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Local structure of Ce1–xLaxRu2 system, measured by EXAFS has been re-examined and correlated to the

statistical ad hoc model, recently applied to the sphalerite, wurtzite and other intermetallic ternary alloys.

The deconvolution of the EXAFS data show that the Ce1–xLaxRu2 ternary system is essentially a mixture of:

CeRu2 and LaRu2 binary alloys with a small proportion of the Ce0.5La0.5Ru2 ternary configuration, being

maximum for the intermediate concentration. Moreover, the analysis reveals that while the LaRu2 configu-

ration exhibits a Bernoulli random distribution, the presence of a Ce atom affects both the CeRu2 and

Ce0.5La0.5Ru2 distributions, strongly favoring the configuration with the CeCe pair, while keeping rare that

with a single Ce ion.

PACS: 61.05.cj X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES;
74.70.Ad Metals; alloys and binary compounds (including A15, MgB2, etc.);
74.70.Tx Heavy-fermion superconductors.

Keywords: Laves phases, Ce1–xLaxRu2 system, local structure, statistical model.

1. Introduction

The Laves phases are generally found in the AB2 com-

position. The peculiarity of this structure is that B atoms

are assembled in tetrahedra around the A atoms, while

atoms A are ordered in: 1) a cubic MgCu2 type C15 struc-

ture (e.g., CsBi2, RbBi2, TbFe2, DyFe2, FePd), 2) a hexag-

onal CaMg2 type C14 structure (e.g., ZrRe2, KNa2, TaFe2,

NbMn2, UNi2, TiMn2) or 3) an NbZn2 type C36 structure

(e.g., ScFe2, ThMg2, HfCr2, UPt2). Several other crystal-

line systems such as AuBe5, AuNi4Y, Pt5U, etc. also have a

Laves cubic C15b structure, while other AB2 crystals (e.g.,

MgB2) grow with non-Laves structures in which the B

atoms form graphite like sheets separated by hexagonal

Mg layers. Many compounds crystallizing in the AB2

structures have been investigated, such as UGe2 [1], MgB2

[2,3], ZrZn2 [4], CaSi2 [5,6], RFe2 (R = rare earths) [7], or

ternary NbCr2 loaded with Ti, V, Zr, Mo, W [8].

CeRu2 is one of the most interesting Laves phase al-

loys, partly due to its unusual superconducting and mag-

netic properties [9]. CeRu2 exhibits superconductivity

at 6.2 K [10–17] but also LaRu2 is a superconductor with

Tc ~ 4 K; although the two compounds are probably asso-

ciated to different superconductivity mechanisms. Here

we focus on the Ce1–xLaxRu2 ternary system, an MgCu2

type C15 Laves crystal, to understand its functional be-

havior and to further characterize its local structure [17].

2. Topology of MgCu2 type C15 crystals: CeRu2 and

LaRu2

The Laves MgCu2 type cubic C15 structured phases

are identified by the cF24 Pearson symbol, space group

Fd3m, and number 227 [18]. The crystal lattice structure

is defined by its:
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– primitive vectors: {j a/2 + k a/2, i a/2 + k a/2, i a/2 + j a/2}, (1)

and

– basic vectors: BMg1 = i a/8 + j a/8 + k a/8; BMg2 = i 7a/8 + j 7a/8 + k 7a/8;

BCu1 = i a/2 + j a/2 + k a/2; BCu2 = i a/2 + j a/4 + k a/4;

BCu3 = i a/4 + j a/2 + k a/4; BCu4 = i a/4 + j a/4 + k a/2 (2)

[18]* (see Figs. 1 and 2).

CeRu2 and LaRu2 are binary systems canonically cha-

racterized by the MgCu2 structure (Fig. 1) and described

by Wyckoff [18] with Eqs. (1) and (2); all interatomic dis-

tances are given in Table 1 [19,20]. Thus in the binary

Ce2Ru4, the Ru-vertex is midway between the two Ce

atoms.

