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In coupled rotor models which describe identical rotating nuclei the nuclear spin states restrict the possible 
angular momenta of each molecule. There are two mean-field approaches to determining the orientational phase 
diagrams in such systems. In one the nuclear spin conversion times are assumed to be instantaneous in the other 
infinite. In this paper the intermediate case, when the spin conversion times are significantly slower than those of 
rotational time scales, but are not infinite on the time-scale of the experiment, is investigated. Via incorporation 
of the configurational degeneracy it is shown that in the thermodynamic limit the mean-field approach in the in-
termediate case is identical to the instantaneous spin conversion time approximation. The total entropy can be 
split into configurational and rotational terms. The mean-field phase diagram of a model of coupled rotors of 
three-fold symmetry is also calculated in the two approximations. It is shown that the configurational entropy 
has a maximum as a function of temperature which shifts to lower temperatures with increasing order. 

PACS: 64.60.Bd General theory of phase transitions; 
64.60.De Statistical mechanics of model systems (Ising model, Potts model, field-theory models, 
Monte Carlo techniques, etc.); 
65.40.gd Entropy; 
64.70.kt Molecular crystals. 
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1. Introduction 

Molecules in crystal phases often exhibit quantum ori-
entational ordering. A well-known example is solid hydro-
gen [1,2], where the phase diagrams are strongly depend-
ent on the nuclear spin of the molecules. At low pressure 
the free rotor angular momentum quantum numbers can 
still be considered good. The symmetry requirement of the 
molecular wave function imposes constraints on the al-
lowed angular momentum quantum numbers for a mole-
cule of a given nuclear spin configuration. In the case of 
H2 molecules in the triplet (singlet) nuclear spin state are 
coupled to odd (even) angular momentum levels. In D2 the 
situation is similar, the degeneracies, however, are differ-
ent: even (odd) angular momentum states are sixfold 
(threefold) degenerate [3]. In H2 the pure para system or-
ders only at high pressures, 100 GPa≈  (see Fig. 1,b of 
Ref. 4), whereas the ground state of ortho-H2 is ordered at 
finite pressure. When both even and odd angular momenta 
are accessible, as is the case in the heteronuclear species 

HD [5–9], or when the ortho-para distribution in H2 is 
thermally equilibrated [10–12], then the phase diagram is 
reentrant. Very similar patterns of phase diagrams are al-
so found [13–15] in the quantum anisotropic planar ro-
tor model [16], in which uniaxial rotors corresponding to 
diatomic molecules are coupled, and in similar models 
[17–19]. Other examples of systems where models of cou-
pled rotors have played a role in elucidating the physics are 
inclusion compounds [20–23] containing ammonia, Hoff-
mann clathrates [24–26], and crystals containing methyl 
groups [27,28]. Regarding these systems the issue of how 
nuclear spin effects ordering has not been thoroughly stu-
died up to now. 

The mean-field approach has been used to understand 
the orientational ordering in coupled rotor systems. In solid 
H2 the mean-field approach predicts the correct qualitative 
behaviour for systems of pure para or ortho species, and of 
HD, where nuclear spin is not coupled to angular momen-
tum, hence the angular momentum distribution is allowed 
to thermally equilibrate instantaneously. In solid H2 it is 
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known that the spin conversion times are long compared to 
rotational time-scales, hence thermal equilibrium is not 
instantaneous on rotational time-scales at low pressures. 
This is also thought to be the case in ammonia or methyl 
containing crystals [29]. In ammonia or methyl containing 
crystals the effects of nuclear spin on orientational order-
ing have not been investigated. 

Mean-field studies of hydrogen assume that the nuclear 
spin conversion times are either infinite or instantaneous 
on rotational time-scales [11]. In this work the intermediate 
case, where nuclear spin relaxation is long on the time-
scale of rotation but allowed to equilibrate on the experi-
mental time-scale is investigated. It is shown that in the 
thermodynamic limit the mean-field results for such a case 
are equivalent to the zero relaxation time approximation. 
The total entropy is also shown to consist of two contribu-
tions, one configurational and one rotational. 

The mean-field phase diagram of a model of three-fold 
symmetric coupled rotors is also presented. Here the nu-
clear spin states can be of three types which couple to three 
different manifolds of angular momentum ( A , aE , and 

bE ), of which two ( aE  and bE ) are equivalent, they dis-
play the same ordering properties. The thermal mixture 
displays a reentrant phase transition (as predicted prior 
[30]). The reentrant phase transition is known to be ac-
companied by an entropy anomaly [11]. At low tempera-
tures the entropy in the ordered state is larger than in the 
disordered state. In this study the two components of the 
entropy (configurational and rotational) are calculated and 
it is shown that both display similar anomalous behaviour 
in the reentrant region. The maximum of the configura-
tional entropy shifts to smaller values of temperature as the 
order parameter is increased. 

