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We analyse the important role of four-phonon processes (4pp) in isotropic phonon systems of superfluid

helium. The matrix elements and the rate of four-phonon processes are calculated. Special consideration is

given to the 4pp in the momentum range where three-phonon processes are allowed. In this momentum

range, we show that the 4pp scattering rate, at small angles, is equal to the scattering rate due to three-pho-

non processes. Then we show that the coefficient of first viscosity of superfluid helium is caused by two pro-

cesses, the first is due to the transverse relaxation caused by many three-phonon processes and the second is

due to four-phonon processes. The relaxation time that governs the viscosity is obtained from the sum of the

rates from these two processes. The temperature dependence of the attenuation coefficient of a pulse

of high-energy phonons in He II, due to scattering with thermal phonons, is also calculated. The theoretical

results are compared with experimental data and found to be in good agreement.

PACS: 47.37.+q Hydrodynamic aspects of superfluidity; quantum fluids.
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1. Introduction

Many of the properties of superfluid helium are de-

scribed in terms of its excitations from the ground state,

the phonons and rotons. There are interactions between

these excitations which govern important characteristics

such as the time to reach thermodynamic equilibrium, and

the normal fluid viscosity. At low temperatures, T � 0.6 K,

there are practically no rotons so the phonons determine

the behavior of superfluid 4He. Phonons mutually scatter

by two main processes, three-phonon process (3pp), in

which one phonon decays into two phonons and vice

versa, and four-phonon processes (4pp) in which two

phonons scatter to two other phonons. Higher order pro-

cesses are weak in comparision.

There is only one phonon branch in liquid helium, un-

like solids which have transverse branches as well as a

longitudinal branch. These branches in solids have nor-

mal dispersion, so 3pp in solids involve phonons from

more than one branch. However 3pp are allowed within

the same branch in liquid helium, because the dispersion

is anomalous over a large part of the phonon momentum

range.

If we write the dispersion curve for phonons as

� �� �cp p( ( ))1 , (1)

where c is the sound velocity, � and p correspond to the

energy and momentum of a phonon, then when �( )p � 0,

the dispersion is anomalous and when �( )p � 0, the dis-

persion is normal and 3pp are not allowed. The function

| ( )|� p �� 1 and it describes the deviation of the phonon

spectrum from linearity. So we see that although the value

of �( )p is small, it completely determines the mecha-

nisms of phonon interactions.

When p pc� (at the saturated vapour pressure
~p cp /kc c B� �10 K) �( )p � 0 and the dispersion is anom-

alous. In this case, the conservation laws of energy and

momentum allow processes which do not conserve

phonon number. The fastest of these is the small-angle
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three-phonon process which has a typical rate �3pp in

which one phonon decays into two or two interacting

phonons combine into one. When the angle between the

momenta of the phonons is large, � 27°, three-phonon pro-

cesses are forbidden by the conservation laws and the

interaction between phonons is only by the slower

four-phonon processes, with the typical rate �4 pp . When

p pc� , function �( )p � 0. In this case, the dispersion is

normal and three-phonon processes are forbidden by the

conservation laws of energy and momentum and the

fastest scattering is by four-phonon processes.

There is a strong inequality between the typical values

of the rates of three-phonon and four-phonon processes

described above,

� �3 4pp pp�� (2)

which causes dynamic systems of phonons, in superfluid

helium, to separate into two subsystems: a subsystem of

high-energy phonons (h-phonons) with p pc� in which

equilibrium is attained relatively slowly and a subsystem

of low-energy phonons (l-phonons) with p pc� in which

equilibrium occurs relatively quickly (see, for example,

Refs. 1–5).

The dissipative coefficients of superfluid helium are

mainly governed by the interaction between l-phonons.

However �3pp does not enter directly into the dissipative

coefficients. Three-phonon processes cause thermal equi-

librium to be established rapidly in a small angular range

of momentum. Equilibrium over the whole angular range

can be obtained in two ways. The first is by superdif-

fusion in space with the momentum vector having angular

steps of a size which is typical of three-phonon processes.

This has a typical rate �� that is three orders of magni-

tude lower than the three-phonon process rate (see, for

example, Refs. 6–10). The second is by four-phonon pro-

cesses (see, for example, Refs. 11 and 12), which can

scatter through much larger angles than 3pp. The rate

from these important 4pp scatterings has not been ob-

tained when there is anomalous dispersion which allows

spontaneous decay.

Earlier rates were found indirectly from measurements

of the dissipative coefficients of phonon systems. These

relate to global equilibrium times. A direct measurement

of the rate of four-phonon process scattering was made by

measuring the attenuation of a pulse of h-phonon propa-

gating through superfluid helium at a finite temperature

[13]. Here the beam of h-phonons is scattered by the iso-

tropic distribution of thermal low-energy phonons. Re-

cently, direct measurements of the phonon–phonon scat-

tering rates interactions have been made by scattering two

beams of phonons [14–16].

From the above we see that 4pp scattering is funda-

mentally important to understanding some important

properties of superfluid helium. In this paper we develop

the detailed theory of 4pp scattering, including the mo-

mentum range where conservation laws of energy and

momentum allow three-phonon processes. From the de-

tailed theory we find numerical values for the scattering

rates and the relaxation times in isotropic phonon sys-

tems. Hence we find the coefficient of first viscosity as a

function of temperature. There is good agreement with

the measured values.

In Sec. 2 we derive the matrix elements for 4pp, in Sec. 3

we find the relaxation in phonon system caused by

four-phonon processes, in Sec. 4 we find the 4pp rate

when 3pp are allowed, in Secs. 5 and 6 we calculate the

relaxation time relevant to viscosity. In Sec. 7 we calcu-

late the scattering of a beam of high-energy phonons by

thermal phonons. Finally in Sec. 8 we draw conclusions.

2. Matrix element for four-phonon processes with the

account of possibility of three-phonon processes

The interaction of phonons in superfluid helium can be

described by the Landau Hamiltonian which can written

as (see, for example, Ref. 17)

� � � �H H V Vph � � �0 3 4 , (3)

where �H 0 is the Hamiltonian of noninteracting phonons,

terms �V3 and �V4 describe the interaction of phonons

caused by small deviations of the system from equilib-

rium to third and fourth order, respectively.

