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Konstantinov effect in helium II
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We consider reflection of first and second sound waves by a rigid flat wall in helium II. A nontrivial de-

pendence of the reflection coefficients on the angle of incidence is obtained. Sound conversion is predicted

at slanted incidence.
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1. Introduction

Sound absorption in air at a plane surface may be sur-

prisingly high and has strong anisotropy [1,2]. This phe-

nomenon is very important in acoustics and is sometimes

referred to as Konstantinov effect. Qualitative explana-

tion of the effect is two fold [3].

— Air velocity in an oblique wave has a non-zero com-

ponent tangential to the surface. At the surface itself,

however, the velocity is clamped. Large velocity gradient

in a thin boundary layer results is a large viscous dissipa-

tion of energy.

— Not only the velocity, but also the temperature, un-

dergo periodic oscillation in a sound wave. Temperature

of the wall (and adjoined gas), however, is constant. Ther-

mal conductance in presence of a large temperature gradi-

ent in the boundary layer again leads to high energy

dissipation.

Helium II supports two types of motion and its hydro-

dynamics is much richer than that of a gas. The former

features two independent sound modes: first sound and

second sound [4]. Due to anomalously small thermal ex-

pansion of helium, these modes can be viewed as purely

pressure and temperature waves, respectively. To solve

the problem of sound reflection in superfluid one must

take both modes into account.

Propagation of multiple bulk modes in helium II is a

consequence of existence of additional hydrodynamic

variables. In Sec. 2 we find all three nontrivial harmonic

(i.e., proportional to exp( )i i tkr � � ) solutions of linear

superfluid hydrodynamic equations.

Some of the variables are effectively eliminated in re-

stricted geometry. In particular, a steady cell wall elimi-

nates the perpendicular component of the mass flux j and

the normal velocity vn: the boundary condition* at the

wall is

j v� � �0 0, n . (1)

Fourth sound [5] is one result of such elimination. This is

the only sound mode in a narrow channel, both tempera-

ture and pressure oscillating coherently in this wave. In

general, the sound modes, independent in bulk liquid, be-

gin to interact at the boundary**. The boundary condition

(1) selects a two-dimensional subspace of solutions for

particular frequency �. Specific solutions correspond to

the reflection of first and second sound (Secs. 3 and 4).

Interestingly enough, incident sound energy is not only

reflected and dissipated as it happens in a normal fluid,

but is also converted between first and second sound.

© L.A. Melnikovsky, 2008

* The heat transfer through the interface at low temperature can be neglected due to Kapitza resistance. The heat flux at the in-

terface vanishes simultaneously with the perpendicular component of the normal velocity vn� .

** Sound reflection at the free helium surface and at the solid helium boundary is extensively explored [6–9].



2. Harmonic solutions

Consider the linearized equations of superfluid hydro-

dynamics [10]:
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where �, � �1 4� , � 2, � 3, �are dissipative coefficients,� is

entropy per unit mass, p, �, T are pressure, chemical po-

tential, and temperature, vs, vn, and w v v� �n s are

superfluid, normal, and relative velocities, and � and j are

mass and momentum densities. The velocities and the mo-

mentum density are coupled by the equation

j v w v w� � � �� � � �s n n s . (6)

Further simplification is facilitated by ignoring ther-

mal expansion (we therefore disregard the difference be-

tween specific heats c T / T� �� � at constant pressure and

at constant volume). Namely put

p s� � �2� , (7)

�� �� �� �� � � �� � � � �� �T p T s 2 , (8)

T cT�� � �, (9)

where s p/� �( ) /�� 1 2 is the first sound velocity. The prime

denotes small deviation of the variables from their equi-

librium values.

In a harmonic perturbation, the space and time depend-

ence of all deviations takes the form*

exp( )i i tkr � � . (10)

To find all possible harmonic excitations in bulk he-

lium we substitute this exponential term in Eqs. (2)–(5)

and keep linear terms only.

Mass conservation (2) gives

��� � k ji i . (11)

The momentum conservation law (3) can be trans-

formed as follows:
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and, using (7), (6), and (11)

( ) ( )� � � � � � �� � � � �i k / j iA s / k k j i k w /i i k k
s

i2 2 2

� �iBk k wi k k 0, (12)

where the constants A / /� �( )� � �3 2 and B A s� �( )� �1 .

From the energy conservation law (5) for harmonic de-

viation we get

T T T v k ik Tn
l l�� � ��� �� �� � �� � � �2 0.