However, Huxley et al. [12] reported that their

unannealed CeRu2 twinned crystals differ slightly from

the ideal MgCu2 structure, and suggest the less symmetric

phase characterized by F43m space group structure in-

stead of the normal Fd3m (Fig. 2).

3. The ternary (Ce1–x
La

x
)2Ru4 model structure

The ternary (Ce1–xLax)2Ru4 structure has three possi-

ble configurations (T0,T1,T2) where a subscript index in-

dicates the number of La atoms substituted for the Ce in

the Ce2Ru4 binary. For example, the T0 is a binary

Ce2Ru4, T1 is a ternary CeLaRu4 and T2 is a binary

La2Ru4. Site occupation preferences (SOPs) are possible

in the T1 configuration only, with the weight coefficient W1

quantifying the departure from a random distribution [21].

For a random distribution of Ce and La atoms with re-

spective relative contents (1 – x) and x in the sample, the

probability of occupation in the three configurations is

described by Bernoulli’s binomials

p
[N]

k = !N/[!k !(N – k)] x
k
(1 – x)

N – k

with �k = 0,N [p
[N]

k] � 1,

(3)

where N is the number of available sites to be filled, k is

the number of La atoms and (N – k) that of Ce atoms in the

resulting configuration [22]. In CeLaRu4, N = 2 and

hence we write for the probabilities pk = p
k
[ ]2

:

p0 = (1 – x)
2
, p1 = 2x(1 – x) , p2 = x

2
, with 0 � W1 � 2 [21].

In the Laves structure (Fig. 1) the Ce and La atoms are

surrounded by Ru atoms and the coordination numbers

(CN) for the NN and the NNN atoms are

NN
Ce

Ru
CN =

NN
La

Ru
CN = 12,

NN
Ru

Ru
CN = 6,

and
NNN

Ru
Ce

CN = NNN
Ru

La
CN = 6,

while 0 � NNN
Ce

CeCN = 4P0 + 2P1 � 4

and 0 �
NNN

La
La

CN = 2P1 + 4P2 � 4

with NNN
Ce

LaCN = 4 –
NNN

Ce
Ce

CN � 4,

and
NNN

La
Ce

CN = 4 –
NNN

La
La

CN � 4 [19], (4)

where

P0 = p0 + max[0;(1 – W1)]p1;

P1 = min[W1; 1; (2 – W1)]p1;

P2 = p2 + p1max[0;(1 – W1)]
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* Wyckoff [18] crystal structure nomenclature is adopted throughout the text.
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Fig. 1. (left) Perspective view of the atomic distribution in the Mg2Cu4 structural element: Mg (�), Cu (�), crystal axis (dash dot),

Cu tetrahedron (short dash) as described in Ref. 18; (center) Basic structure unit cell of the MgCu2 type C15 crystal. Mg (�), Cu

(�); (right) Perspective view of the atomic distribution of a CeRu2 crystal (as per [12]): Ce (�), Ru (�) forming the vertex sharing

tetrahedra (dot), crystal axis (dash dot).



conserving the stoichiometry [21]. The canonical structure

and that proposed by Huxley et al. structures differ by dis-

tances and hence we need comparison of both structures.

3.1. Structural assumptions

Two occupation sites for the competing Ce and La at-

oms (indicated as spheres in the Fig. 1) are known. The

binary configurations T0 and T2 are defined (Table 1),

while the ternary T1 requires to be modeled with one SOP

coefficient W1, and three inter-atomic distances Ru
Ru d1,

Ce
Ru d1 (� Ru

Ce d1), La
Ru d1 (� Ru

La d1). The model also considers

that in the ternary configuration T1:

– each Ce and La atoms are centered within its NN first

spherical shell of the surrounding Ru atoms, with the re-

spective radii Ce
Ru d1 and La

Ru d1;

– the size of the Ru tetrahedra coordinated with Ce

atoms is Ce
RuRud1 while those coordinated with the La

atoms is La
RuRud1. The experimental data does not allow

distinguishing between these two parameters and there-

fore they are assumed to be equal to the experimental val-

ues of the Ru
Ru d1.

