
 
21 

Интеллектуальное управление и 
системы 

УДК 681.5 

l1-OPTIMIZATION APPROACH TO DESIGN OF 
DIGITAL AUTOPILOTS FOR LATERAL MOTION 
CONTROL OF AN AIRCRAFT 

L.S. Zhiteckii, A.Yu. Pilchevsky, K.Yu. Solovchuk  
International Research and Training Center for Information Technologies and Sys-
tems of the National Academy of Science of Ukraine and Ministry of Education and 
Sciences of Ukraine, Kiev, Ukraine 

В рамках современной теории управления поставлена и 
решена задача так называемой l1-оптимизации цифровых П- и 
ПИ-автопилотов для управления боковым движением некоторого лета-
тельного аппарата при наличии неконтролируемых внешних возмущений 
типа порыва ветра. Предложены численные методы нахождения опти-
мальных значений параметров автопилотов. Полученные результаты яв-
ляются прикладными. 
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В рамках сучасної теорії керування поставлено і 

розв’язано задачу так званої l1-оптимізації цифрових П- та ПІ-автопілотів 
для керування бічним рухом деякого літального апарату за наявності не-
контрольованих зовнішніх збурень типу пориву вітру. Встановлені умови 
стійкості системи керування з двома зворотними зв’язками. Запропоновані 
чисельні методи знаходження оптимальних значень параметрів 
автопілотів. Отримані результати є прикладними.  

Ключові слова: літальний апарат, динаміка бічного руху, 
цифрова система керування, стійкість, l1-оптимізація, алгоритм випадко-
вого пошуку. 

 
INTRODUCTION 
 

The problem of efficiently controlling the motion of an aircraft in a non-
stationary environment capable to ensure its high performance index is important 
enough from the practical point of view [1]. To solve this problem, the different 
approaches based on the modern control theory, including adaptive and robust 
control, neural networks, etc., have been reported by many researches [2–7]. Un-
fortunately, most of these works dealt with an ideal case when there are no distur-
bances. Nevertheless, they are always present in reality. 

To implement approaches advanced in modern control theory, digital tech-
nique is appropriate. Point is that, by the end of the twentieth century, digital con-
trol has become a highly developed technology in control applications [8, 9]. Digi-
tal control systems have some features associated with sampling [9]. Namely, it 
leads to arising the discrete-time system description. It turns out that accurate dis-
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crete-time models can be derived for sampled continuous-time systems under digi-
tal control [10]. 

One of the efficient methods devised in the modern control theory for reject-
ing any unmeasured disturbance is based on the l1-optimization concept 
[11–13] applicable to discrete-time control systems. This concept has been utilized 
in [14] to design the digital lateral autopilot for aircraft capable to cope with a gust. 

This paper extends the approach which we have first reported among other au-
thors in [14] to deal with a digital autopilot for the lateral motion control. 

The purpose of the paper is to synthesize a digital autopilot which is able to 
maintain a given roll orientation of an aircraft with a desired accuracy and to cope 
with an arbitrary external disturbance (a gust). As in traditional continuous-time 
(analogue) control systems, the digital control system is designed as the two-circuit 
closed-loop control system having the inner feedback loop and the external feed-
back loop. Similar to [14], the digital autopilot is designed as the so-called 
l1-optimal controller containing the discrete-time PI and P controller parts. But, in 
contrast with [14], the aileron servo dynamics are taken into account to ensure the 
stability of closed loop. Again, the distinguishing feature of these controllers is that 
their parameters are optimized simultaneously. 
 
STATEMENT OF THE PROBLEMS 
 

Let ( )tγ&  and ( )tξ  denote the roll rate angle and the aileron deflection of an 
aircraft, respectively, at a time .t  According to [15, chap. 3] the lateral dynamics 
equation of an aircraft derived from the linearized lateral equation of the aircraft 
motion can be described by the continuous-time transfer function 

( )( ) : ,
( ) 1

KsW s
s T s

ξ
ξ

ξ

Γ= =
Ξ +

&
 (1) 

where  

0 0
( ) : ( ) and ( ) : ( )st sts t e dt s t e dtγ ξ

∞ ∞− −Γ = Ξ =∫ ∫& &   

represent the Laplace transforms of ( )tγ&  and ( ),tξ  respectively. Kξ  and Tξ  are 

the aerodynamic derivatives (more certainly, Tξ  is the damping derivative in the 

roll channel and Kξ  is the roll moment).  