This paper is organized as follows. In Sec. 2 mean-field 
the theory of coupled rotors and its relation to nuclear spin 
is addressed. Subsequently the model studied here that of 
coupled three-fold symmetric uniaxial rotors, is presented. 
In Sec. 4 the results are presented and in Sec. 5 conclusions 
are drawn. 

2. Mean-field theory for systems with nuclear spin 

In the following a model of coupled rigid rotors in 
which the nuclear spin configurations are coupled to angu-
lar momentum states as is the situation in systems with 
identical rotating atoms is considered. Let the model con-
sist of N  rotors whose centers of mass are fixed. Let there 
be σ  different manifold of angular momentum states cou-
pled to a particular manifold of spin states of degeneracy 
Gσ . For example in solid hydrogen (H2) = 2σ , as there is 
the ortho and para variety, and the degeneracies are 1 = 1G  
(singlet) and 2 = 3G  (triplet). 

To calculate the phase diagram a Hamiltonian of the 
following form is considered  

 
2

2
,

= cos ( ) cos ( ) ,i j
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where B  denotes the rotational constant, and J  denotes 
the coupling between rotors, iφ  denotes the angular coor-
dinate of rotor at site i , and ,i j〈 〉  denotes summation over 
nearest neighbors. In this work we apply a mean-field type 
approximation to the Hamiltonian in Eq. (1), e.g.  
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The coordination number has been absorbed into the cou-
pling constant J. This is a model of coupled uniaxial rotors, 
but the conclusions in this section are valid for rotors in any 
number of dimensions. The model (Eq. (1)) includes a sim-
plified potential sensitive only to orientation and the molecu-
lar symmetry. While the crystal structure and phonons may 
also effect orientational ordering, the point of view taken 
here is that orientation and molecular symmetry are the most 
important. This point of view is corroborated by the mean-
field results of previous studies on hydrogen [5–7,10,11]. 
Moreover, as models of coupled rotors are used to describe 
other physical phenomena (granular superconductors [17–
19]) the behavior of the model itself is of interest. 

2.1. The cases of infinite and zero spin conversion time 

There are two common approaches to systems with 
coupled rotors corresponding to homonuclear molecules 
with nuclear spin coupled to angular momenta. The zero 
relaxation time limit corresponds to averaging the partition 
functions over the spin configurations. The one-particle 
partition function can be written in this case as  

 tot = ,i i
i

Q G Q∑  (3) 

where iG  denotes the degeneracy of angular momentum 
states corresponding to a particular spin configuration, and 

iQ  denotes the partition function in which the states which 
enter are the ones that are coupled to the same spin con-
figuration, i.e.  
 =Tr {exp ( )},i i MFQ Hβ−  (4) 

where Tr i  denotes tracing over a particular manifold of 
angular momentum states. In this case the distribution of 
states depends on the parameters, i.e. temperature, cou-
pling constant. Minimizing the free energy corresponding 
to Eq. (3) results in  
 = cos ( ) ,nφΓ 〈 〉  (5) 

and the fraction of a particular species at thermal equilib-
rium is given by  

 = .i i
i

j j
j

G Q
X

G Q∑
 (6) 

The fraction of a particular species will in general be a 
function of the parameters defining the system (tempera-
ture, coupling and rotational constant). 
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The infinite relaxation time limit in the mean-field ap-
proximation corresponds to writing the partition function 
as a product  
 tot = ,Xi

i
i

Q Q∏  (7) 

with the fraction of species i  defined as = /i iX N N . 
Here iQ  again denotes a partition function into which the 
angular momentum states that enter are the ones corre-
sponding to a particular spin configuration. This way of 
writing the partition function is only possible in mean-field 
theory, where the many-body Hamiltonian separates into a 
sum of additive single-rotor Hamiltonians. From Eq. (7) it 
follows that the expression for the free energy is  

 tot = ,i i
i

F X F∑  (8) 

where iF  denote the free energies of molecules belonging 
to a particular manifold of angular momentum states. The 
free energy is minimized if  

 = ,i i
i

XΓ Γ∑  (9) 

where  
 = cos ( ) ,i inφΓ 〈 〉  (10) 

where i〈〉  denotes averaging over a particular manifold of 
angular momentum states. 

