Монте-Карло моделирование двумерного электронного газа на неупорядоченной решетке-матрице

В.В. Славин

Физико-технический институт низких температур им. Б.И. Веркина НАН Украины пр. Ленина, 47, г. Харьков, 61103, Украина E-mail: slavin@ilt.kharkov.ua

Статья поступила в редакцию 9 сентября 2009 г.

Изучены низкотемпературные термодинамические свойства двумерного электронного газа на неупорядоченной решетке-матрице в пределе низкой концентрации электронов. Предложен оригинальный алгоритм Монте-Карло моделирования, позволяющий эффективно изучать свойства данной системы. Обнаружена ненулевая остаточная энтропия на частицу и определено ее значение. В рамках предложенной модели показано, что в низкотемпературной зависимости диэлектрической восприимчивости как функции внешнего электрического поля присутствует излом («cusp»), характерный для спин-стекольных систем.

Досліджено низькотемпературні термодинамічні властивості двовимірного електронного газу на неупорядкованій гратці-матриці у границі низької концентрації електронів. Запропоновано оригінальний алгоритм Монте-Карло моделювання, що дозволяє ефективно вивчати властивості даної системи. Виявлено ненульову залишкову ентропію на частинку і визначено її значення. В рамках запропонованої моделі показано, що в низькотемпературній залежності діелектричної сприйнятливості як функції зовнішнього електричного поля присутній злам («cusp»), характерний для спін-скляних систем.

PACS: 05.10.-а Вычислительный метод в статистической физике и динамике нелинейных систем; 05.20.-у Классическая статистическая механика.

Ключевые слова: обобщенный вигнеровский кристалл, термодинамика, низкоразмерные системы, неупорядоченные системы, Монте-Карло моделирование.

1. Введение

В последнее годы наблюдается всплеск интереса к исследованиям низкоразмерных проводящих систем, во многом обусловленный достижениями в области технологий создания многослойных структур на основе металлооксидов, а также одно- и двумерных искусственных проводящих систем — сверхрешеток на базе различного рода полупроводников. Среди последних особое внимание уделяется узкозонным проводникам с дальнодействующим потенциалом межэлектронного отталкивания [1-10], которые обладают специфическими и весьма интересными особенностями. Эти особенности качественно отличают данные системы не только от металлов и полупроводников, но и от проводников так называемого хаббардовского типа с локальным электрон-электронным взаимодействием. Одной из таких особенностей является специфическое макроскопическое локализованное электронное состояние, получившее название «замороженная электронная фаза» (ЗЭФ). Такое состояние возникает как комбинация дальнодействующего потенциала межэлектронного отталкивания u(r) и дискретности узкозонной электронной динамики. Это означает, что перемещение электронов по проводнику осуществляется путем «прыжков» между ближайшими узлами решетки-матрицы (РМ) с эквивалентными атомными орбиталями. ЗЭФ существует в широкой области параметров, определенной следующим критерием [4]:

$t / \delta u \leq 1$.

Здесь t — ширина зоны, $\delta u \sim (a_0 / \overline{l})^2 u(\overline{l})$ — типичное изменение u(r) при электронном прыжке на соседний узел РМ, a_0 — характерное межатомное расстояние РМ и \overline{l} — среднее расстояние между электронами. В такой ситуации происходит полное разрушение блоховских состояний и электроны становятся локализованными в пределах квантовых ловушек атомного размера.

В одномерном случае свойства ЗЭФ изучены достаточно хорошо. Основное состояние было построено Хаббардом [3]. Он рассмотрел случай, когда t = 0, PM упорядочена, а u(r) удовлетворяет ряду требований: 1) u(r) > 0; 2) $u(r) \rightarrow 0$ при $r \rightarrow \infty$ быстрее, чем 1/r; 3) *u*(*r*) всюду выпуклая функция. Было показано, что при нуле температур и при произвольной концентрации электронов образуется упорядоченная структура [1-3], получившая название «обобщенный вигнеровский кристалл». Недавно результаты Хаббарда были обобщены на случай произвольного u(r) [7]. Низкотемпературная термодинамика такой системы изучена в [5], а влияние динамических эффектов рассмотрено в [8]. Существует также несколько работ, посвященных влиянию беспорядка РМ на термодинамические и кинетические свойства одномерного обобщенного вигнеровского кристалла [9,10].

Свойства двумерной ЗЭФ изучены значительно хуже. В то же время подавляющее количество реальных объектов, в которых реализуется ЗЭФ, являются именно двумерными. В настоящее время известна структура основного состояния при t=0 на упорядоченной РМ [6]. Однако большинство систем данного сорта являются неупорядоченными, и вопрос о влиянии беспорядка РМ на низкотемпературное поведение и особенности основного состояния крайне актуально. Например, в полупроводниках на основе MOSFET этот беспорядок обусловлен хаотическим характером распределения примесей [11], во многих наноструктурах [12,13] беспорядок определяется разбросом величин туннельных связей.

