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Abstract. The two-dimensional magnetoelastic problems of a thin current-carrying
plate under the interaction of an unsteady electromagnetic field and a mechanical field are
studied. The nonlinear magnetoelastic kinetic equations, the geometric equations, the physi-
cal equations, the electrodynamics equations, and the expressions of Lorentz force of a thin
current-carrying plate under the action of a coupled field are given. The Normal Cauchy
form nonlinear differential equations, which include ten basic unknown functions in all, are
obtained by the variable replacement method. Using the difference and quasi-linearization
methods, the nonlinear magnetoelastic equations are reduced to a sequence of quasilinear
differential equations, which can be solved by the discrete-orthogonalization method. Nu-
merical solutions for the magnetoelastic stresses and strains in a thin current-carrying elastic
plate are obtained by considering a specific example. The results that the stresses and
deformations in the thin current-carrying elastic plate change with variation of the elec-
tromagnetic parameters are discussed. The results show that the stress-strain state in
thin plates can be controlled by changing the electromagnetic parameters. This provides
a method of theoretical analysis and numerical calculation for changing the service con-
ditions and intensity researches of thin plates of engineering structures in an electro-
magnetic field.

Key words: two-dimensional magnetoelasticity of thin current-carrying plate, electro-
magnetic and mechanical fields, nonlinearity, Lorentz force, quasi-linearization method, the
discrete-orthogonalization method.

1. Introduction.

Applications of magnetoelastic theory are broad in the important departments of energy
sources, traffic and national defense and so on. Knopoff [1] (1955) and Chadwick [2] (1972)
applied originally the magnetoelastic theory to solve the problem of wave propagation in
conductors. Subsequently, the propagation of a plane wave in an infinite elastic space with
finite electric conductivity was analyzed, the fundamental kinetic equations of elastic and
inelastic anisotropic bodies in an intense magnetic field were obtained, and the movement of
elastic bodies with electric conduction correlated with the temperature field was studied.
Before 1970, the research works completed by scholars were not elaborate. In the recent
four decades, the research achievements have entered a completely new stage. These re-
search achievements include: some basic theories and computation models based on nonlin-
ear coupled electromagnetic theory and the research achievements by Pao and Yeh [3]
(1973); Ambartsumyan [4] (1977); Moon [5] (1984); Van de Ven [6] (1986); Ulitko,
Mol’chenko, Kovalchuk [7] (1994); Mol’chenko, Grigorenko [8] (2010); Zhou, Gao, Zheng
[9] (2000); Hasanyan [10, 11] (2001, 2006); Wang [12, 13] (2003, 2008); Zheng, Zhang, Zhou
[14] (2005); Wu [15] (2007); Ottenio, Destrade, Ogden [16] (2008); Kaloerov, Boronenko
[17] (2005); Podil’chuk, Dashko [18] (2005), and others. These research achievements laid a
good foundation for studies on magnetoelastic theory and its applications.
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However, so far the studies of the nonlinear theory are not complete enough. Except for
the problems about the vibration and stability of the structures such as rods, beams, plates,
shells, etc. in electromagnetic fields, the state analysis of the stresses and strains in the prob-
lem is rare [19 — 26]. Two-or three-dimensional magnetoelastic problems are only in theo-
retical research phase for establishing the equations, no studies of the stresses and strains in
current-carrying plates and shells in electromagnetic fields on two- and tree-dimensional
problems have yet been reported, the achievements in practical applications are seen also
rarely. Therefore, the researches for the stresses and strains in current-carrying plates and
shells in electromagnetic fields on two-dimensional problems have recently become one of
the most important topics for mechanics operators.

In this paper, the two-dimensional magnetoelastic problems of a thin current-carrying
plate under the interaction of an unsteady electromagnetic field and a mechanical field are
studied. The nonlinear magnetoelastic kinetic equations, the geometric equations, the physi-
cal equations, the electrodynamics equations, and the expressions of Lorentz force of a thin
current-carrying plate under the action of a coupled field are given. Normal Cauchy form
nonlinear differential equations, which include ten basic unknown functions in all, are ob-
tained by the variable replacement method. Using the difference and quasi-linearization
methods, the nonlinear magnetoelastic equations are reduced to a sequence of quasilinear
differential equations, which can be solved by the discrete-orthogonalization method. Nu-
merical solutions for the magnetoelastic stresses and deformations in the thin current-
carrying elastic plate are obtained by considering an example. Computational results show
that the states of the strains and stresses in thin plates can be controlled by changing the
electromagnetic parameters. This lays the foundation for practical applications of two-
dimensional magnetoelastic problems.