2.2. The case of slow but finite spin conversion 

In the following the mean-field theory of systems where 
spin conversion is slow but finite will be considered. The 
equilibration of the rotors is instantaneous, but the system 
finds its equilibrium proportion of different spin configura-
tions on a longer time-scale. The starting point is Eq. (8) 
but the issue is the optimal proportion of different spin 
configurations (i.e. iN ). The probability of a particular set 
of iN s is given by  

 

({ })
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i i

i
i

C N Q
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i.e. the partition function of Eq. (7) multiplied by ({ })iC N  
the number of ways such a configuration can occur. Z  is 
the normalization constant  

 
{ }

= ({ }) .i
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({ })iC N  is a combinatorial factor which can be written as  
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Note that here the number of rotors are taken to be evenly 
distributed between the different degenerate nuclear spin 
states within an angular momentum manifold. Such a dis-
tribution corresponds to maximizing the entropy, and in the 
thermodynamic limit it can be expected that one configura-
tion dominates. In the absence of fields which break the 

degeneracy this assumption can be expected to be correct. 
In the thermodynamic limit Stirling's formula can be 

applied to the combinatorial factor ({ })iC N  and obtain  

 ({ }) =exp ln ( / ) ,i i i i
i

C N N X X G
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where = /i iX N N . Hence the overall probability of a 
particular configuration becomes  

 ({ }) =exp ln .i
i i

i ii

X
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G Q
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Clearly, in the thermodynamic limit, one set of values of 
{ }iX  will dominate, so the exponent of Eq. (15) can be 
optimized under the normalization constraint. The resulting 
condition is  

 ln 1 = 0 ,i i i

i i i i

X X Q
G Q Q X

λ
⎛ ⎞ ⎛ ⎞∂

+ − +⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
 (16) 

where λ  denotes the Lagrange multiplier corresponding to 
the normalization. The second iQ  dependent term in 
Eq. (16) can be evaluated as  
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i

i i i
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Q
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∂
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which evaluates to zero as the iΓ 's in this case are also 
fixed by the mean-field condition (Eq. (10)). Hence 
Eq. (16) gives  

 = ,i i
i

j j
j

G Q
X

G Q∑
 (18) 

which is the distribution in the zero relaxation time limit. 
Substituting the expression for iX  from Eq. (18) into 
Eq. (15) gives the partition function for the zero spin con-
version limit as expected. 

An interesting result of the above analysis is that the en-
tropy of the system in which spin conversion times are 
long but allowed to equilibrate can be broken up into two 
pieces: a configurational entropy arising from the combina-
torial prefactor counting the configurations ({ })iC N  and 
one arising from the product of single particle partition 
functions which here will be called the rotational entropy. 
The total entropy per molecule calculated from Eq. (15) 
can be written  

 conf rot= ,S S S+  (19) 

where 

 conf = ln i
i

ii

X
S X

G
⎛ ⎞
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⎝ ⎠

∑  (20) 

and  
 rot = ,i i

i
S X S∑  (21) 
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with  

 ln
= ln .i

i i
Q

S Q β
β

∂
−

∂
 (22) 

Equation (22) is a weighted sum over the entropy per 
molecule associated with the rotational states coupled to a 
particular spin configuration. 

3. Nuclear spin in three-fold symmetric uniaxial rotors 

The model studied here is one of three-fold symmetric 
rotors performing uniaxial rotation. The Hamiltonian is of 
the form given in Eq. (2), with = 3n . As this model can 
correspond to compounds containing ammonia or methyl 
groups, where identical atoms are performing the rotation, 
nuclear spin can be expected to influence properties such 
as orientational ordering. 

The issue of nuclear spin in the case of uniaxial three-
fold symmetric rotors is qualitatively different from that in 
the two-fold symmetric case. In the latter it is the fermionic 
or bosonic character of the constituent atoms that deter-
mine which nuclear spin functions couple to odd or even 
angular momenta. The effects of nuclear spin in the three-
fold symmetric case follow from the fact that a rotation of 
2 / 3π  or 2 / 3π−  correspond to two permutation ex-
changes of nuclei, hence no change in the overall wave 
function occurs either for fermions or bosons [27]. 