The resulting crystal size should simulate the observed

lattice constant in the ternary configuration T1 (see Fig. 3).

3.2. Resulting equations

Applying the probabilistic description of the EXAFS

data of the atomic pairs, as it has been done previously for

sphalerite, wurtzite and other intermetallides [21,23–25]

we obtain, in agreement with the above assumptions, the

following expressions:

< Ru
Ru d> = 12{ Ru

Ru d 0P0 + Ru
Ru d1P1 + Ru

Ru d 2P2}/12,

< Ce
Ru d> = {12 Ce

Ru d 0P0 + 6 Ce
Ru d1P1}/[12P0 + 6P1],

< La
Ru d> = {6 La

Ru d 0P1 + 12 La
Ru d 2P2)}/[6P1 + 12P2],

<aCeLaRu 2> = {aCeRu 2P0 + aCeLaRu 2P1 + aLaRu 2P2}/1.

Thus according to the model we have four free para-

meters, the SOP coefficient W1 and three distance para-

meters relative to the configuration T1, to reproduce the

experimental values of Fig. 2–4.

4. Experimental data

Ru K-edge x-ray absorption fine structure (EXAFS)

spectroscopy, a fast and local tool capable to probe a

small local cluster (� 5–6 �) around the photo absorber

[26] was used to determine the local displacements in the

Ce1–xLaxRu2 system. This system is indeed characterized

by a short coherence length (� 30–60 �), and local interac-

tions are expected to be important for its superconducting

behavior. As diffraction does not show any structural ano-

maly as a function of the La concentration at ambient pres-

sure [27], the EXAFS method was considered to explore

possible structure-function relationship in this system.

4.1. Sample preparation and characterization

Samples of Ce1–xLaxRu2 (with x = 0, 0.03, 0.06, 0.09,

0.12, 0.15, 0.151, 0.20, 0.75, 0.751) were synthesized by

arc melting [17]. All the samples were characterized by

x-ray diffraction (Cu K� source with Si standard) for their

long range structural properties [9]. The diffraction data

revealed MgCu2-type structure with unavoidable impuri-

ties estimated at � 2–3% (impurities probably contained

in the starting metallic ingredients). For these samples,

the measured lattice parameters a and the average inter-

atomic distances Ru:Ru and Ru:Ce vs. x are summarized

in Table 2.
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Table 1. Crystal lattice parameter, near neighbours (NN) and next near neighbours (NNN) coordination numbers and the interatomic dis-

tances a for the CeRu2 and LaRu2 [19,20]

Binary a, � NN NNN

12 Ru:Ru 6 Ce:Ru La:Ru 12 Ce:Ru La:Ru 4 Ce:Ce La:La

CeRu2 7.537 2.665 3.125 – 3.125 3.264

LaRu2 7.718 2.729 – 3.200 3.200 3.342

0 0.5 1.0

7.55

7.60

7.65

7.70

x

Fig. 2. The Ce1–xLaxRu2 lattice constant a vs. x: calculations

(solid); experimental data (�), values of end members from li-

terature [20] (�).



4.2. EXAFS measurements

Ru K-edge absorption measurements were performed

on powdered Ce1–xLaxRu2 samples. The EXAFS mea-

surements were carried out in Grenoble at the beam line

BM29 of the European Synchrotron Radiation Facility

(ESRF) using radiation monochromatized with a double

crystal Si(311) monochromator. Ru K� fluorescence yield

was collected using a multi-element Ge detector array.

The samples were mounted in a closed cycle two stage He

refrigerator to ensure measurements at T = (30 ± 1) K.

Routinely, several absorption scans were collected to test

the reproducibility of the spectra, and to limit the noise

level to the order of 10–4 to achieve a high S/N ratio. the

EXAFS signal was extracted from the absorption spec-

trum using the standard procedure [26], followed by the

x-ray fluorescence self-absorption correction before the

analysis [28]. The obtained results are summarized in

Table 2 and plotted in Figs. 2 and 4.