Using (6), (9), and (11) this can be reduced to

T k w c i k Ts
i i�� �� �� � �( )2 . (13)

Finally, substituting the exponential term (10) and (6)

in (4) we obtain
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Combining this with (8), (11), and (13)
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n
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(14)
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Equations (12) and (14) can be written together as

�L
j

w

�

	



�

�
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where �L is a square 6 6� matrix composed of the coeffi-

cients from (12) and (14). The linear system is consistent

if det �L � 0. Due to the system isotropy, the determinant

cannot depend on individual components of k i . Instead it

depends on k k ki i2 � only. We therefore can put

k ky z� � 0 and treat �L as a 4 4� matrix:
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* It is important to mention that unbounded solutions (those with complex wave vector k) should not be overlooked in a re-

stricted geometry.
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After factorization det �L simplifies to
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All nontrivial solutions immediately follow:
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� � �� �i k / n3
2 , (17)

where s2 is the second sound velocity.

Roots k1 (15) and k 2 (16) correspond to «longitudi-

nal» solutions where j w ki i i� � 1 2, , while the root k 3

(17) corresponds to a «transverse» one j k w ki i i i
3 3 0� � .

The approximation in (15) and (16) is based on an as-

sumption of low bulk damping, i.e. | | | | | |k k k3 2 1�� � . This

implies complete splitting between first and second sound,

namely w � 0 for (15) and j � 0 for (16). In the third solu-

tion (17), the superfluid velocity vanishes v s � 0, i.e. the

mass flux and the relative velocity are coupled by the rela-

tion j w� �n .

3. First sound reflection

To avoid complications associated with wall deforma-

tion, consider a perfectly rigid flat surface. We therefore

ignore numerous peculiarities of sound transmission into

solids. By  1 denote the angle of incidence for the first

sound wave (see Fig. 1). The subscripts I1, R1, and R2 re-

fer to the incident first, reflected first, and reflected sec-

ond sound waves, respectively. The x axis runs along the

wall and the y axis is directed into the liquid.

T h e b o u n d a r y c o n d i t i o n s ( 1 ) j y � 0, w y � 0,

j wx
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where cos ( ) sin2
2 2

2 2 2
11 � �  s /s , to satisfy the condition

k kI
x

R
x

1 2� . The last term on the left-hand side of (18) rep-

resents the transverse surface wave with a wave vector

k 3. The wave must decay away from the boundary, there-

fore Im k
y
3

0� . This requirement selects the sign in (19),

which is the transversality relation w k3 3� :
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where � � �� �n / . Substituting this in (18) we get
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Fig. 1. First sound reflection.
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Second sound is slower than first sound, i.e. s s� 2, conse-

quently  %2 2! / and cos &2 0. One can therefore neglect

the first term in parenthesis
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Similarly, the amplitude of the reflected first sound is ob-

tained from the equation
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Reflection and conversion efficiency must be charac-

terized by appropriate coefficients R F /FR I11 1 1� and

R F /FR I12 2 1� , respectively. Here F1 and F2 are the energy

fluxes in the first and second sound waves. They are given

by the expressions
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Sample graph of these functions is illustrated on Fig. 2.

The reflection coefficient R11 has a minimum of

min R11 3 2 2� � (24)

at finite angle of incidence. The value at the minimum is the

same as for the sound reflection in usual hydrodynamics [2].

4. Second sound reflection

The same approach can be used to investigate the sec-

ond sound wave incident at an angle  2 (see Fig. 3). The

boundary conditions in this case are
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After simplification this gives
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The last term in parenthesis is always negligible (the

equation is meaningful only if sin %2 2s /s). This gives
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Fig. 3. Second sound reflection.
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given by
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is reached at the critical angle sin / �2 2s s.

Amplitude of the reflected second sound wave is

found from the relation
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where tan sin sin �  �  1 2 2
2 2 2

2s / s s and Im (tan )1 0)

(selected by the requirement Im k
y

1
0* ). The reflection

coefficient is therefore
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These functions for sample parameters are plotted on

Fig. 4.

5. Discussion

In helium II sound reflection at slanted incidence by a

plane impervious wall is suppressed for both first and se-

cond sound. This phenomenon is similar to the Kon-

stantinov effect in ordinary gases.

Coincident with the reflection suppression, a sound

conversion takes place. The effect has strong angle de-

pendence and should allow direct experimental verifica-

tion. Moreover, there exist heat pulse propagation mea-

surements [11] where the pulse transit time was often

much shorter than that expected for second sound. This

phenomenon is usually explained by an anomalously long

phonon free path at low temperatures or by sound conver-

sion in bulk (due to nonlinear effects) or at liquid-vapour

interface. It seems probable that fast propagation is in fact

a manifestation of the sound conversion described in this

paper, so that the heat pulse is transformed at some wall

into the pressure pulse and is later transformed back near

the receiver. The signal therefore travels (some part of)

the path with the velocity of first sound.
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