For free uniaxial rotors wave functions which remain 
unaltered when rotated by 2 / 3π  can be constructed as 
follows. The molecular wave function can be written as a 
product,  

 , ,
1( ) = exp ( ) ,
2s m s ms simφ φ
π

Ψ Σ  (23) 

where φ  indicates the coordinate of the rotor, and , ss m  
indicate the spin quantum numbers of the three nuclei in 
the coupled angular momentum representation, and ,s msΣ  
denotes the spin part of the wave function. Rotating by 
2 / 3π  gives  

, ,
2 1 2 2ˆ ˆ( ) = exp .
3 3 32s m s ms sR im Rπ π πφ φ

π
⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞Ψ + Σ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
 

  (24) 
It can be shown [27] that the spin eigenfunctions 
in the coupled representation are eigenfunctions of the 
rotation operator ( )ˆ 2 / 3R π  with possible eigenvalues 

2 2

3 3
1,exp ,expi i

π π
−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. It follows that a given spin-ei-

genfunction can have only certain angular momentum 
states, so that the requirement that a rotation by 2 / 3π  
causes no change in the wave function is satisfied. 
In  particular spin eigenfunctions with eigenvalues 

2 2

3 3
1,exp ,expi i

π π
−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 couple to angular momentum 

states = 3 ,3 1,3 1m n n n− +  respectively, where n  is an 
integer. 

The ammonia molecules in inclusion compounds con-
sist of nearly freely rotating NH 3  and ND 3  molecules. In 
the case of an NH 3  group, where the rotating atoms are of 
spin 1/ 2 , it can be shown that the = 3 / 2s  states are 

= 3m n , whereas one group of the = 1/ 2s  states are of 
the = 3 1m n −  the other of the = 3 1n+  variety. In ND 3  
the = 3s , = 0s , and one of the three = 1s  states are 

= 3m n , one of the = 2s  and = 1s  states are = 3 1m n − , 
the remaining = 2s  and = 1s  being = 3 1m n + . In group 
theoretical terms the = 3m n  states form the one-
dimensional representation A  of the group 3C , the states 

= 3 1m n +  and = 3 1m n −  form the representations aE  
and bE . In the following the rotating atoms are assumed to 
be of spin-1/ 2 . 

In Refs. 10, 15 an extension of mean-field theory was 
developed in which it was assumed that each lattice site is 
of a particular spin state, but the rotational degrees of free-
dom were solved using coupled mean-field equations. This 
method was used to study solid hydrogen. The ratio of 
ortho versus para species was approximated as that of the 
free rotor system and the phase boundary was determined. 
The result that the mean-field theory of equilibrated spin 
conversion in the case of long spin conversion times is 
equivalent to the case when spin conversion times are in-
stantaneous lends support to the validity of the approxima-
tion used in Refs. 10, 15. 

4. Results 

In Figs. 1 and 2 the mean-field phase diagrams are 
shown. The thermally equilibrated species shows a reen-
trant phase diagram (a result also found previously by Frei-
man and Tretyak [30]). This phenomenon is common in 
models of coupled rotors [5–7,9–11,13–15,18,19], and is 
caused by the fact that the rotational state that lies higher in 
energy has a stronger ordering tendency. This idea is cor-

Fig. 1. Phase diagrams calculated via mean-field theory. Systems 
with pure A  and pure E  species, and with the thermal equilib-
rium distribution are shown. The thermal equilibrium phase dia-
gram corresponds to the zero spin conversion time limit, as well 
as the case of thermally equilibrated rotors with long spin conver-
sion times on the time scale of rotations. 
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Fig. 4. Proportion of A  species as a function of temperature for 
different coupling constants. For = 8.5J  and = 8.7J  the re-
gimes of finite order parameter (Fig. 3) correspond to where the 
distribution deviates from the = 0J  case. For the couplings 

= 9.5J  and = 10.5J  the increase in order parameter as a func-
tion of temperature coincides with where the distribution function 
deviates from the = 0J  case. Hence ordering is correlated with 
an increase in the proportion of E  species. 
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roborated by the results in Fig. 1: the pure E  system or-
ders at a lower coupling constant than the pure A  system, 
hence it has a stronger tendency to order. As the tempera-
ture of the thermally mixed system increases more rotors 
can access E  states hence the system orders. The results 
for the infinite spin conversion time limit (2) show pro-
gressively stronger tendency to order as the proportion of 
E  species is increased. Note that the behaviour found here 
for three-fold symmetric rotors is qualitatively different 
from hydrogen, where the ortho species has an ordered 
ground state for finite coupling constant, and for any small 
fraction of the ortho species [10,11,15]. 