The probability density of four-phonon process, fol-

lowing Refs. 13,17,18, can be written as

	 	W V H fi( , | , )
( )

p p p p1 2 3 4
2 2

6

2 1

2
�





� �

, (4)

where V is a volume of a system, H fi is the amplitude of

four-phonon processes. This is obtained from �V3 with sec-

ond order perturbation theory, and from �V4 with first or-

der perturbation theory. Following standard procedures

(see, for example, Refs. 13,17–20) we have

	 	 	 	
H

V V

E E
fi

i

�
� �� �


��

p p Q Q p p

QQ

3 4 3 3 1 2, � � ,

	 	� � �p p p p3 4 4 1 2, � ,V , (5)

where Ei is the energy of initial state and Q is the interme-

diate state with energy EQ.

There are six possible intermediate states Q :

I II.

III. IV.

. ; , , ;

, , ; , ,

p p p p p p

p p p p p p p

1 2 2 3 1 3

2 4 1 4 1 3 2

� 

 

  

p

p p p p p p p p p p

3

1 4 2 4 1 2 3 4 1 2

;

, , ; , , , , .V. VI.

(6)
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There is an important effect when all four phonons

participating in four-phonon process are l-phonons. Then

it is possible that the matrix elements diverge. This is be-

cause the denominator of the first term in Eq. (5) can be

zero at some value of Q. This happens when the transition

from the initial state to the final state can be realized by

two sequential three-phonon processes. This divergence

can be eliminated if we take into account that the interme-

diate state has a finite lifetime. As pointed out in Ref. 21,

the energy of a system which can decay into some

quasi-stationary state, can be determined only to within

an accuracy of � � �/�, where � is the lifetime of the sys-

tem in this quasi-stationary state. In our case, the finite-

ness of the lifetime of the state Q is due to the possibility

that it can scatter by the three-phonon process. Thus EQ in

the denominator of the first term in Eq. (5), must be sub-

stituted by E iQ
Q � ( ), where � ( )Q is defined by the life-

time of the corresponding intermediate state. The life-

times of the corresponding intermediate states are

I. II.

III.

� � � �

�

( ) ( )

( )

( ); ( );1
1

1 2 13
1

1 3

14

� � � 

�

 
d cp p p p

� � �

� �

c c

c

 



 � 

� 

1
1 4 23

1
2 3

24
1

2

( ); ( );

(

( )

( )

p p p p

p p

IV.

V. 4 5); .( )VI. � ��

(7)

Here �d ( )p is a rate of a decay of a phonon with momen-

tum p into two, and � c ( )p is the rate of the three-phonon

processes in which a phonon with momentum p combines

with the other phonon. These 3pp rates were calculated

by us in Ref. 4 for isotropic and anisotropic phonon sys-

tems. The intermediate state VI cannot be realized by

three-phonon processes and therefore the denominator

cannot be zero at any value of momentum. We therefore

consider that the lifetime of such a state is infinite and the

value of � is � � ��/� 0. If one of the four interacting pho-

nons is an h-phonon, then there are no divergences in the

first term of Eq. (5). In this case all lifetimes in Eq. (7)

should be considered infinite, and all �’s equal to 0.

From relations (5) and (6) it follows that

H
p p p p

V
Mfi � 1 2 3 4

8� � . (8)

Here � �145 kg/m 3 is a density of He II, and

M M M M M M M M� � � � � � � �( ) ( ) ( ) ( ) ( ) ( )1
13

3
14

3
23
3

24
3 5

4

(9)

is a matrix element which consists of seven terms, six of

which correspond to the six intermediate states (6), and

the seventh is determined by the contribution of �V4 to

first order. We can write these terms as

M
i

( )

( )

1 1 2

1 2 1 2
1

�
�  �

��

�

�

� � � �

�  � � � �� �( )2 1 1 2 1 1 2 2 1 2u n n n n n n

�  � � �� �( )2 1 3 4 3 3 4 4 3 4u n n n n n n , (10)

M u( ) ( )5 1 2

1 2 1 2
1 2 1 1 2 2 1 22 1� 

� �
 �   ��

�
� �

�

� � �
n n n n n n

�  �  � �( )2 1 3 4 3 3 4 4 3 4u n n n n n n , (11)

M u w4
24 1�  �{( ) }, (12)

M
i

13
3 1 3

1 3 1 3
13

( )

( )
�

  �
�



�

� � � �

�  � � � � ( )2 1 1 3 1 1 3 3 1 3u n n n n n n

�  � � � ( )2 1 2 4 2 1 3 4 1 3u n n n n n n . (13)

Here n pi i i/p� , � ( )
( )

q
q� 

�� 1 , u /c c/� � � �( )� � 2.84 is a

Grüneisen constant, w /c c/� � � �( )� �2 2 2 0.188, � �i i� ( )p .

The rest of the terms in Eq. (9), i.e., M
14

3( )
, M

23
3( )

and M
24
3( )

can be obtained from M
13

3( )
by the replacement of the cor-

responding subscripts. The matrix element is given in de-

tail in Ref. 22, to which the corresponding �’s should be

added (see Eqs. (10) and (13)).

3. Relaxation in phonon system caused by

four-phonon processes

We consider four-phonon process which have two

phonons in the initial state and two phonons in the final

state. The conservation of energy and momentum is ex-

pressed as

� � � �1 2 3 4 1 2 3 4� � � � � �, p p p p . (16)

The kinetic equation describing the change of the distri-

bution function n n( )p1 1� due to 4pp scattering is

dn

dt
N Nb d

1
1 1� ( ) ( )p p , (15)

where N b ( )p1 and N d ( )p1 are the respective rates of in-

creasing and decreasing number of phonons with momen-

tum p1 in unit time due to collisions. They can be written as

N b d, ( )p1 �

� �
1

2
1 2 3 4

3
2

3
3

3
4W n d p d p d pb d( , , ) ( ) ( ) ,p p |p p p� � �� � .

(16)

The probability density W ( , ),p p |p p1 2 3 4 is defined by

Eq. (4) and determines the probability of the process.

The factor 1/2 is due to the identity of processes
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p p p p1 2 3 4� � � and p p p p1 2 4 3� � � , the �-func-

tions correspond to the conservation laws of energy �� �
� �  � � � �1 2 3 4 and momentum p p p p p� � �  1 2 3 4 ,

and

n n n n n n n n n nb d� � � � � �3 4 2 1 1 2 3 41 1 1 1( )( ), ( )( ).