2. Fundamental Equations.
We consider a thin elastic plate moving in the applied magnetic field B = {O, By,O}.

The plate, the mechanical load, and electric current distribution in rectangular coordinates
Oxyz are shown in Fig. 1. Current-carrying flexible bodies in a time-dependent electromag-

netic field satisfy the hypothesis that the normal is straight and the Kirchhoff — Love hy-
pothesis that no stretching occurs in vertical fibers. By satisfying the magnetoelastic suppo-
sition of the thin plate [27] and using the theory of elastic mechanics, Ohm’s law and Max-
well equations in electromagnetic basic theories, we obtain the two-dimensional electrody-
namics equations, the magnetoelastic kinetic equations, the expressions of Lorentz force, the
geometric equations, and the physical equations for a thin current-carrying plate.

Fig. 1. A thin current-carrying elastic plate in a magnetic field.

2.1. Two-Dimensional Electrodynamics Equations of a Thin Plate.
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where u, v and w are the displacements along the x, y and z directions, respectively;
E, and E, are the electric field intensities along the x and y directions, respectively; H,
is the magnetic field intensity along the z direction; B, is the magnetic induction intensity
along the z direction; /4 is the thickness of the plate; ¢ is the time variable; o is the elec-
trical conductivity of the plate; Bf and H;" (i=x,y ) are the values of B, and H; on the

upper and lower surfaces of the plate, respectively.

2.2. Magnetoelastic Kinetic Equations of a Thin Plate
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where N, N,, O, O,, S, M,, M, and M, are the internal forces and moments
along the corresponding directions in the plate; F,, F,, and F, are the mechanical loads;
Ny, Ny, and n, are the volume forces; f,, fy ,and f, are the Lorentz forces along the corre-
sponding directions; ¢, and 6, are the angles of rotation; J,,, and J,,, are the densities of
side electric current along the corresponding directions; p is the mass density of the plate.

2.3. Geometric Equations of a Thin Plate.

Considering Von Karman’s geometric relationship for the deformation of a thin plate,
we can write the geometric equations describing nonlinear deformation as
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2.4. Physical Equations of a Thin Plate.
The physical equations of the thin current-carrying plate are given by

N, =Dy(&,+ve,); N, =Dy(e, +ve,); (15a,b)

M, =Dy (x.+vr,); M, =Dy (¥, +v,); (16a,b)
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where D, and D,, are the tensile and bending rigidities, respectively,

3
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where E is Young’s modulus; v is Poisson’s ratio.

3. Magnetoelastic Nonlinear Equations of a Thin Current-Carrying Plate.
For obtaining normal Cauchy form nonlinear partial differential equations, let u, v, w,

Hy, N y Q S, M y E. and B, be the basic unknown functions. We obtain:
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where u is the permeability of the plate, and
R oM,
0,=0,-N,0,-56,+ . (29)
ox
4. Computational Method.
Equations (19) — (28) can be written as boundary-value problems:
N B 3N (30)
oy
D, N|y:dl =d,; D, N|y:d2 =d,, (31 a,b)

where N={u, v, w,0,, N,, Qy, S,M,, E,, BZ}T ; D, and D, are given orthogonal ma-
trixes; d, and d, are given vectors.

4.1. Establishing of Difference Format.

For problems (30) and (31), the difference format is built along x direction, at the i
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where A is the difference step length. At the same time, Newmark’s stable finite equidifferent
formulas [27] are used to find the derivatives with respect to time in Egs. (19) — (28) for a
time step length:

A u™tt =y _ £+iit (l_ﬁj l
B(Ar? At 2 B’
L-{t+At — L.{t +%(ﬁt +i{'f+At) , (34 a, b)

where [ is the parameter of the scheme, £ = 0,25 is generally selected; Az is time increment.
Thus, Egs. (19) — (28) can be expressed as
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4.2. Derivation of Linearized Iteration Equations.
After establishing the difference format, the problems described by Eq. (35) are nonlin-
ear. With an iteration method, nonlinear problems can be turned into a series of linear prob-
lems. The iteration equations are
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where I'(y,N®) is Jacobi’s matrix.
Thus, Egs. (19) — (28) can be written as
d(ui)(k+1) 2(Sl)(k+l) (vi+1 )(k+1) _(vifl )(k+1) 1

_ b HINK) (g ik (it (kD) i (k);
& Dy(=) 27 2/1{[(W )(6,) (wW)"8,)

—(w*! )(k) (eyi )(k) 1-[(w! )(k) (eyi )(k+1) (Wi )(k+l) (eyi )(k) — (! )® (gyi )® I (39)

d(vi)(km - (N;)(kﬂ) _l
dy Dy 2

i i\ (k+ i v
20070 (@) 15

><{[(2w”1 )(k)(wi+1)(k+1) _ ((Wi+1)(k))2 -

_2[(Wi+1 )(k) (Wifl )(k+1) + (Wi+1 )(k+1) (Wifl )(k) _ (Wi+1 )(k) (Wi71 )(k) ] +

+[(2W1'—1 )(k)(wi—l )(k+l) _ ((Wi—l )(k))z]} —%((u”l )(k+1) _ (ui—l )(k+1)) , (40)
d(Wi)(kH) __pi(ktD) |
BT @, (41)