В работе [14] была построена низкотемпературная термодинамика двумерной $3Э\Phi$ на неупорядоченной РМ при t=0 в пределе высокой концентрации электронов. Однако в большинстве двумерных $3Э\Phi$ систем реализуется обратный предел. Основной целью данной работы как раз является построение низкотемпературной термодинамики двумерной $3Э\Phi$ на неупорядоченной РМ в пределе низкой концентрации электронов.

2. Гамильтониан

В данной работе изучены свойства классического ансамбля электронов на двумерной неупорядоченной РМ. Гамильтониан такой системы может быть записан в виде

$$\mathcal{H}(n_1, n_2, \dots, n_N) = \frac{1}{2} \sum_{i \neq j}^N u(|\mathbf{a}_i - \mathbf{a}_j|) n_i n_j + \sum_{i=1}^N n_i (\phi(\mathbf{a}_i) - \mu).$$
(1)

Здесь N — число узлов решетки-матрицы, \mathbf{a}_i — координаты этих узлов, являющиеся случайными величинами с функцией распределения $w(\mathbf{a})^*$; $n_i \equiv n_{\mathbf{a}_i}$ — микроскопические переменные ($n_i = 0, 1$); μ — химический потенциал; $\phi(\mathbf{r})$ — потенциал внешнего электрического поля, приложенного в плоскости РМ (будем работать в системе единиц, где заряд электрона e=1).

В рамках такой модели, получившей название модели бесспиновых фермионов, отсутствуют слагаемые, описывающие туннелирование электронов с узла на узел, а также учитывающие взаимодействие электронов с противоположными спинами на одном узле.

Обозначим $\mathcal{R} = \{\mathbf{a}_1, \mathbf{a}_2, \dots \mathbf{a}_N\}$ — набор векторов решетки-матрицы. Этот набор полностью определяет данную реализацию системы. Свободная энергия *F* записывается в виде

$$F = -T \left\langle \ln \sum_{\{n_i\}} \exp\left(-\frac{\mathcal{H}(n_1, n_2, \dots, n_N, \phi, \mu, \mathcal{R})}{T}\right) \right\rangle_{\{\mathcal{R}\}}, \quad (2)$$

где T — температура, измеряемая в энергетических единицах, символом $\sum_{\{n_i\}}$ обозначено суммирование по всем возможным наборам микроскопических переменных n_i , а символ $< ... >_{\{\mathcal{R}\}}$ означает усреднение по

всем возможным реализациям. В случае высокой концентрации, когда количество электронов $M = \sum_{i=1}^{N} n_i \lesssim N$, при вычислении свободной энергии (2) можно ограничиться взаимодействием между электронами на ближайших узлах РМ и вос-

пользоваться методом трансфер-матриц [14].

Как указывалось во Введении, в данной работе изучен противоположный случай низкой электронной концентрации $\rho = M / N \ll 1$, который гораздо чаще реализуется на практике. В указанном пределе приближение, рассмотренное в [14], становится неприменимым, поскольку среднее расстояние между узлами РМ a_0 много меньше типичного межэлектронное расстояния $\overline{l} \sim a_0 / \sqrt{\rho}$.

В этом случае удобно перейти от изучения системы при фиксированном μ к системе с заданной концентрацией ρ и от микроскопических переменных n_i к координатам электронов \mathbf{r}_i . Гамильтониан (1) приобретает вид

$$\mathcal{H}(\mathbf{r}_{1},\mathbf{r}_{1},\ldots,\mathbf{r}_{M}) = \frac{1}{2} \sum_{\substack{i\neq j\\\mathbf{r}_{i},\mathbf{r}_{j}\in\mathcal{R}}}^{M} u(|\mathbf{r}_{i}-\mathbf{r}_{j}|) + \sum_{i=1}^{M} \phi(\mathbf{r}_{i}) .$$
 (3)

Выражение (3) представляет собой гамильтониан двумерного вигнеровского кристалла (ВК) при концентра-

* В случае, когда векторы \mathbf{a}_i образуют регулярную решетку (т.е. обобщенный вигнеровский кристалл), функция $w(\mathbf{a})$, очевидно, имеет вид $w(\mathbf{a}) = \sum_{m,n} \delta(\mathbf{a} - m\mathbf{c}_1 + n\mathbf{c}_2)$, где $\mathbf{c}_1, \mathbf{c}_2$ — примитивные трансляционные векторы обобщенного вигнеровского кристалла.