(17)

To determine the typical rate of four-phonon processes

in phonon systems in superfluid helium, we take the dis-

tribution functions in Eq. (15) as

n n n n n n n n n1 1
0

1 2 2
0

3 3
0

4 4
0� � � � �( ) ( ) ( ) ( )

, , ,� . (18)

In Eq. (18) superscript «0» corresponds to the equilibrium

distribution function, and �n is the deviation of the distri-

bution function from equilibrium.

The equilibrium distribution function of phonons, ac-

cording to Refs. 4, 23, can be written as

n
k TB

( )( ) exp0

1

1p
pu

�
�

�
��

�

�
�� 

�
 
!

"
#
$


�

, (19)

where

u N� c( )1 % (20)

is a drift velocity, N is a unit vector directed along the to-

tal momentum of phonon system. This defines an aniso-

tropy axis of phonon system and % is the anisotropy pa-

rameter.

For isotropic systems the parameter % �1 and u � 0 in

Eq. (19). For weakly anisotropic systems % is close to 1.

However for strongly anisotropic phonon systems % �� 1.

Such systems can be created experimentally [14–16].

The typical rate of relaxation caused by four-phonon

processes �4 pp , according to kinetic theory in the relax-

ation time approximation, can be defined as

�
�

�
4 1

1

11
pp

n

d n

dt
( )p �  . (21)

From Eqs. (15)–( 21) we have

�4 1

1
0

3
2

3
3

3
4

1

2

1

1
pp

n
d p d p d p( )

( )
p �

�
��

� � �W n n n( , | , ) ( ) ( ) ( )( )
( ) ( ) ( )

p p p p p1 2 3 4 2
0

3
0

4
0

1 1� � �� � .

(22)

Equation (22) can be integrated with a help of the

�-functions. For this we rewrite Eq. (22) taking into ac-

count (4), (8)–(13) in a spherical coordinate system

�

 �

4
1

11 5 7 2
1

02

1

1
pp

p

n
�

�
�

�
( )

� �� dp d d dp d d dp d d p p p2 2 2 3 3 3 4 4 4 2
3

3
3

4
3& ' & ' & '

� � �M n n n� � �
2

2
0

3
0

4
0

1 1� � �( ) ( ) ( )( )
( ) ( ) ( )

p , (23)

where ' i i i/p� 1 ( )p N and & i is the azimuth angle of the

phonon with momentum p i . Without loss of generality,

we assume that p p3 4� for the integration.

Making the integration in Eq. (23), with a help of the

�-functions (see Appendix A) we have

�

 �

4 10 5 7 2

1

1
0

1

2 1
pp

c

p

n
�

�
�

�
( )

� �� dp dp d d d
p p p

R
2 3 2 3 2

2
3

3
3

4
2

' ' &

� � � �� { } ( )( )( ) ( )
( ) ( ) ( )

M M n n n2 2
2
0

3
0

4
0

1 1 , (24)

where

p p p p
p p p

p
4 1 2 3 4

1 1 2 2 3 3

4

� �   ( �
�   (

, ,'
' ' '

(25)

( � �   �p p p p pi i3 3 4 4 1 1 2 2� � � � � �, ( ), (26)

M M( )
( ) ( )

(cos cos ,cos cos ))
) )� � �� & & & &3 3 4 4

(27)

and cos
,

( )&
3 4
)

are determined by Eqs. (88), (89) of Appen-

dix A.

Further integration of Eq. (24) cannot be precisely

made analytically, because of the complexity of the in-

tegrand. The results of a numerical calculation of the

l-phonon relaxation rate from Eq. (24), for the isotropic

case at temperature T �0.6 K, are shown in Fig. 1, curve 1.

The limits of integration in Eq. (24), with the condition

p p3 4� , are the momenta given by

p
p p

p p p pc3
1 2

3 1 2
2

low up�
�

� �, min( , ), (28)

p p pc2 0low 2up� �, . (29)

For comparison, the rate of three-phonon processes in the

isotropic case with T � 0.6 K calculated by us in Ref. 4 is

shown by curve 5.

From Fig. 1, it can be seen that in practically all the

momentum range, where three-phonon processes are al-

lowed, the rate of four-phonon processes is almost the

same as the rate of three-phonon processes. To further un-

derstand this result, the contribution of the different angu-

lar groups of phonons with momentum p2 is calculated.
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Curves 2–4 show the contributions to the rate of phonons

with momentum p2 having angles with a phonon p1:

0–30° (curve 2), 30–60° (curve 3) and 60–180° (curve 4).

From Fig. 1 it can be seen, that the main contribution to

the rate of four-phonon processes involves phonons with

momentum p2, at an angle up to 30° to phonon p1. We

conclude that the rate of these four-phonon processes is

practically equal to the rate of three-phonon processes.

From this analysis, it follows that the main contribution to

�4 pp , where three-phonon processes are allowed, is

caused by small angle scattering, and then �4 pp appears

practically equal to �3pp .

In order to understand why there is a coincidence be-

tween �3pp and �4 pp for angles where three-phonon pro-

cesses are permitted, it is necessary to make analytical

calculations which we do in the next section.

4. The rate of four-phonon processes in the range of

angles where three-phonon processes are permitted

To calculate the rate of four-phonon processes, at

small angles where three-phonon processes are allowed,

we start from Eq. (22) for the rate and Eq. (4) for the prob-

ability density of the four-phonon processes. At small an-

gles, the main contribution to the matrix element (9), is

given by the five resonant terms corresponding to the in-

termediate states I–V (see (6)). Our calculations show

that after squaring the absolute value of the matrix ele-

ment, cross-terms give a small contribution to the inte-

gral. So the main contribution is caused by the squares of

the five resonant terms.

We now calculate the contribution to the rate of each of

the five terms mentioned above. The probability density

WI of the four-phonon process which is caused by the in-

termediate state I, is conveniently written in the form

W VI( , | , )
( )

p p p p1 2 3 4
2

6

2 1

2
� �





� �

�
� �� �

�  �
��

p p q q| p p

q
p p

q

3 4 3 3 1 2

1 2

2

3

, | � | � | ,

( )
(

V V

i d� � �
�

� 4
3q) ,d q

(30)

where

�d d( ) ( )q q� �� . (31)

The probability density of three-phonon processes is

given by (see, for example, Ref. 4)

W V Vi j i j( , | ) , | � |p p q p p q� � �
2

3

2

�

. (32)

Taking (32) into account, we can rewrite Eq. (30) as

W I( , | , )
( )

p p p p1 2 3 4 62

1

2
� �

�

�
 


�
�  �

� �
W W

d

( , | ) ( | , )

( ) ( )
( )

p p q q p p

q
p p q

q

3 4 1 2

1 2
2 2 3 4

� � �
�

�
d q3 . (33)

As

1

1 2
2 2( ) ( )� � ��  �

�
q q�d

�
�  �





* � � ��

�

�d

d

d
( )

( )

( ) ( )}q

q

qq1 2
2 2

, (34)

then for small values of �, due to the equality

lim
( )

( )
+

+


 , +
� ,

- �
�

0 2 2
(35)

the second factor in the right-hand side of Eq. (34) can be

approximately replaced by a �-function.