5. Results

Regarding the T1 configuration of the CeLaRu2 system

our calculations showed that W1 = 0.063 � 0.001 (C1=

= 6.3% of a random distribution) with T1 inter ion NN dis-

tances: Ce:Ru = 5.360 �; Ru:Ru = 3.122 � while La:Ru is

poorly defined due to its low abundance.

With a unit cell parameter a = 8.861 �, the above re-

sults imply:

– a strong preference for the Ce atoms with respect to

La (see Fig. 3);

– an expanded T1 configuration for the Ce0.5La0.5Ru2,

i.e., with a lattice constant �16% greater than the mean

lattice of either of the two binary CeRu2 or LaRu2;

– an inter ion NN distance Ru:Ru �17% greater than

the corresponding mean distance of the two binary CeRu2

and LaRu2;

– an inter ion NN distance Ce:Ru � 73% greater than

that of the binary CeRu2.

In his work Huxley et al. [17] reported for their

unannealed crystals twin structures (Fig. 1) a strongly

distorted structure «with alternate Ru-tetrahedra enlarged

(I) or compressed (II)» and also «two distinct environ-

ments, type CeI and CeII» for cerium atoms. At first sight,

available experimental data do not support different

structural configurations. In order to test the compatibil-

ity of the data with two distinct Ce environments and

eventually the occurrence of different environments also

for La, we estimated the experimental error bars. In the

case of two families of distances (CeI and CeII) the uncer-

tainties may be due both to experimental errors and to the

different contributions. Thus to set a possible upper value

to the distance variation between CeI and CeII environ-

ments, we assume the experimental error equal to zero, at-
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Fig. 3. Comparison of the random probabilities pk’s (panel a) of the three configurations T0, T1, T2 and of their sum vs. x with Pk’s

(panel b), those achieved from experimental data.
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Fig. 4. Ce1–xLaxRu2 interatomic distances d vs. x: calculations

and experimental data of Ru:Ru (�), Ru:Ce (�); Ru:La

(curve) [17]. � are values of end members from [20]. Vegard

line (solid thin), VCA curve (dashed).



tributing the entire variation to the difference � of the two

distances: CeI
Ru d1 and CeII

Ru d1. Thus the deconvolution

would determine the Ce
Ru d1 = mean ( CeI

Ru d1; CeII
Ru d1) with

the error bar �CeRu from Table 2: Ce
Ru d1 = 3.097 with

�RuCe = 0.01 imply 3.087 < CeII
Ru d1 � 3.097 � CeI

Ru d1 <

< 3.107 �; similarly RuI
Ru d1 = 2.645 with �RuRu = 0.006

whence 2.639 < RuII
Ru d1 � 2.645 � RuI

Ru d1 < 2.651 �. The ex-

perimental range covers La x � 0.2 and x 	 0.75, both re-

gions associated to p1 < 2.4% (Fig. 3,b), low, yet not neg-

ligible probability of T1 to the total population. Such a

low presence does reflect on the reliability of estimations

of the parameters deduced for T1.

6. Conclusions

In this manuscript we have presented a statistical ana-

lysis showing that the Ce1–xLaxRu2 ternary system is essen-

tially a mixture of two binaries: CeRu2 and LaRu2, with an

extremely low content of the ternary Ce0.5La0.5Ru2 confi-

guration whose maximum concentration has been esti-

mated � 3.15% at the intermediate concentration of La x =

= 0.5. At the same time, the present study cannot rule out

the presence of a distribution of mesoscopic phases in the

Ce1–xLaxRu2 (i.e., a mesoscopic phase separation) char-

acterized by different composition and functions, result-

ing due to susceptible electronic structure of the system

(singularities in the band structure that could be manipu-

lated easily by the substitution at the site A in the AB2

structure, e.g., the Mg or the Rare Earth sites). Moreover

from these data we recognize that while the LaLaT2 con-

figuration exhibits a Bernoulli random distribution, the

presence of a Ce atom affects both the CeCeT0 and CeLaT1

configuration distributions favoring the CeCe pair

(Fig. 3,a,b) while keeping rare the CeLaT1 configuration

with a single Ce ion.
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