ции частиц р и с дополнительным ограничением на позиции электронов: $\mathbf{r}_i \in \mathcal{R}$. Без данного ограничения и при $\phi = \text{const}$ конфигурация основного состояния хорошо известна и представляет собой правильную треугольную решетку с межэлектронным расстоянием $\sim a_0 / \sqrt{\rho}$. Наше основное предположение состоит в том, что в рассматриваемой области параметров $(\rho \ll 1, T \ll u(\overline{l}))$ конфигурации электронов, дающих основной вклад в статистическую сумму, будут представлять собой слабодеформированный ВК. Представить себе предложенную модель можно следующим образом. Мысленно наложим случайным образом решетку ВК с концентрацией р на изучаемую систему. Обозначим посредством \mathbf{R}_i (i = 1, ..., M) радиусы-векторы данного ВК, а R_{WC} — длину его примитивных трансляционных векторов. Вокруг каждого узла **R**_i выделим произвольным образом небольшую область изучаемой системы. Для удобства будем выбирать эти области таким образом, чтобы они содержали одинаковое количество узлов РМ. Обозначим это число v = 2, 3, ..., а данные области будем называть «кластерами». Выражение «небольшая область» означает, что площади «кластеров» $\sim va_0^2$ много меньше площади элементарной ячейки ВК $\sim a_0^2 / \rho$. Таким образом, система разбивается на «кластеры», в каждом из которых находится по одному электрону. Каждый электрон может занимать один из v узлов РМ внутри «кластера».

Введем теперь в каждом «кластере» локальную систему координат, привязанную к \mathbf{R}_i . Радиус-вектор электрона в «кластере» *i* можно записать в виде $\mathbf{r} = \mathbf{R}_i + \boldsymbol{\xi}_i^{\alpha}$, где $\boldsymbol{\xi}_i^{\alpha}$ — локальная координата электрона, находящегося в *i*-м «кластере» и занимающего в

Рис. 1. Схематическое изображение случайной конфигурации системы. Пунктирной линией обозначена соответствующая решетка ВК. Пустые кружки — свободные узлы РМ, закрашенные — узлы РМ, занятые электронами. В каждом «кластере» находятся 5 узлов РМ ($\nu = 5$). На вставке изображен один из «кластеров» в увеличенном масштабе. Значком × обозначен соответствующий узел ВК.

нем α -й узел РМ ($\alpha = 1, ..., \nu$). Схематически «кластеры» изображены на рис. 1. Очевидно, что векторы ξ_i^{α} зависят от реализации системы, т.е. $\xi_i^{\alpha} = \xi_i^{\alpha}(\mathcal{R})$, поскольку $\mathbf{R}_i + \xi_i^{\alpha} \in \mathcal{R}$. Гамильтониан (3), записанный в терминах микроскопических переменных ξ_i^{α} , имеет вид

$$\mathcal{H} = \frac{1}{2} \sum_{i \neq j}^{M} u(|\mathbf{R}_i - \mathbf{R}_j + \boldsymbol{\xi}_i^{\alpha} - \boldsymbol{\xi}_j^{\beta}|) + \sum_{i=1}^{M} \phi(\mathbf{R}_i + \boldsymbol{\xi}_i^{\alpha}), \quad (4)$$

где $\alpha, \beta = 1, ..., v;$ $u(\mathbf{R}_i - \mathbf{R}_j + \boldsymbol{\xi}_i^{\alpha} - \boldsymbol{\xi}_j^{\beta})$ представляет собой энергию взаимодействия электрона, занимающего узел α РМ в «кластере» *i*, с таковым, занимающим узел β РМ в «кластере» *j*.

В гамильтониане (4) можно ограничиться взаимодействием между ближайшими соседями. Важно подчеркнуть, что в отличие от гамильтониана (1), где приближение ближайших соседей означает учет взаимодействия между электронами на *соседних узлах РМ*, в гамильтониане (4) данное приближение означает учет взаимодействия между *соседними электронами*, находящимися на расстояниях $\sim \overline{l}$. Иными словами, учитывается взаимодействие электрона, находящегося в *i*-м «кластере», с электронами в шести соседних «кластерах».

Как указывалось выше, основное предположение данной статьи состоит в том, что изучаемая система представляет собой слабодеформированный ВК. Это предположение, в свою очередь, эквивалентно выполнению неравенства $|\boldsymbol{\xi}|/R_{WC} \ll 1$. Разложим в гамильтониане (4) $\phi(\mathbf{r})$ и $u(|\mathbf{r}|)$ по данному малому параметру, ограничившись слагаемыми первого и второго порядка соответственно. Кроме того, будем рассматривать случай однородного внешнего электрического поля ($\mathbf{E} = -\nabla \phi = \text{const}$). Тогда, опустив несущественные для вычислений константы M/R_{WC} и $M\phi(0)$, получаем

$$\mathcal{H} = \frac{1}{2R_{WC}^2} \sum_{ij'}^M \sum_{s,t=x,y,z} (D_{ij}^{\alpha\beta})_{s,t} (\mathbf{n}_{ij})_s (\mathbf{n}_{ij})_t - \mathbf{E} \sum_i^M \boldsymbol{\xi}_i^{\alpha}, \quad (5)$$

где символ «'» означает суммирование по трем ближайшим соседям; $\mathbf{n}_{ij} = (\mathbf{R}_i - \mathbf{R}_j) / R_{WC}$ — единичный вектор; $(D_{ij}^{\alpha\beta})_{s,t} = 3(\boldsymbol{\xi}_i^{\alpha} - \boldsymbol{\xi}_j^{\beta})_s (\boldsymbol{\xi}_i^{\alpha} - \boldsymbol{\xi}_j^{\beta})_t - (\boldsymbol{\xi}_i^{\alpha} - \boldsymbol{\xi}_j^{\beta})^2 \delta_{s,t}$ — тензор квадрупольных моментов; индексы *s* и *t* принимают значения *x* и *Y*.