Substituting expression (34) into (33), taking into ac-

count (35), we obtain

W I( , | , )
( )

p p p p1 2 3 4 62

1

2
� �

�

�


� �  � �
W W

d
d

( , ) ( , )

( )
( ) ( )

p p |q q|p p

q
p p qq

3 4 1 2
1 2 3 4

3

�
� � � � � q.

(36)

Then substituting (36) into (22) and assuming the an-

gles are small, we have
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Fig. 1. The rate of four-phonon processes in the isotropic

l-phonon system with T � 0.6 K (curve 1) as a function of mo-

mentum p1; curves 2–4 show contributions to the relaxation rate

by phonons p2 having angles with phonon p1: 0–30° (curve 2),

30–60° (curve 3) and 60–180° (curve 4). Curve 5 shows the rate

of three-phonon processes in the isotropic case for T � 0.6 K. It

can be seen that curves 1 and 5 are almost coincident for p pc1� .
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4 1 6
1

0

3 3
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3
3
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4

4

1
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1

1
pp

n
d qd p d p d pI ( )

( ) ( )
p �

�
��

�

�
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W W

n n n
d

( , | ) ( | , )

( )
( )( )

( ) ( ) ( )p p q q p p

q

3 4 1 2
2
0

3
0

4
0

1 1
�

� �  �  �  � � � � � � � � � � �( ) ( ) ( ) ( ).p p q p p q q q1 2 3 4 1 2 3 4

(37)

Taking the �-functions into account, together with the

properties of the equilibrium distribution functions, the

combination of distribution functions in Eq. (37) can be

rewritten in the form

1

1
1 1

1
0 2

0
3
0

4
0

�
� � �

n
n n n

( )

( ) ( ) ( )
( )( )

�  � �( )( )
( ) ( ) ( ) ( )

n n n n
2
0 0

3
0

4
0

1q . (38)

The rate of decay of a phonon with momentum p i , due

to the three-phonon process p p pi j k� � is, according to

Ref. 4, equal to

�



d i j k
i j k

j k
d p d p

W
n n( )

( | , )

( )
( )

( ) ( )
p

p p p
� � � �

1

2 2
13 3

3

0 0

�
�
�    � � � � �( ) ( )p p pi j k i j k , (39)

and the rate of combining with the phonon with momen-

tum p j is

�



c j k i
j k i

k id p d p
W

n n( )
( , | )

( )
( )

( ) ( )
p

p p p
�  �� 3 3

3

0 0

2 �

� �  � � � � � �( ) ( )p p pj k i j k i . (40)

Tak ing in to accoun t the equa l i ty W i j k( | , )p p p �
�W j k i( , | )p p p we have

�



4 1 3

3 3
2 2

0 0 1 2

2 2
pp d qd p n n

WI ( )
( )

( )
( | , )( ) ( )

p
q p p

q� �
�

� �d ( )q
�

� �  � � � � � � �d ( ) ( ) ( )q p p q q1 2 1 2 . (41)

On substituting (31) into (41) and taking (40) into ac-

count, we finally have

� �4 1 1
1

2
pp c

I ( ) ( )p p� . (42)

Now we calculate the contribution to rate due to the in-

termediate state II. The probability density of a four-pho-

non process caused by the intermediate state II is conve-

niently written in the form

W VII( , | , )
( )

p p p p1 2 3 4
2

6

2 1

2
� �





� �

�
� �� �

  �

p p q p p q p p p p

q

3 4 3 2 3 2 3 3 1 2

1 3

, | � | , , , , | � | ,V V

i� � � �c ( )q� �

2

�  �( ) ,p q p1 3
3d q (43)

where

�c c( ) ( )q q� �� . (44)

Taking (32) into account we can rewrite (43) as

W II( , | , )
( )

p p p p1 2 3 4 62

1

2
� �

�

�
 


�
  �

 
W W

d

c

( | , ) ( , )

( ) ( )
( )

p q p q p |p

q
p q p

q

4 2 3 1

1 3
2 2 1 3

� � �
�

�

3q� . (45)

Replacing the resonant factor in Eq. (45) by a �-func-

tion, in a similar way to the previous case, we obtain

W II( , | , )
( )

p p p p1 2 3 4 62

1

2
� �

�

�


�    
W W

d q
c

( | , ) ( , | )

( )
( ) ( )

p q p q p p

q
p q pq

4 2 3 1
1 3 1 3

3

�
� � � � �� .

(46)

Substituting (46) into (22), and assuming the angles are

small, we have

�



4 1 6
1

0

3 3
2

3
3

3
4 2

0

4

1

2

1

1
pp

n
d qd p d p d p nII ( )

( ) ( )

( )
p �

�
��

�

�

� � � ( )( )
( | , ) ( , | )

( )
(

( ) ( )
1 1

3
0

4
0 4 2 3 1

1n n
W W

c

p q p q p p

q
p q

�
�  �p3 )

�      � � � � � � � � �( ) ( ) ( )p q p q q4 2 1 3 4 2 . (47)

Taking the �-functions and the properties of the equilib-

rium distribution functions into account, the combination

of distribution functions in the integral can be rewritten in

the form

1

1
1 1

1
0 2

0
3
0

4
0

�
� � �

n
n n n

( )

( ) ( ) ( )
( )( )

�  � �( )( )
( ) ( ) ( ) ( )n n n n
2
0

4
0

3
0 01 q . (48)

Taking (48) into account we can rewrite (47) as

�



4 1 3

3 3
3 3

0 0

4 2
1pp d qd p n nII ( )

( )
( )

( ) ( )
p q� � � ��

�

�

�    
W

c
c

( , | )

( )
( ) ( ) ( )

q p p

q
q p q p q

3 1
1 3 1 3�

� � � � � � .