By definition, the transfer function from γ&  to γ  that is output is given by 

0
0( ) ,KW s

s
=  (2) 

where 0K  may be considered as an integrator gain whose dimension is s-1. 
As in [15, chap. 4], it is assumed that continuous-time transfer function de-

scribing the aileron servo dynamics is 
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S
S

S

( ) ,
1

KW s
T s

=
+

 (3) 

where SK  and ST  are its gain and time constant, respectively. 
Define by ( )d t  an external signal (in particular, a gust) disturbing the angular 

velocity .γ&  This signal plays a role of some unmeasurable arbitrary disturbance. 
Without loss of generality, it is assumed that it has to be upper bounded in 
modulus. This implies that 

| ( ) | .dd t C≤ < ∞&
&  (4) 

Suppose that 0 S S, , , ,K K K T Tξ ξ  in (1) to (3) are known, whereas dC& may be 

unknown, in general. 
Let 0 ( )tγ  denote the desired roll orientation at the time .t  It is assumed that 

0 ( )tγ  is a continuous upper bounded function of .t  This means that there exists a 

constant Cγ&  such that 

0| ( ) | .t Cγγ ≤ < ∞&&  (5) 

Define now the output error ( )e t  as 

0( ) ( ) ( ).e t t tγ γ= −  (6) 

Further, introduce the performance index of the control system to be designed 
in the following form: 

0: lim sup | ( ) ( ) | .
t

J t tγ γ
→∞

= −  (7) 

The problem to be stated is formulated as follows. Devise a digital controller 
which is able to minimize J  assuming that the variables ( )tγ  and ( )tγ&  can be 
measured and the constraints of the forms (4) and (5) take place. Hence, the aim of 
the controller design may be written as the requirement 

{ ( )}
lim sup | ( ) | inf ,
t u t

e t
→∞

→  (8) 

where (6) and (7) have been utilized. The controller satisfying (8) is called optimal. 
 
DIGITAL LATERAL AUTOPILOT DESIGN 
 

Control strategy. To implement the controller design concept proposed in 
this paper, two feedback loops similar to that in [14, 15] are incorporated in the 
autopilot system, as shown in Fig. 1. But, in contrast with [15], they are designed 
as the discrete-time closed-loop control circuits using two separate controllers. To 
this end, two samplers are incorporated in the feedback loops; see Fig. 1. These 
samplers are needed in order to convert analogue signals ( )tγ&  and ( )tγ  in digital 
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form at each nth time instant 0t nT=  ( 0,1, 2, )n = K  to producing the discrete-

time signals 0( )nTγ&  and 0( ),nTγ  respectively, with the sampling period 0.T  On 

the other hand, the signal 0( )u nT  formed by digital controller at the same time 
instant converts to analogue form ( )u t using the so-called zero-order hold (ZOH) 
[8]. This makes it possible to represent the control input, ( )u t  as follows: 

0( ) ( )u t u nT=  for 0 0( 1) .nT t n T≤ < +  (9) 

( )u t

1+ξ

ξ

sT
K

s
K0

)(tγ& )(tγ

)(td

++
+ −

)( 0nTe)( 0
0 nTγ

+ −

)( 0nTγ&)( 0nTγ

0( )u nT
S

S 1
K

T s +

0
0γ ( )nT& ( )tξ

Fig. 1. Structure of digital control system containing the autopilot for the lateral motion 
control 

The aim of the inner control loop exploiting the discrete-time PI control is to 
stabilize the roll rate 0( )nTγ&  at a given value, 0

0( ),nTγ&  which is the output of the 
external control loop, as shown in Fig. 1. The feedback control law is 

in in
0 p 0 i 0

0
( ) ( ) ( )

n

i
u nT k e nT k e iTγ γ

=

= + ∑& & , (10) 

where )( 0nTeγ&  is the deflection of the true angular velocity, 0( ),nTγ&  from a given 

angular velocity, 0
0( ),nTγ&  at the time instant 0t nT=  given by 

0
0 0 0( ) ( ) ( ),e nT nT nTγ γ γ= −&

& &  (11) 

and in
Pk  and in

Ik  represent its parameters. 
The sampled-data transfer function of the PI controller derived from (10) is 

determined as follows: 
in

in in I
P

( )( ) : ,
( ) 1

k zU zC z k
E z zγ

= = +
−&

 (12) 

where 0( ) : { ( )}U z Z u nT=  and 0: { ( )}E Z e nTγ γ=& &  are the Z-transforms [16, 17].  