Первое слагаемое представляет собой потенциал поля пар «диполей» $\xi_i^{\alpha} - \xi_j^{\beta}$. Начало каждого «диполя» совпадает с узлом ВК, а конец — с узлом РМ соответствующего «кластера». С этой точки зрения «диполь» ξ_i^{α} можно рассматривать как своеобразную пару: электрон, покинувший *i*-й узел ВК (т.е. дырка), + электрон, занимающий α -й узел РМ *i*-го «кластера». Второе слагаемое есть энергия взаимодействия «диполей» с электрическим полем **E**. Свободная энергия, записанная в терминах ξ, равна

$$F(T, \mathbf{E}) = -T \left\langle \ln \sum_{k_1=1}^{\nu} \sum_{k_2=1}^{\nu} \dots \sum_{k_M=1}^{\nu} \exp\left(-\frac{\mathcal{H}(\boldsymbol{\xi}_1^{k_1}, \boldsymbol{\xi}_2^{k_2}, \dots, \boldsymbol{\xi}_M^{k_M}, \mathbf{E}, \mathcal{R})}{T}\right) \right\rangle_{\{\mathcal{R}\}}$$
(6)

Для численного изучения низкотемпературной термодинамики (6) использован метод трансфер-матриц [14], позволяющий точно вычислять свободную энергию для систем малого размера ($M \sim 150$), а также разработан оригинальный параллельный алгоритм мультиканонического Монте-Карло моделирования, позволяющий приближенно вычислять термодинамические потенциалы системы достаточно большого размера ($M \sim 10^5$). Суть данного алгоритма изложена в следующем разделе.

3. Метод параллельного мультиканонического Монте-Карло моделирования

Как известно, в классическом методе Монте-Карло вычисление термодинамических средних осуществляется путем последовательной одночастичной релаксации системы из некоторого начального состояния (случайного, либо специальным образом сгенерированного) в состояние, соответствующее термодинамическому равновесию. Термодинамическое среднее < O >, равное

$$\langle O \rangle = \frac{1}{Z} \times \sum_{x_1, x_2, \dots, x_N} O(x_1, x_2, \dots, x_N) \exp\left(-\frac{\mathcal{H}(x_1, x_2, \dots, x_N)}{T}\right),$$
(7)

где статистическая сумма

$$Z = \sum_{x_1, x_2, \dots, x_N} \exp\left(-\frac{\mathcal{H}(x_1, x_2, \dots, x_N)}{T}\right), \qquad (8)$$

в рамках метода Монте-Карло заменяется средним арифметическим (закон больших чисел):

$$=\frac{1}{K}\sum_{\{x_i\}}O(x_1,x_2,...,x_N),$$

Здесь K — число Монте-Карло шагов ($K \gg 1$), $\{x_i\}$ означает суммирование по случайным выборкам микроскопических переменных, переход от одной выборки $\{x_i\}$ к другой $\{x'_i\}$ осуществляется с вероятностью $w(\{x_i\} \rightarrow \{x'_i\})$. Эта вероятность определена, как известно, неоднозначно. В качестве наиболее часто применяемой w можно привести функцию Метрополиса:

$$w(\lbrace x_i\rbrace \rightarrow \lbrace x_i'\rbrace) = \frac{1}{\tau} \exp\left(-\frac{\mathcal{H}(\lbrace x_i'\rbrace) - \mathcal{H}(\lbrace x_i\rbrace)}{T}\right),$$

где τ — произвольная константа, определяющая шкалу времени МК моделирования. Обычно τ полагается равным 1. Достоинства и недостатки такого подхода хорошо известны. К первым следует отнести простоту и универсальность. Ко вторым — невозможность непосредственного вычисления Z и, как следствие, невозможность прямого вычисления термодинамических потенциалов системы (например, свободной энергии и энтропии). Кроме того, данный метод практически неприменим при изучении неупорядоченных систем, где одночастичная релаксация происходит крайне медленно из-за большого количества локальных барьеров потенциального профиля гамильтониана.

Одной из весьма эффективных альтернатив рассмотренному выше методу является так называемый мультиканонический метод МК. В рамках этого метода суммирование по конфигурациям в (7), (8) заменяется суммированием по уровням энергий E_i :

$$=\frac{1}{Z}\sum_{i}O(E_{i})n(E_{i})\exp\left(-\frac{E_{i}}{T}\right),$$
$$Z=\sum_{i}n(E_{i})\exp\left(-\frac{E_{i}}{T}\right),$$

где n(E) — плотность состояний (число конфигураций с энергией, лежащей в интервале $[E, E + \delta E]$, $\delta E \ll E$).