(49)
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Having substituted (44) into (49) we finally have

� �4 1 1
1

2
pp d

II ( ) ( )p p� . (50)

We draw the reader’s attention to an apparent contra-

diction. Firstly when n
2
0( )

tends to zero in Eq. (47), then it

seems that the rate �4 1pp
II ( )p , also tends to zero too. Sec-

ondly, the rate of decay �d ( )p1 does not tend to zero when

n
2
0( )

goes to zero. So we arrive at the contradiction that the

left-hand side of Eq. (50) is equal to zero while the

right-hand side is nonzero. However, if n
2
0( )

goes to zero,

then �c ( )q goes to zero too. So after cancelling n
2
0( )

with

the same term in the expression for �c (see Eqs. (44) and

(40)) we find that the rate �4 1pp
II ( )p is nonzero. Conse-

quently we are convinced in correctness of Eq. (50), which

is valid at all values of n
2
0( )

which are not exactly zero.

The calculation of �4 1pp
III ( )p can be made in a way sim-

ilar to the calculation of �4 1pp
II ( )p , if we replace p p3 4�

in the integrand. Thus we obtain

� �4 1 1
1

2
pp d

III ( ) ( )p p� . (51)

Analogous calculations for the fourth and fifth inter-

mediate states give

� � �4 1 4 1 1
1

4
pp pp c

IV V( ) ( ) ( )p p p� � . (52)

Finally we have

� � � �4 1 1 1 3 1pp c d pp( ) ( ) ( ) ( )p p p p� � � . (53)

Thus, the rate of four-phonon processes is equal to the

rate of three-phonon processes, in the momentum range

where three-phonon processes are allowed.

Thus, for small angle scattering, the main contribution

to the 4pp rate is caused by processes which can be repre-

sented as two consecutive three-phonon processes. At

larger angles between the momenta of phonons p1 and p2,

this mechanism becomes forbidden by the conservation

laws of energy and momentum and the scattering is

caused by «exclusive» four-phonon processes. These

processes exclude 4pp which can be represented by two

consequative 3pp. As a result, the scattering rate obtained

by us is the sum of the three-phonon process rate at small

angles (� 30°), and the rate of «exclusive» four-phonon

processes at larger angles.

5. The calculation of the viscous relaxation time

In this section we calculate the relaxation time that de-

termines the coefficient of first viscosity of superfluid he-

lium. We start from the stationary kinetic equation for

phonons. Following Ref. 12, we consider a macroscopic

nonuniform flow of fluid with velocity u(r) directed along

z axis. The velocity gradient is taken to be sufficiently

small so that in every moving volume element, there is a

local equilibrium. We consider that the velocity gradient

is directed along the x axis which is perpendicular to the

z axis. The distribution function ni of phonons with mo-

mentum p i can be represented as a sum of a local-equilib-

rium distribution function ni
( )0

, and a small deviation �ni :

n n ni i i� �( )
.

0 � (54)

Taking all the above into account, the kinetic equation

can be written as

n n
cp

k T

u

x
I n

B
1

0
1

0
11

( ) ( )
( ) cos sin cos ( )�

�
�

�. . & , (55)

where . is the polar angle between the phonon momentum

and the z axis, and & is the azimuth angle of the phonon

momentum relative to the x axis.

The collision integral, in the relaxation time � approxi-

mation, can be written as

I n
n

( )1
1� 

�

�
. (56)

From the kinetic equation (55), the deviation of the distri-

bution function from its equilibrium value, which is caused

by the macroscopic velocity gradient, can be written as

�
.

�n n n
P

k T
a bcpi i i

i

B
i i� � �( ) ( )

( )
(cos )

( )
0 0 21 , (57)

where P x2( ) is the second order Legendre polynomial, a

and b are parameters which define the deviation of the

distribution function of the phonons moving in the given

direction, from its equilibrium value. We note, that the pa-

rameters a and b are not independent. As equilibrium in

the given direction is attained quickly, by fast three-pho-

non processes, there is a relation between the parameters

a and b which can be written as follows (see, for example,

Refs. 8, 10)

b a� 
3

2
. (58)

Having integrated the left hand and right hand sides of

Eq. (56) over all phonon energies, and taking (57) and

(58) into account, we obtain the relaxation time which ap-

pears in the expression for the first viscosity,

�

 .

 � 
�1

4

4

5

1 1
3

1

2 1

15

2

c

k T

I p p dp

P
B( )

' ( )

(cos )
, (59)

where, from (15)–(17), (54), (57), and (58), the collision

integral can be written as
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/ � � �I p d p d p d p Wn n n n( ) ( )( )
( ) ( ) ( ) ( )

1
3

2
3

3
3

4 1
0

2
0

3
0

4
01

2
1 1� �

� �

�
�

�

�
� � �

�
�

�

�
� 

�
� . � .1 1 2 1 2 2 2 2

3

2

3

2
cp P cp P(cos ) (cos ) 

!

 �

�
�

�

�
�  �

�
�

�

�
�

"
#� . � .3 3 2 3 4 4 2 4

3

2

3

2
cp P cp P(cos ) (cos )

$
�

�� � �( ) ( )� �p . (60)

The probability densityW , in Eq. (60), is defined by Eq. (4).

Equation (59) differs from that obtained in Ref. 12 for

a nondecaying phonon spectrum, due to the terms in the

curly brackets of the integrand in Eq. (60). They are the

small terms containing �( )pi � 0, which occur in � i . As

will be shown below, these terms determine the relaxation

rate caused by phonons interacting at small angles (see re-

sult (75)). At small angles, the large terms in Eq. (60) are

equal to zero and only the small terms containing�( )p are

left (see result (75)) .

In Eq. (59) for the relaxation time, which determines

the coefficient of first viscosity, the integration can be

made with the help of the �-functions, as in the third sec-

tion. Further integration can only be precisely made nu-

merically. The results of this integration are shown in

Fig. 2 by curve 1. However the contribution of large and

small angles to Eq. (60) could be approximately calcu-

lated analytically; this will be done in the next section

where we also discuss the results shown in Fig. 2.

6. Calculation of the contribution of small and large

angle scattering to the relaxation time which deter-

mines the coefficient of first viscosity

To calculate the contribution of scattering at small an-

gles between the interacting phonons in Eq. (60), as well

as in the fourth section, we consider the contribution to

Eq. (60) of the five main terms, which correspond to the

five intermediate states I–V (see (6)).