The external feedback loop which contains the usual P controller is used to 
stabilize the roll angle, 0( ),nTγ  around the desired value, 0

0( ).nTγ  Its control law 
is defined by 
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0 ex
0 P 0( ) ( )nT k e nTγγ =&  (13) 

together with the error  
0

0 0 0( ) ( ) ( ),e nT nT nTγ γ= −  (14) 

where 0
0( )nTγ  and 0( )nTγ  are a desired and true roll orientation at the time in-

stant 0 ,t nT=  respectively. Then the sampled-data transfer function corresponding 
to (13) will be defined as 

ex ex
P( ) .C z k=  (15) 

In order to choose the optimal parameters of both digital controllers, the so-
called l1-optimization approach is utilized. 

Stability analysis. Inspecting Fig. 1 and taking (9) into account, one gets the 
discrete-time transfer function of inner feedback loop from 0γ&  to γ&  as 

in
Sin

in
S

( ) ( )
( ) ,

1 ( ) ( )
C z W W z

H z
C z W W z

ξ

ξ

=
+

 (16) 

where { }{ }
0

1 1
S S( ) (1 ) ( ) ( )

t nT
W W z z Z L W s W sξ ξ

− −

=
= − [16]. Then, using (1), (3), 

(11) and (12), the expression (16) gives 
2

in 1 2 3
3 2

1 2 3

( ) ,
a z a z aH z

z b z b z b
+ +

=
+ + +

 (17) 

where 

in in
1 P I 1

in in in
2 P 1 P 2 I 2

in
3 P 2

in in
1 1 P 1 I 1

in in in
2 2 1 P 1 P 2 I 2

in
3 P 2 2

( ) ,

,

,

1 ,

,

a k k c
a k c k c k c
a k c

b d k c k c
b d d k c k c k c
b k c d

= +


= − + + 
= − 


= − + + 
= − − + + 
= − − 

 (18) 

are the coefficients depending on 
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By applying the stability results with respect to the three-order control system 
which can be found in [17, subsect. 1.12], to the denominator of in ( )H z  in (17) 
we derive the conditions guaranteeing the stability of inner closed loop in the form 

1 2 0 3

0 0, 1, 2, 3,
0

j jβ

β β β β

> = 


− > 
 (20) 

with 

0 1 2 3

1 3 1 2

2 3 1 2

3 1 2 3

1 ,
3(1 ) ,
3(1 ) ,
1 .

b b b
b b b
b b b

b b b

β

β

β

β

= + + + 


= − + − 


= + − − 
= − + − 

 (21) 

To study the stability of the external closed loop, we again inspect Fig. 1 to 
obtain the discrete-time transfer function of the corresponding open loop as 

ex
P( ) ( ),G z k G z′=  (22) 

where 

S 0
in

S

( )
( ) .

1 ( ) ( )
W W W z

G z
C z W W z

ξ

ξ

′ =
+

 (23) 

Applying the frequency stability criterion taken from [18] we establish that the 
necessary and sufficient condition under which the closed loop will be stable is 
given by 

ex
P0 ,k m< < −  (24) 

where  

min{Re ( ) : Im ( ) 0} ( 0).j jm G e G eω ω= = <  (25) 

l1-optimization algorithm. It can be finally established that: 

( )ex ex
0 С 1lim sup | ( ) | || ( ) || || || || || ,

n
e nT H k v O vγ δ∞ ∞

→∞
≤ + < ∞  
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where 

ex
in in ex

S S 0

1( , )
1 ( ) ( ) ( ) ( ) ( )cH z k

C z W W z C z C z W W W zξ ξ

=
+ + +

 (26) 

depends on the vector in in ex
C P I P[ , , ]Tk k k k=  of the controller parameters and 

ex|| ||v ∞  is the ∞-norm of ex
0{ ( )}v nT  defined as 

0

ex 1
0 0( ) { { ( ) ( ) ( )} }t nTv nT Z L W s W s D sξ

−
==  in which ( ) { ( )}.D s L d t=  (Due to 

space limitation, details are omitted.) 
It turned out that the set inΩ  of pairs ( )in in

