabil-

ity and link them to the samples’ parameters. These links

are provided by Eqs. (10) and (11) for the threshold field

H th as a function of temperature, the critical current den-

sity jc , the sample width w, the thermal conductivity �. It

was demonstrated that the model explains the observed

reentrant behavior of the dendritic instability and allows

to quantify its upper and lower critical fields. The validity

of the model is illustrated by several experiments

confirming its predictions.
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