We begin with the first intermediate state. The proba-

bility density of four-phonon process caused by the inter-

mediate state I, at small angles between the momenta of

the interacting phonons, is given by Eq. (36). After sub-

stituting Eq. (36) into Eq. (60) we obtain

/ � ��I d qd p d p d pI( )
( )

p1 6

3 3
2

3
3

3
4

4

1

2

�

�


� � �

�
�

�

�
�

W W
cp P

d

( , | ) ( , )

( )
(cos )

p p q q|p p

q

3 4 1 2
1 1 2 1

3

2�
� . �

�
 
!

� �

�
�

�

�
�  �

�
�

�

�
� � . � .2 2 2 2 3 3 2 3

3

2

3

2
cp P cp P(cos ) (cos )

 �

�
�

�

�
�

"
#
$

� �� .4 4 2 4 1
0

2
0

3
03

2
1 1cp P n n n n(cos ) ( )(

( ) ( ) ( )
4
0( )

)�

� �  �  �  � � � � � � � � � � �( ) ( ) ( ) ( ).p p q p p q1 2 3 4 1 2 3 4q q

(61)

The curly brackets in Eq. (61) can be rewritten in the form

{ (cos ) (cos ) }| |
P A P Aq q q

q
2 1 12

1
2 34

. .� , (62)

where

A cp cp Pq12
1

1 1 2 2 2 21
3

2

3

2
| (cos )� �

�
�

�

�
� � �

�
�

�

�
� � � .

 �

�
�

�

�
�� .q qcq P

3

2
2 1(cos ), (63)

A cq cp P
q
q

q q|
(cos )

34 3 3 2 3
3

2

3

2
� �

�
�

�

�
�  �

�
�

�

�
� � � .

 �

�
�

�

�
�� .4 4 2 4

3

2
cp P q(cos ), (64)

where . ij is the angle between phonons with momenta p i

and p j . The subscripts of A indicates the corresponding

process (for example, 12| q corresponds to p p q1 2� - ,

the superscript shows the momentum direction to which

all angles are referenced. We note, that for the A quanti-

ties the following relations are valid

A A A Aq q q
q

q
q

12
1

12
1

34 34| | | |
;�  �  . (65)
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Fig. 2. The phonon mean free path l c� � as a function of tem-

perature T. Curve 1 is calculated from the relaxation time

defined by Eq. (59); curve 2 represents Benin’s result (see

Ref. 7); curve 3 is a numerical calculation of the relaxation

time from Eq. (59) without the contribution of small angles be-

tween p1 and p2 (i.e., the lower limit of integration over angles

is equal to 30°); experimental points from Greywall [24] are

marked by triangles, the squares show the experimental data

from Zadorozhko et al. [25].



When deriving Eq. (62) we used the result of the theo-

rem about the addition of Legendre functions. This states

that if two directions in space are given by their polar an-

gles 0, /0 and their azimuth angles&, /& then the Legendre

function of the n-th order, which depends on the cosine of

the angle //0 between these directions, satisfies the fol-

lowing integral relation:

P d P Pn n n

0

2

2




& 
� //0 � 0 /0(cos ) (cos ) (cos ). (66)

Taking the above into account, the collision integral

(61) can be written as

/ � ��I d qd p d p d pI( )
( )

p1 6

3 3
2

3
3

3
4

4

1

2

�

�


		
� � �

W W
n n n n

d

( , ) ( , )

( )
( )(

( ) ( ) ( ) (p p q q p p

q

3 4 1 2

1
0

2
0

3
0

4
0

1 1
�

)
)�

� � �{ (cos ) (cos ) }| |
P A P Aq q q

q
2 1 12

1
2 34

. .

� �  �  �  � � � � � � � � � � �( ) ( ) ( ) ( ).p p q p p q1 2 3 4 1 2 3 4q q

(67)

The integral from the second term in curly brackets is

equal to zero because

P dq q q2

0

0(cos ) sin. . .



�� . (68)

Integration over p3 and p4 in Eq. (67) can be precisely

made analytically. As a result, we have

/ � I p PI( ) ( ) (cos ),p1 1 2 1
1

2
1 . (69)

where

1



( )
( | , )

( )
( )(( ) ( ) (

p d qd p
W

n n nq1
3 3

2
1 2

3

0
1

0
2

2
1 1� � ��

q p p

�

0)
)�

� �  � Aq q| ( ) ( )12
1

1 2 1 2� � � � �p p q . (70)

Similarly for the remaining terms we have

/ � / � I I p PII III( ) ( ) ( ) (cos )p p1 1 1 2 1
1

4
2 . , (71)

/ � / � I I p PIV V( ) ( ) ( ) (cos )p p1 1 1 2 1
1

4
1 . , (72)

where

2



( )
( , | )

( )
( )(

( ) ( )
p d qd p

W
n n nq1

3 3
3

3 1

3 1
0

3
0

2
1 1�  � ��

q p p

�

( ) )0 �

�    A q q13
1

1 3 1 3| ( ) ( )� � � � �p p q . (73)

Substituting (69), (71)–(72) into (59), we obtain the

relaxation time � sm due to the interaction of phonons at

small angles

�



2 1sm

B

c

k T
p p p dp � ��

 
!

"
#
$�1

4

4

5 1 1 1
3

1
15

2

1

2( )
( ) ( ) . (74)

Integrating Eq. (74) (see Appendix B) we finally derive

�

 �

sm

B

u c

k T

 �
�

�1
2

8 5 4

5

5

45 1

2

( )

( )�

�� �dp dp
p p p p p p p

k TB

1 3
1
2

2
2

3
2

1 3
2

1 3

1

+ 3 +
�

( , ) ( ( , ))

sinh sinh sinh
� �2 3

k T k TB B

, (75)

where

+ � � �( , ) ( ) ( ) ( ) ( )p p p p p p p p p p1 3 1 1 3 3 1 3 1 3�    

(76)

and 3( )x is the Heaviside function, which is equal to unity

when x 4 0 and to zero when x � 0.

Equation (75) is identical with the result in Ref. 7 for

the relaxation time of the second spherical harmonic,

which defines the coefficient of the first viscosity. The

time � sm from Eq. (75) is the same as �� /6 in Refs. 8, 9.