P I,k k  under which the inner loop 

will be stable is bounded. According to (24), the set exΩ  of ex
P sk  guaranteeing the 

stability of the external loop for these in
P sk  and in

I sk  is also bounded. These facts 
make it possible to utilize the well-known Weierstrass theorem [19, chap. 1, sect 
3]. By virtue of this theorem, there exists some 

in ex
C

ex
C C 1arg min || ( ) ||

k
k H k∗

∈Ω ×Ω
=  (27) 

minimizing l1-norm of the transfer function (26) in C.k  

The choice of Ck ∗

 
 according to (27) solves the l1-optimization problem formu-

lated as the requirement (8), and it is the main result of this paper. 

Unfortunately, the l1-norm of ex
C( , )H z k  given by (26) is non-differentiable 

function with respect to the components in in ex
P I P, ,k k k  of C.k  Therefore, the ran-

dom search technique is proposed to find the optimal parameter vector, C ,k ∗  de-
fined in (27). 

The l1-optimization algorithm employing the random search is as follows 
[19, chap. 6, item 4]: 

Step #1: Setting 0k =  choose an arbitrary 0
Ĉ ,k ∈Ω  where in exΩ = Ω ×Ω  is 

the bounded set depicted in Fig. 3. 

Step #2: Compute a trial point Ĉ ,kk + ∈Ω  according to the rule  

C C
ˆ ˆ ,k k kk k r+ = +  

where kr  is a realization of a suitably distributed random vector. 

Step #3: If C 1 C 1
ˆ ˆ|| ( ) || || ( ) ||k kH k H k+ <  then 1

C C
ˆ ˆ ,k kk k+ +=  else 1

C C
ˆ ˆ .k kk k+ =  

Step #4: Increment k by one and go to Step #2. 
Numerical example. Let the parameters of aircraft be 10.84,Kξ =  

1
0 1s ,K −=  0.4926sTξ =  and the parameters of the aileron servo be S 1,K =  

S 0.1sT = (as in [15]). Choose the sampling period equal to 0 0.01s.T =  
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By formulas (19), we first calculate 1 0.0106,c =  2 0.0102,c =  

1 -1.8847,d =  2 0.8867.d =  Next by using these values and the inequalities (20) 

together with (21), we specify the stability region inΩ  of the inner closed loop 
depicted in Fig. 2. Further, exploiting the inequalities (24) together with (25), we 
are capable to design the three-dimensional stability region in exΩ = Ω ×Ω  as 
shown in Fig. 3. Note that 0 ,Ω ⊂ Ω  where 0Ω  is an outer parallelepiped. 
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Fig. 2. Stability region of the inner circuit under the conditions of the numerical exam-

ple 
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Fig. 3. Stability region of the control system under the conditions of the numerical example 

 

Fig. 4 is presented to demonstrate how the random search process goes step by 
step utilizing the algorithm described in the previous subsection. Additionally, 

Fig. 5 shows how the vector sequence C{ }kk  converges to a in in ex
C P I P[ , , ] .Tk k k k∗ ∗ ∗ ∗≈  
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Fig. 4. Evolution C 1|| ( ) ||H k  with k 
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Fig. 5. Trajectory of vector sequence C{ }k  (from initial 0
Ck (black point) to final 

21
C Ck k∗≈ (grey point)) within the region 0Ω  

 
SIMULATIONS 
 

To evaluate the performance index of the control system that uses the 
l1-optimization approach, several simulation experiments were conducted. In these 
experiments, variable ( )d t  similar to the wind gust was simulated as Dryden Wind 
Turbulence Model. 
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The duration of the observations was 500 s. 
Results of six experiments are presented in Table 1. 