Введем обозначения: $\omega_B(E) = \exp\left(-\frac{E}{T}\right)$ и

$$P_B(E) = n(E)\omega_B(E), \qquad (9)$$

тогда

$$Z = \sum_{i} P_B(E_i),$$

$$< O >= \frac{1}{Z} \sum_{i} O(E_i) P_B(E_i).$$

Функция (9) имеет вполне определенный физический смысл: $P_B(E)$ — вероятность обнаружения конфигурации с энергией, лежащей в интервале $[E, E + \delta E]$, в процессе МК моделирования. Индекс «*B*» указывает на больцмановский вид $\omega(E)$. $P_B(E)$ представляет собой

«острую» функцию с ярко выраженными экспоненциальными крыльями*. Очевидно, что конфигурации с энергиями, существенно отличающимися от максимума распределения (9), встречаются крайне редко. Следовательно, требуется очень большое время компьютерных вычислений, чтобы учесть вклад таких конфигураций в термодинамические характеристики системы.

Основная идея мультиканонического МК — переход от априори фиксированного (больцмановского) распределения $\omega_B(E)$ к некоторому $\omega_{mu}(E)$, вычисляемому в процессе МК моделирования. При этом $\omega_{mu}(E)$ должна удовлетворять условию

$$P_{mu}(E) = n(E)\omega_{mu}(E) \approx \text{const},$$

что эквивалентно

$$w_{mu}(E) \approx 1/n(E)$$

Если это условие выполнено, то в процессе МК моделирования *все* конфигурации будут встречаться с равной вероятностью, и время, необходимое для компьютерных вычислений термодинамических характеристик, уменьшается кратно!

После того, как функция $\omega_{mu}(E)$ определена, необходимо вернуться к реальным термодинамическим переменным:

$$Z = c_0 \sum_i \frac{\omega_B(E_i)}{\omega_{mu}(E_i)}.$$
 (10)

Нормировочная константа c_0 находится из соотношения $Z(T \to \infty) = v^M$, где v — количество степеней свободы, а M — число частиц. Тогда

$$c_0 = \frac{v^M}{\sum_i \frac{1}{\omega_{mu}(E_i)}}.$$

Важно отметить, что данный метод позволяет непосредственно вычислять Z(T), а следовательно, и все термодинамические потенциалы системы.

Существует несколько основных подходов к вычислению $\omega_{mu}(E)$ [15–19]. Наиболее распространенный из них — так называемый гистограммный метод, в рамках которого $\omega_{mu}(E)$ ищется в виде

$$\omega_{mu}(E) = \exp[-\beta(E)E + a(E)],$$

функция $\beta(E)$ называется микроканонической температурой, а a(E) — микроканонической свободной энергией.

С другой стороны,

$$\omega_{mu}(E) = 1/n(E) = \exp(-S(E)),$$

где S(E) — энтропия системы, пропорциональная $\log(P_{mu}(E))$. Поскольку в методе МК фигурирует не сама $\omega_{mu}(E)$, а вероятность перехода, равная

$$w(E \to E') = \omega_{mu}(E) / \omega_{mu}(E') = \exp(-\beta(E)\varepsilon), \qquad (11)$$
$$\varepsilon = E' - E,$$

для проведения моделирования необходима лишь функция $\beta(E)$. Эта функция вычисляется при помощи итерационной процедуры. Функция a(E) потребуется после завершения МК моделирования для вычисления (10). Методы восстановления a(E) по $\beta(E)$ и $\omega(E)$ описаны в [16]. К недостаткам данного подхода следует отнести тот факт, что универсальной итерационной процедуры не существует: фактически, для каждой модели неупорядоченной системы приходится строить собственный, оптимальный алгоритм. Автором был разработан оригинальный алгоритм вычисления $\beta(E)$, тестирование которого показало его достаточную эффективность и высокую универсальность. Суть предложенного алгоритма состоит в следующем. Определим функцию

$$h^{n}(E) = \max\{h_{0}, P_{mu}^{n}(E)\}.$$

Здесь h_0 — некоторая константа (обычно равная единице), а верхний индекс n — номер МК итерации. Вычисляемая в процессе МК моделирования функция P_{mu}^n может принимать нулевые значения вдали от максимума распределения, а интересующая нас функция $\beta(E)$, по определению, равна

$$\beta(E) = \frac{\partial S(E)}{\partial E} = \frac{\partial \log(P_{mu}(E))}{\partial E}.$$
 (12)

Чтобы избежать появления бесконечных значений логарифма, введено ограничение снизу на $P_{mu}^{n}(E)$ константой h_0 . Функция $h^{n}(E)$ обычно называется гистограммой. Заменив производную (12) на конечноразностное выражение

$$\frac{1}{\varepsilon} \log[h(E+\varepsilon)/h(E)] \quad (\varepsilon \ll E), \tag{13}$$

определим следующую рекуррентную схему. Выделим энергетический интервал $[E_{\min}, E_{\max}]$, в котором будет производиться Монте-Карло моделирование. На первом шаге МК моделирования примем $\beta^{1}(E) = 0$ $\forall E \in [E_{\min}, E_{\max}]$. Вычислим $P_{mu}^{1}(E)$, а следовательно, и $h^{1}(E)$. Типичный вид $h^{1}(E)$ приведен на рис. 2,*a*.