The presence of the numerical factor of 1 6/ is connected

with the definition of the time of traverse relaxation

which was given in Refs. 8, 9. However the coefficients

of first viscosity are the same in our and their theories.

Our relaxation time, given by Eq. (59) at small angles, au-

tomatically includes the process of transverse relaxation

of Refs. 8 and 9.

At larger angles, the denominators of the matrix ele-

ments cease to be resonant. Then the matrix element actu-

ally ceases to depend on the exact form of the function

�( )p . In this case, the integration of Eq. (60), with the ap-

proximate simplified matrix element, was made in Ref. 12

where the following relation for the 4pp rate was obtained

1 9 13 1

2 2
4

4

13 7 7 2 10

9

� 
 �
pp

L B

u

c
k T

( )

!( )

( )
( )�

5 �

�

. (77)

Numerical calculations with the exact matrix element

from Eq. (59), in the region of angles where .12 30� 6,
gives practically the same numerical value for the relation

time as that obtained from Eq. (77) when T � 0.7 K. When

T � 0.7 K the exact calculation of the relaxation time be-

gins to deviate from the approximate relation for �
4 pp
L( )

(see (77)) to larger values of time, so that when T �1 K,

the exact value of the relaxation time appears twice as

large as the approximate time �
4 pp
L( )

.

As a result, the rate �1 which defines the coefficient

of the first viscosity is equal to the sum of the small-angle

rate � sm
1 and of rate � 4

1
pp

 of the «exclusive» four-phonon
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processes which occur at larger angles between the scat-

tering phonons

� � �  � �1 1
4

1
sm pp . (78)

Here � sm
1 is given by Eq. (75) and � 4

1
pp

 is obtained from

Eq. (59) where we omit the integration on small angles and

is rather well described by the analytical relation (77).

We see from Fig. 2, that at low temperatures (T < 0.5 K),

the main contribution to the viscosity is due to three-phonon

processes. At higher temperatures (T > 0.9 K), the situation

changes and the contribution of the exclusive four-pho-

non processes predominates over the contribution of

three-phonon processes. However in this temperature re-

gion, there is a considerable contribution to the viscosity

coefficient from phonon-roton interactions and it is neces-

sary to take these processes into account. The deviation of

the experimental points [24, 25] from the theoretical curve

at temperatures higher 0.7 K is due exactly to ignoring

these phonon-roton interactions. In the intermediate tem-

perature range (from 0.5 to 0.9 K) the contributions of

three-phonon and four-phonon relaxation have the same

order of magnitude and both processes should be taken into

account for calculating the first viscosity coefficient.

7. The attenuation of a beam of h-phonons by ther-

mal phonons

In the experiment [13] a pulse of h-phonons was pro-

pagated through superfluid helium over different path

lengths, to a detector. The amplitude of the pulse was

measured as a function of the temperature T of the liquid

helium, in the range 0.07 K 7 7T 0.21 K. The experimen-

tal data from Ref. 13 are shown in Fig. 3, the different sets

of points are for different path lengths of the h-phonon

signal.

The theory given above allows us to obtain an analyti-

cal description of the experiment [13]. As the phonons in

the h-phonon pulse have energies close to 10 K (see, for

example, Ref. 26), then our problem is reduced to finding

the relaxation time of an h-phonon, with energy 10 K, in

an isotropic phonon system. The liquid He II at a given

temperature T is an isotropic phonon system described by

the Bose distribution function for all momenta of phonons

up to pmax. The rate of relaxation �h is defined by

Eq. (24) with % �1 and integration limits given by the

relations

p
p p

p p p p3
1 2

1 2
2

low 3up�
�

� �, min( , )max , (79)

p p p2 0low 2up� �, ,max (80)

where pmax � 20 K is the maximal momentum of phonons

in liquid helium.

If we know the rate �h for this process, and taking into

account that h-phonons in a pulse have momentum close

to 10 K, we can calculate the attenuation coefficient A of

h-phonons in an isotropic phonon system using the

relation

A
l

v

h

c

�  1 exp( )He� . (81)

Here �h is the relaxation rate (24) of phonons with energy

of 10 K, in an isotropic phonon system at temperature T

and % �1, lHe is the path length of the h-phonon in the liq-

uid helium, and vc is the group velocity of the h-phonons.

The calculated attenuation coefficients for an h-pho-

non signal are shown in Fig. 3. The solid curves are for

the different h-phonon path lengths, three of which were

used in the experiment. We see from Fig. 3, that the calcu-

lated results from the analytic expressions (24) and (81)

are in good agreement with the experimental data points

of Ref. 13. In Ref. 13 the attenuation was calculated using

a computer simulation with a simplified model matrix ele-

ment. These calculations are not in quite such good

agreement with the experimental data.

8. Conclusion

In this paper, we have investigated four-phonon scat-

tering processes, in superfluid helium, when the phonon

systems is isotropic. The matrix element (9) for four-pho-

non processes is derived for the whole range of momen-

tum including the range where three-phonon processes

are allowed. The problem is unusual in this range as the
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Fig. 3. The amplitude of the h-phonon signal as a function of

temperature T. The solid curves show the results of the theoreti-

cal calculation: curve 1 corresponds to the propagation path

length lHe � 4 mm, curve 2 to 5 mm, curve 3 to 10.2 mm and

curve 4 to 15.7 mm. Experimental data from Ref. 13 at different

values of the h-phonon path length in liquid helium are shown

by the sets of points. Circles correspond to lHe � 5 mm, triangles

to 10.2 mm and squares to the path length equal to 15.7 mm.



matrix element has resonances when the angle between

the interacting phonons is small. We explain how to solve

this problem.

The 4pp scattering rate is found from the kinetic equa-

tion for phonons in liquid helium (24). The contribution

of different angular groups of phonons to the 4pp rate is

evaluated numerically (see Fig. 1). This analysis shows

that the contribution of small angle scattering to this 4pp

rate, is almost exactly the same as the 3pp rate. Then it is

shown analytically, that at small angles, the four-phonon

process can be represented as two consecutive three-pho-

non processes, and moreover, that the rate of such pro-

cesses is given by the rate of three-phonon processes. The

contribution of larger angles to the scattering rate, using

Eq. (24), gives the rate �4 pp of «exclusive» four-phonon

processes. These processes exclude those 4pp scatterings

that can be represented by 3pp scattering.