Table 1 

Performance indices of the control system for different controller parameters 

Number of 
experiment 

in
Pk

 
in
Ik

 
ex
Pk

 

Maximum 0| ( ) |e nT  

for [0, 50000]n∈  

1 4 0.08 3.7 0.0203 
2 4 0.1 3.7 0.0173 
3 4 0.1 3.5 0.0180 
4 4 0.1 3.8 0.0169 
5 4 0.1 4.1 0.0160 
6 3 0.05 6.8 0.0382 

 
The first simulation experiment corresponded to the case where the controller 

parameters were optimized using the method proposed in the work [14]. In this 
case, we first optimized the two parameters of the inner controller. Next, based on 
these parameters, we calculated the one optimal parameter of the external control-
ler.  

In the fifth experiment, the optimal parameters of both controllers were calcu-
lated simultaneously (according to the proposed approach). It turns out that the 
parameter in

Pk  of the both l1-optimal controllers are same whereas in
Ik  and ex

Pk  
becomes somewhat different. This leads to the different performance indices. 
Namely, in the first experiment, the estimate 0max | ( ) |e nT  were greater than in 
fifth experiment. This fact shows that the simultaneous l1-optimization is more 
efficient.  

We observe that if in
Pk  and in

Ik  become approximately equal but ex
Pk  increases 

then 0max | ( ) |e nT  decreases (see Table 1). 
Note that if the controller parameters essentially differ from their optimal val-

ues (as in sixth experiment), then the performance index of the control system be-
comes unsatisfactory. 

Results of the optimal and nonoptimal control observed in first, fifth and sixth 
experiments, respectively, are presented in Figs 6 and 7. These figures confirm the 
theoretical analysis with respect to l1-optimal control performance in the presence 
of unmeasured external disturbance. 
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Fig. 6. Behavior of autopilot under conditions of first experiment (gray color) and of fifth 

experiment (black color) 
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Fig. 7. Behavior of autopilot under conditions of fifth experiment (black color) 

and sixth experiment (gray color) 
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CONCLUSIONS 
 

This paper dealt with the l1-optimization concept applied for synthesizing the 
lateral autopilot for aircraft. It was established that the two-circuit l1-optimal PI and 
P control laws can cope with the wind gust and ensure the desired roll orientation. 
This makes it possible to achieve the control objective given in (8). 

A distinguishing feature of the control algorithms is that they are sufficiently 
simple. This is important from the practical point of view. 

Of course, the results obtained in this work oriented on an ideal case because 
they do not take parametric and nonparametric uncertainties, nonlinearities, etc., 
into account. Therefore, the future study will be conducted to analyze the robust-
ness properties of the controller similar to that we considered in this paper. 

 
1. Stevens B.L., Lewis F.L. Aircraft Control and Simulation, 2nd ed. New York: John Willey & 

Sons, 2003, 680 p. 
2. William D.E., Friedland B, Madiwale A.N. Modern conrtol theory for design of autopilots 

for bank-to-turn missiles. J. Guidance Control, 1987, vol. 10, pp. 378–386. 
3. Teoh E.K., Mital D.P., Ang K.S. A BTT CLOS autopilot design. The EEE Journal, 1992, 

vol. 4, pp. 1–7. 
4. Ang K.S., Teoh E.K., Mital D.P. Adaptive control of a missile autopilot system. Proc. 12th 

IFAC World Congress, 1993, vol. 1, pp. 293–296. 
5. Malaek S.M.B., Izadi H., Pakmehr M. Intelligent Autolanding Controller Based on Neural 

Networks. Proc. 1st African Control Conference (AFCON2003), Cape Town, South Africa, 
2003, vol. 1, pp. 113–119. 

6. Khrosravani M.R. Apllication of Neural Network on Flight Control. Int. Journal of Machine 
Learning and Computing, 2012, vol. 6, pp. 882–885. 

7. Lavretsky E., Wise K. A. Robust and Adaptive Control with Aerospace Aplication. London: 
Springer-Verlag. 2013, 454 p. 

8. Astrom K.J., Wittenmark B. Computer Controlled Systems. Theory and Design, 2nd ed. N.J.: 
Prentice Hall, Englewood Cliffs, 1990, 555 p. 

9. Goodwin G.C., Graebe S.F., Salgado M.E. Control Systems Design. N.J.: Prentice Hall, 
2001, 908 p. 

10. Yuz J.I., Goodwin G.C. Sampled-Data Models for Linear and Nonlinear System. London: 
Springer-Verlag, 2014, 289 p. 

11. Dahleh M.A., Pearson J.B. l1-optimal feedback controllers for discrete-time systems. Proc. 
American Control Conference, Seattle, WA, 1986, pp. 1964–1968. 