^{*} Исключения составляют окрестности фазовых переходов, где $P_B(E)$ демонстрирует двугорбое поведение.

Рис. 2. Типичные зависимости начального (*a*) и конечного (*б*) распределения h(E).

Вычислим E_{\min}^{l} и E_{\max}^{l} — минимальное и максимальное значения энергий распределения $P_{mu}^{l}(E)$ и медиану этого распределения:

$$E_{md} = \frac{\sum_{i} E_i h^1(E_i)}{\sum_{i} h^1(E_i)}.$$

Здесь суммирование ведется по всем энергиям в ин-

тервале $[E_{\min}^{l}, E_{\max}^{l}]$. Все $\beta(E)$ с $E \ge E_{md}$ оставим без

изменения, а для остальных $\beta(E)$ определим рекурсию в соответствии с (13):

$$\beta^{2}(E) = \beta^{1}(E) + \frac{1}{E_{md} - E} \log \left(\frac{h_{mu}^{1}(E_{md})}{h_{mu}^{1}(E)} \right)$$

Повторяя указанную процедуру, окончательно получаем итерационную (рекуррентную) схему:

$$\beta^{n+1}(E) = \begin{cases} \beta^{n}(E), & E > E_{md}, \\ \beta^{n}(E) + \frac{1}{E_{md} - E} \log\left(\frac{h_{mu}^{n}(E_{md})}{h_{mu}^{n}(E)}\right), & E_{\min}^{n} \le E \le E_{md}. \\ \beta^{n}(E_{\min}^{n}), & E < E_{\min}^{n}, \end{cases}$$
(14)

В результате последовательного применения (14) получаем h(E), которая слабо отличается от константы $h(E_{md})$ во всем интервале $[E_{\min}, E_{\max}]$ (рис. 2,6).

Важно отметить, что время, необходимое для МК моделирования, удалось существенно сократить, используя распараллеливание процесса вычислений. Для этого вычислительные ресурсы были разбиты на n групп, содержащие по m процессов. Во всех группах независимо создавались свои реализации системы (т.е. свои наборы переменных ξ), а в каждом из m процессов генерировалась своя марковская цепочка случайных чисел, необходимая для формирования последовательности переходов из одного микроскопического состояния в другое с вероятностью (11).

После окончания очередной МК итерации в каждой группе процессов производилось усреднение насчитанных функций $h_{mu}^{n}(E)$. Такая процедура возможна, поскольку все эти функции соответствуют одной и той

же реализации системы. По усредненным значениям $h_{mu}^{n}(E)$ вычислялись вероятности переходов (11).

После завершения МК моделирования для каждой реализации вычислялся логарифм Z (10), а затем производилось усреднение по всем реализациям в (6). Схематически алгоритм параллельного мультиканонического моделирования представлен на рис. 3.

4. Результаты и обсуждение

Алгоритм (14) тестировался на стандартных (так называемых «реперных») моделях — модели Изинга и модели спинового стекла. На рис. 4 представлена температурная зависимость теплоемкости двумерного изинговского магнетика ($C = (\langle E^2 \rangle - \langle E \rangle^2)/T^2$), полученная методом параллельного мультиканонического МК. Для сравнения на том же рисунке представлено точное решение [20] и решение, полученное ме-

Рис. 3. Алгоритм параллельного мультиканонического Монте-Карло моделирования.

тодом трансфер-матриц [14]. Как видно, предложенный МК алгоритм хорошо описывает поведение системы даже вблизи особенности. Графики температурных зависимостей свободной энергии и энтропии, полученные путем МК моделирования, визуально неотличимы от точных решений [20] и приводить их в статье представляется нецелесообразным.

На следующем этапе проводилось МК моделирование спинового стекла с гамильтонианом

$$\mathcal{H} = \sum_{i,j'} J_{ij} s_i s_j,$$

где символ «'» означает суммирование по ближайшим соседям; $J_{ij} = \pm 1$, $\sum J_{ij} = 0$. Вычисленные значения остаточной энтропии на спин $s_0 = 0,073$ и энергии основного состояния на спин $e_0 = -1,402$ хорошо согласуются с данными, приведенными другими авторами и полученными другими методами [18,21]. Кроме того, результаты МК моделирования хорошо согласу-

Рис. 4. Температурная зависимость теплоемкости двумерного изинговского магнетика. Сплошная линия — точное решение [20], ● — метод параллельного мультиканонического МК (96×96 спинов), пунктирная линия — метод трансферматриц (12×12 спинов).