From the matrix element expressed in Eq. (9), we de-

rive the relaxation time (59) which appears in the expres-

sion for the coefficient of first viscosity of superfluid he-

lium. The evaluation of the rate shows that is the same as

the sum of the rate for traverse relaxation caused by

three-phonon processes (75), and the rate for exclusive

four-phonon processes (77) (see Fig. 2). It is shown that

at low temperatures (T < 0.5 K), the main contribution to

the viscosity is given by three-phonon processes, and

at higher temperature (T > 0.9 K), the contribution of

four-phonon processes is much larger than the contribution

from three-phonon processes. In the intermediate range of

temperatures 0.5 K < T < 0.7 K, both rates have the same

order of magnitude and both processes give a significant

contribution to the viscosity coefficient. We find generally

very good agreement with the measured values of the vis-

cosity in the temperature range where phonons are the

dominant excitation, see Fig. 2. At higher temperatures,

rotons begin to become increasingly important.

It is noted that the present analytical formulation auto-

matically includes all the processes in transverse relax-

ation, which previously was treated as a separate mecha-

nism in Refs. 8 and 9.

Finally we calculate the attenuation of an h-phonon

pulse propagating through liquid helium at a finite tem-

perature. The attenuation is due to the h-phonons being

scattered by the isotropic thermal phonons. The calcu-

lated the results are in good agreement with experimental

data (see Fig. 3).

We conclude that the analysis in this paper gives a very

good theoretical description of the dissipative relaxation

of liquid helium which is only slightly perturbed from iso-

tropic thermal equilibrium. We have shown that the the-

ory gives a very good quantitative explanation of the mea-

sured values of viscosity and the attenuation of beams of

high-energy phonons.

We are grateful to the EPSRC for supporting this work
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Appendix A: Calculation of the rate of four-phonon

processes �4pp

In the integrand of Eq. (23), without any loss of gener-

ality, we can choose the angle &1 as the computing origin

of angles& i . In this case �-functions in Eq. (23) can be re-

written as

� � & & &( ) ( cos cos cos )p� � �   �� � � �p p p p1 2 2 3 3 4 4

�   �� � �� & & &( sin sin sin )p p p2 2 3 3 4 4

� �  �( )|| || || ||p p p p1 2 3 4 , (82)

� � �( ) ( )� � �   (
1

1 2 3 4
c

p p p p . (83)

Here p pi i i i� � 2 2' ' , p pi i i|| ( )� 1 ' and ( is defined

by Eq. (26).

In order to integrate Eq. (23) over & 3 and & 4 we intro-

duce new variables

X p p� �� �3 3 4 4cos cos& & , (84)

Y p p� �� �3 3 4 4sin sin& & . (85)

Taking Eqs. (84) and (85) into account, Eq. (23) can be

rewritten as

�

 �

4
1

10 5 7 2
1

02

1

1
pp

p

n
�

�
�

� ( )
( )

�
 �  � � �

dp dp dp d d d d dXdY

p p X Y p p

2 3 4 2 3 4 2

3
2

4
2 2 2

3
2

44

' ' ' &

( �

�� 2 2)

� � �M n n n p p p� � �
2

2
0

3
0

4
0

2
3

3
3

4
31 1� � �( ) ( ) ( )( )

( ) ( ) ( )
p .

(86)

Here and below the integration is made so that radicands

are nonnegative.

As M � depends on cos& 3 and cos& 4 , then to make the

integration over & 3 and & 4 , it is necessary to solve the set

of equations

p p p p

p p

1 2 2 3 3 4 4

2 2 3 3

0� � � �

� �

�   �



cos cos cos ,

sin sin

& & &

& &  �
�
 
! �p4 4 0sin ,&

(87)

with regard to cos& 3 and cos& 4 .

The set of Eqs. (87) has two solutions which can be

written as

cos
( )&
3
) �

�
� �  )� � � � �

�

( cos )( ) sinp p A p p p R

Ap

1 2 2 3
2

4
2

2 2

32

& &
,

(88)
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cos
( )&
4
) �

�
�  �� � � � �

�

( cos )( ) sinp p A p p p R

Ap

1 2 2 3
2

4
2

2 2

42

& &�
.

(89)

Here

R p p A p p�   � � � �4 3
2

4
2

3
2

4
2 2( ) ,

A p p p p� � �� � � �1
2

2
2

1 2 22 cos .& (90)

Making the integration in (86) with a help �-functions

(82), (83) over & 3, & 4 and p4 , ' 4 we obtain Eq. (24).

Appendix B: Derivation of � sm

1

For the further integration of Eq. (74) it is convenient

to symmetrize Eq. (70) for1( )p1 :

1
1 1

( )
( )

~
( )

p
p p

1
1 1

2
�

�
. (91)

Here
~

( )1 p1 is derived from 1( )p1 by interchanging

q p� 2 in the integrand of Eq. (70). Nevertheless
~

( )1 p1 is

of course equal to1( )p1 .

As the integrand of Eq. (74) does not depend on&1 and

.1, we can rewrite Eq. (74) taking (91) into account as

�



2 1 1sm

B

c

k T
p p p p d p � � ��1

5

4

5 1 1 1 1
3

1
15

16 ( )
{ ( ) ( )

~
( )} .

(92)

The integral in Eq. (92) can be represented as a sum of

three integrals

I p p d p p p d p p p d p� 2 1 1� � �� �� ( ) ( )
~

( )1 1
3

1 1 1
3

1 1 1
3

1.

(93)

We replace the variables 2( )p1 , 1( )p1 ,
~

( )1 p1 by their ex-

pressions. After that we replace q with p2 in the first inte-

gral, in the second and third integrals we replace q with

p3. As a result, the integration in all three integrals will be

over variables p1, p2 and p3. Further, in the second inte-

gral we rename p1 and p3 and in the third we rename p1

and p2. Thus in the second integral all angles will be

counted off p3 and in the third counted off p2. As a result

of all the above mentioned transformations, we obtain

I
W

�



� ��
( | , )

( )

p p p1 2 3

32 �

�
   � � � � �
� � �

( ) ( )

sinh sinh sinh

p p p1 2 3 1 2 3

1 2 38
k T k T kB B BT

d p d p d p8 3
3

3
2

3
1,

(94)
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We make the integration in Eq. (94) on p2 and ' 3 with

a help of �-functions. As the integrand does not depend

on angles, then the integration over the remaining angles

is trivial. Finally for the rate � sm
1 we obtain Eq. (75).
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