In Fig. 3 the order parameter Γ  is shown as a function 

of temperature at different coupling constants. In the reen-
trant regime ( = 8.5J  and = 8.7J ) the two phase transi-
tions, the high temperature one caused by thermal excita-
tions, and the low temperature one caused by quantum 
fluctuations are clearly visible. For higher values of the 
coupling constant J  ( > 9.5J ) one still sees increased 
ordering as the temperature is increased from zero. This 
tendency is suppressed as the classical limit is approached. 
The ordering tendency can be understood in all cases in 
terms of the distribution of the various spin nuclear states 
shown in Fig. 4. The thick line shows the distribution in 
the = 0J  case, where the system is disordered. In the re-
gime where ordering occurs the deviation of the curves 
corresponding to = 8.5J  and = 8.7J  coincide with the 
range of nonzero order parameter. For higher J  values the 
point where the order parameter begins to increase as a 
function of temperature corresponds to where the distribu-
tion functions begins to deviate from the free rotor case.  

It has been argued that the reentrance is driven by 
anomalous behavior of the entropy [11]. Freiman et al. 
have shown that if the order parameter is held fixed the 
entropy is higher in the ordered state at low temperatures, 
and the situation reverses as the temperature increases. In 
Fig. 5 the entropy and its components (rotational and con-
figurational, see Eq. (20)) are shown for fixed order pa-
rameters, as well as the entropy of the thermally equili-
brated solution for = 8.5J . Both the rotational and con-
figurational entropies show the entropy anomaly described 
by Freiman et al. However the behavior of the configura-
tional and rotational entropies is qualitatively different. 
The configurational entropy displays a maximum which 
shifts to smaller values of temperature for the states which 
are more ordered. At large temperature the configurational 

Fig. 2. Phase diagrams calculated via mean-field theory. Com-
parisons are shown for different proportions of A  and E  spe-
cies. All phase diagrams calculated in the infinite spin conversion
time approximation. The tendency to order increases with the
proportion of E  molecules. 
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Fig. 3. Order parameter as a function of temperature for different
coupling constants. The coupling constants = 8.5J  and = 8.7J
correspond to the reentrant regime of the phase diagram. = 9.5J
and = 10.5J  is in the ordered regime, but shows qualitatively
similar behavior to the reentrant ordering, the order parameter
increases at low temperatures. This tendency is suppressed in the
classical limit ( = 14.5J ). 
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entropies converge. For the configurational entropy the 
tendency of the entropy to increase with order at low tem-
peratures is very pronounced, whereas at higher tempera-
tures, the opposite tendency is significantly weaker. From 
Fig. 5 one can argue that the low temperature reentrance 
anomaly is driven by both the configurational and rota-
tional entropies. 

5. Conclusions 

In this study the mean-field theory of coupled quantum 
rotors was investigated. Particular attention was devoted to 
rotor systems which correspond to molecules where identi-
cal atoms rotate. In such systems the nuclear spin states 
couple to angular momentum states, and thereby effect 
orientational ordering. As the spin conversion times in 
such systems tend to be slow, experiments can be per-
formed at fixed ratios of different spin states or at thermal 
equilibrium. 

The mean-field approach to such systems is usually 
based on two strategies: in one case the spin conversion is 
assumed to be instantaneous on the time scale of rotation, 
in the other infinite. In the former case all angular momen-
tum states are allowed for each molecule. In the latter a 
particular molecule is allowed only one manifold of angu-
lar momentum states fixed by the symmetry of the overall 
wave function. In this study the case of long but finite spin 
conversion times was considered, i.e., when spin conver-
sion times greatly exceed rotational time-scales, but the 
experiment is carried out such that the distribution of 

molecules in different nuclear spin states is allowed to 
equilibrate. It was shown that in the mean-field approxima-
tion such an approach yields the same results as the instan-
taneous spin conversion time limit, provided that the sys-
tem is in the thermodynamic limit. Another outcome of the 
formalism is that the entropy becomes a sum of a configu-
rational and a rotational contribution. 

Calculations were also performed to determine the 
phase diagram of coupled threefold symmetric rotors. In 
this case the nuclear spin causes each molecule to be either 
of three types, A , aE , and bE , of which aE  and bE  are 
energetically equivalent and show the same ordering, 
hence A  and E . Pure A  systems show a weaker tendency 
to order than pure E  systems. Zero spin conversion time 
and thermal equilibration leads to a reentrant phase transi-
tion confirming previous results [30]. It was also shown 
that the entropy anomaly known to exist in reentrant sys-
tems [11] is present in both the configurational and the 
rotational contributions. At low temperatures the ordered 
state has higher entropy than the disordered state in both 
cases. The configurational entropy displays a maximum 
which shifts to lower temperatures with increasing order. 
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