ются с таковыми, полученными при помощи метода трансфер-матриц.

После этого были проведены исследования системы с гамильтонианом (5). Параметр v принимался равным 2, т.е. в каждом «кластере» выбиралось два узла РМ. Изучались четыре модели генерации наборов векторов **ξ**.

1. Виртуально создавалась квадратная РМ, смещения ее узлов от идеальных позиций задавались при помощи случайных векторов $\{\rho, \theta_0\}$, где θ_0 — случайное, равномерно распределенное число, лежащее в интервале $(0, 2\pi]$, и ρ — случайное число с нормальным законом распределения. По полученной РМ вычислялись векторы ξ .

2. $\xi = \{\xi_x = \cos \theta, \xi_y = \sin \theta\}$, где θ — случайное, равномерно распределенное число, лежащее в интервале $[0, 2\pi)$. Иными словами, предполагалось, что все векторы ξ имеют единичную длину и случайную ориентацию.

3. $\boldsymbol{\xi} = \{\rho, \theta_0\}$, где θ_0 — случайное число, лежащее в интервале $(0, 2\pi]$, но *общее* для всех $\boldsymbol{\xi}_i$ (i = 1, 2, ..., M); ρ — случайное число с нормальным законом распределения. В этом случае векторы $\boldsymbol{\xi}$ имеют случайную длину и случайное, но одинаковое для всех направление.

4. Аналогично предыдущему случаю, но ρ имело равномерный закон распределения: $0 < \rho < 1$.

Проведенное МК моделирование показало, что результаты качественно не зависят от выбора модели генерации **ξ**. По этой причине в статье приведены лишь результаты, относящиеся к модели 4, поскольку она обеспечивает наибольшую простоту и скорость счета. Типичная температурная зависимость теплоемкости системы, полученная методом МК и при помощи трансфер-матриц, представлена на рис. 5. На рис. 6 при-

Рис. 5. Температурная зависимость теплоемкости системы (5). Сплошная линия — результат, полученный методом трансферматриц (12×12 спинов); пунктирная и штрих-пунктирная линии — методы параллельного мультиканонического МК (32×32 спинов) и МК (96×96 спинов) соответственно.

Рис. 6. Зависимость остаточной энтропии на частицу s_0 от линейного размера системы $(L = \sqrt{M})$, полученная методом МК.

ведена зависимость остаточной энтропии на частицу $s_0 = S(T \rightarrow 0, \mathbf{E} = 0) / N$ как функция линейного размера системы *L*. Как видно, начиная с $L \approx 50$, s_0 практически не меняется, выходя на значение $0, 201 \pm 0, 01$. Аналогичным образом ведет себя зависимость энергии основного состояния $e_0 = F(T \rightarrow 0, \mathbf{E} = 0) / N$ от *L*. Полученное таким образом значение e_0 равно $2,096 \pm 0,005$.

Отдельно изучался вопрос о влиянии внешнего электрического поля на термодинамические свойства системы. Была выбрана модель, в которой

$$(\boldsymbol{\xi}_{i}^{\alpha})_{x} = (\boldsymbol{\xi}_{i}^{\alpha})_{y} \quad \forall i, \alpha, \tag{15}$$

т.е. $\theta_0 = \pi/4$, а направление вектора **E** выбиралось параллельным **ξ.** На рис. 7 представлена зависимость поляризации на частицу

Рис. 7. Зависимость поляризации системы *P* от внешнего электрического поля *E*.

как функция приложенного поля E при $T \rightarrow 0$. Точность проведенных вычислений позволяет сделать вывод о том, что $P(T \rightarrow 0, E = 0) = 0 \pm 0,002$. Таким образом, в рамках модели (15) спонтанная поляризация отсутствует. В то же время температурная зависимость диэлектрической восприимчивости

$$c = \left(\frac{\partial P}{\partial E}\right)_{E=0}$$

демонстрирует ярко выраженный излом («cusp») в области низких температур (рис. 8), характерный для спин-стекольных систем.

Проведенные исследования низкотемпературных свойств двумерного разряженного электронного газа на неупорядоченной решетке-матрице позволили выявить ряд интересных особенностей. Обнаружено ненулевое остаточное значение энтропии, что характерно для неупорядоченных дискретных систем. Кроме того, в рамках модели (15) показано, что спонтанная поляризация отсутствует. На первый взгляд этот результат кажется парадоксальным, поскольку в данной модели все «диполи» ориентированы параллельно либо антипараллельно $\mathbf{n}_0 = \{\cos \theta_0, \sin \theta_0\}$, а энергия их взаимодействия $\sim ({\bf \xi}_i - {\bf \xi}_i)^2$ и, следовательно, минимальна именно при параллельной взаимной ориентации «диполей». Этот парадокс, однако, объясняется просто. Рассмотрим структуру основного состояния системы. Выберем мысленно в *i*-м «кластере» «диполь», направленный, например, параллельно **n**₀. В силу случайности системы в соседнем с ним j-м «кластере» может вообще не оказаться «диполей» с нужной ориентацией (все v «диполей» «кластера» ј могут оказаться антипараллельны \mathbf{n}_0). Кроме того, существует конкуренция между стремлением выстроить все «диполи» коллинеарно (и тем самым получить выигрыш энергии $\sim -2\xi_i\xi_i$) и стремлением выбрать «диполи» минимальной длины, понижая тем самым энергию $\sim \xi^2$.