12. Vidyasagar M. Optimal rejection of persistent bounded disturbances. IEEE Trans. on Autom. 
Control, 1986, vol. 31, pp. 527–517. 

13. Khammash M.H. A new approach to the solution of the l1 control problem: the scaled-Q 
method. IEEE Trans. on Autom. Control, 2000, vol. 45, pp. 180–187. 

14. Melnyk K.V., Zhiteckii L.S., Bogatyrov A.M., Pilchevsky A.Yu. Digital control of lateral 
autopilot system applied to an UAV: optimal control strategy. Proc. 2013 2nd IEEE Int. 
Conf. “Actual Problems of Unmanned Air Vehicles Developments”, Oct., 15-17, Kiev, 
Ukraine, 2013, pp. 189–192. 

15. Blakelock J.H. Automatic Control of Aircraft and Missiles, 2nd ed. New York: John Wiley & 
Sons, Inc., 1991, 672 p. 

16. Tou J.T. Digital and Sampled-Data Control Systems. New-York: McGraw-Hill Book Com-
pany, 1959, 631 p. 

17. Jury E.I. Sampled-Data Control Systems. New York: John Willey & Sons Inc., 1958, 332 p. 
18. Polyak B.T., Shcherbakov P.S. Robust Stability and Control. Moscow: Nauka, 2002, 303 p. 

(in Russian) 
19. Polyak B.T. Introduction to Optimization. New-York: Optimization Software Inc., 1987, 

438 p.  

 Житецкий Л.С., Пильчевский А.Ю., Соловчук К.Ю, 2016 
ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Киб. и выч. техн. 2016. Вып. 185. 



 
33 

 
UDC 681.5 

l1-OPTIMIZATION APPROACH TO DESIGN OF 
DIGITAL AUTOPILOTS FOR LATERAL MOTION 
CONTROL OF AN AIRCRAFT 
L. S. Zhiteckii, A. Yu. Pilchevsky, K. Yu. Solovchuk  
International Research and Training Center for Information Technologies and Sys-
tems of the National Academy of Science of Ukraine and Ministry of Education and 
Sciences of Ukraine, Kiev, Ukraine 

Introduction. The optimal digital autopilot needed to control of the roll for an 
aircraft in the presence of an arbitrary unmeasured disturbances is addressed in this 
paper. This autopilot has to achieve a desired lateral motion control via minimizing 
the upper bound on the absolute value of the difference between the given and true 
roll angles. It is ensured by means of the two digital controllers. The inner control-
ler is designed as the discrete-time PI controller in order to stabilize a given roll 
rate. This variable is formed by the external discrete-time P controller. To optimize 
this control system, the controller parameters are derived utilizing the so-called 
l1-optimization approach advanced in modern control theory. The motion parame-
ters are assumed to be known. 

The purpose of the paper is to synthesize a digital autopilot which is able to 
maintain a given roll orientation of an aircraft with a desired accuracy and to cope 
with an arbitrary external disturbance (a gust) whose bounds may be unknown. 

Results. The necessary and sufficient conditions guaranteeing the stability of 
the two-circuit feedback discrete-time control system are established. First, the 
l1-optimal PI and P controller parameters are calculated simultaneously (in contrast 
with [14]). Second, the aileron servo dynamics are taken into account to establish 
the stability condition for optimizing the controller parameters. Third, random 
search algorithm is used to calculate the three optimal values of the autopilot pa-
rameters. To support the theoretical results obtained, in this work, several simula-
tion experiments were conducted. We have established that the simultaneous l1-
optimization of both controllers was more efficient than the sequential 
l1-optimization of inner and external controllers. 

Conclusion. It was established that the two-circuit l1-optimal PI and P control 
laws can cope with the wind gust and ensure the desired roll orientation. This 
makes it possible to achieve the control objective which was stated. 
A distinguishing feature of the control algorithms is that they are sufficiently sim-
ple. This is important from the practical point of view. 

Keywords: aircraft, lateral dynamics, digital control system, discrete time, sta-
bility, l1-optimization, random search algorithm. 
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