Рис. 8. Температурная зависимость диэлектрической восприимчивости *с*.

Это значит, что даже если в *j*-м «кластере» существует «диполь» нужной ориентации, но его длина достаточно велика, то энергетически может оказаться выгодно проиграть за счет ориентации, но выиграть за счет длин «диполей». Таким образом, в системе образуются фрустрации в ориентации «диполей», что и приводит к исчезновению спонтанной поляризации.

МК моделирование проводилось на вычислительном кластере ФТИНТ. Было задействовано 32 ядра (8 групп по 4 процесса). Время вычисления варьировалось от нескольких минут (для системы 12×12) до 10 часов (для системы 96х96). Кроме того, проводились вычисления при помощи метода трансфер-матриц [14] для систем 12×12. Эффективное время вычисления одной точки составляло около 1,5 мин.

В заключение автор выражает искреннюю благодарность Л.Ф. Белоусу за помощь при проведении компьютерных вычислений.

- 1. P. Bak and R. Bruinsma, Phys. Rev. Lett. 49, 249 (1982).
- Ya.G. Synay and S.Ye. Burkov, *Russian Math. Surveys* 38, 235 (1983).
- 3. J. Hubbard, Phys. Rev. B17, 494 (1978).
- А.А. Слуцкин, Л.Ю. Горелик, ФНТ 19, 1199 (1993) [Low Temp. Phys. 19, 852 (1993)].
- 5. V.V. Slavin and A.A. Slutskin, Phys. Rev. B54, 8095 (1996).
- A.A. Slutskin, V.V. Slavin, and H.A. Kovtun, *Phys. Rev.* B61, 14184 (2000).
- 7. J. Jedrzejewski and J. Miekisz, Los-Alamos, cond-mat/9903163.
- S. Fratini, B. Valenzuela, and D. Baeriswyl, Los-Alamos, cond-mat/0209518, cond-mat/0302020, cond-mat/0309450.
- 9. V.V. Slavin, Phys. Status Solidi B241, 2928 (2004).
- A.A. Slutskin and H.A. Kovtun, *Fiz. Nizk. Temp.* **31**, 784 (2005) [*Low Temp. Phys.* **31**, 594 (2005)].
- M.S. Bello, E.I. Levin, B.I. Shklovskii, and A.L. Efros, *ЖЭΤΦ* 53, 822 (1981).
- 12. E.Y. Andrei, 2D Electron Systems on Helium and Other Substrates, Kluwer, New York (1997).

- 13. H. Nejoh and M. Aono, Appl. Phys. Lett. 64, 2803 (1995).
- V.V. Slavin, Fiz. Nizk. Temp. 35, 197 (2009) [Low Temp. Phys. 35, 149 (2009)].
- B.A. Berg, U.E. Hensmann, and T. Celik, *Phys. Rev.* B50, 16444 (1994).
- 16. B.A. Berg, arxiv.org/abs/cond-mat/0206333v2.
- 17. B.A. Berg, *Markov Chain Monte Carlo Simulations and Their Statistical Analysis*, Singapore, MCMC (2004).
- 18. B.A. Berg and T. Celik, Phys. Rev. Lett. 69, 2292 (1992).
- J.V. Lopes, M.D. Costa, J.M.B. Lopes dos Santos, and R. Toral, *Phys. Rev.* E74, 046702 (2006).
- K. Huang, *Statistical Mechanics*, John Wiley & Sons, Inc., New York–London (1963).
- 21. J.S. Wang and R.H. Swendsen, Phys. Rev. B38, 4840 (1988).

Monte Carlo simulation of two-dimentional electron gas on disordered host-lattice

V.V. Slavin

Low-temperature thermodynamic properties of two-dimensional electron gas on disordered hostlattice in the limit of low electron density have been studied. A new original algorithm of Monte Carlo simulation is proposed to investigate effectively the properties of the system. A residual entropy is discovered and its value is estimated. In the framework of the proposed model it is shown that the low temperature dependence of dielectric susceptibility as a function of external electric field has a cusp which is typical of spin-glass systems.

PACS: **05.10.–a** Computational methods in statistical physics and nonlinear dynamics; **05.20.–y** Classical statistical mechanics.

Keywords: generalized Wigner crystal, thermodynamics, low-dimensional systems, disordered systems, Monte Carlo simulation.