135



( i )(k+l) 1 (k+1) v 1\ (k+1) (k+1) 1\(k+1)
Dy - Mi + 4+ — Wi+ +) _ ) Wi + + Wi7 + ; 4 Z

d(N? D KD (s _(gihyke
gy o (8z)2 -5 2/1( : —(F e+ S0 @)

—(Fl +nl+ fH"D -

AP\ (k+1) i i i—
d(Qy) + ) ph3 i{z(wi)(k“) ) (w +1)(k+1) —o(w )(k+1) +(w 1)(k+1)
n2

dy 12 o4 yE

v i+1N(k+D) i+ (k) i+1N(K) . i+l (k+1) i+1N(K) /. i+ (k)
‘W{[(Ny) O+ (N (D - (VO (10 ]

_[(N;'H )(k+l) (Wi—l )(k) " (N;'+1)(k) (Wi—l )(k+1) _ (N;rl )(k) (Wi—l )(k) ] "
J{(N;—l YD (=18 (N;—l ) (kD (N;—l ) (! )(k):| _
_I:(N;—l)(kH) (Wi+1 )(k) " (N;—l )(k) (Wi+l)(k+1) _ (N;—l )(k) (Wi+l )(k) ]} _
—%{[(N; )(k+1) (wi+1)(k) n (N; )(k) (w”l )(k+1) _ (N; )(k) (wi+1)(k):| _
—2[(N§, )(k+1)(wi )(k) " (N;)(k)(wi)(kﬂ) —(N; )(k) (Wi)(k)]+
+[(N; )(k+1)(wi—l)(k) " (N;)(k) (Wi—l )(k+1) _ (N;)(k) (Wi—l)(k):|} _

Eh

_ 223 |:(w[+1 _wllfl )(k+1) (ui+1 _2u[ +ul*1)(k) +(Wi+1 _ Wi71 )(k) (u[+1 _2u[ +ui*1 )(k+1) _

_(Wi+1 _ Wi—l)(k) (u”l _out +ui—1)(k):|_

3 411;: |:2(Wi+l B P N PSP S S N O

+((Wi+1 R NC) )2 (Wi+1 o ! )(k+1) _ 2((Wi+1 i )(k))z (Wi+1 o ! )(k) ] _

Eh

_ 2/13 [(wm _Zwi 4 Wi—l)(k+1) (ui+1 _ui—l)(k) +(Wi+1 _2Wi n Wi—l )(k) (ui+1 _ui—l )(k+1) _

Eh

—(w”l oyt JrWH)(k) (um _ui—l)(k) _Len
] 8At

) ) ) ) . 2
|:(WH~1_2W1+Wl*1)(k+1)((wl+1_Wlfl)(k)) n

+2(Wi+1 0w+ Wi—l)(k) (WHI _ i ® (Wm D _

136



—2(Wi+1 —ow +Wi—1)(k)((wi+l _Wi—l)(k))2]+

iN(k+1) o pi+l i—1\(k) iN(k) ¢ pi+] i—1\(k+1) iN(k) ¢ pi+l i1 (k)
+§[(S) @ =0 +(sHP @ - gD —(sHP @ -0 |+
+g|:(6)l/)(k+l)(sl+l _ g )(k) +(9;)(k)(Sl+1 _Sl—l)(k+l) _(0)1/)(k)(Sl+1 _Sz—l)(k):l_

_%(M;H _2va +M;1)(k+1) +§(WH2 _4W1+1 16w —4Wl71 +Wz—2)(k+1); (44)

iN(k+1) 2 iN(k+1)
dis)™ pha (')

iy S (Ern e [ -

_f_ﬁl(um ECWENCE _é(N;'ﬂ — N

Eh i i i i ; i ;
_ﬁ{[z(w +1 )(k+1) (W +1)(k) —((w +1)(k))2 ] _ 2[(w )(k) (W +1)(k+1) +(w +1)(k) (w )(k+1) B

_(Wi+l)(k)(wi)(k):| +2|:(Wi)(k)(wi—l)(k+1) +(Wi—l)(k)(wi)(k+1) _(Wi—l)(k)(wi)(k)]_
_|:2(Wi—1)(k+1)(wi—1)(k) _((Wi—l)(k))2:|} : (45)

d(Mi)(kH) Ai \(k+1 i \(k+1) / pi \(k i \(k) (i \(k+1 i (k) ;i \(k
(«l"y :(Q;)( +)+|:(N;)( +)(9})( )+(va)( )(g}l))( +)—(N;})( )(g)l))( )]_
_ 1 [(Si)(k+1)(wi+1)(k)+(Si)(k)(wi+1)(k+l)_(Si)(k)(wi+1)(k):|+
24

1 iN(k+1) o i=1\(K) NGNS INGYENCG)
o7 LSOO 4 (s G HED - (5B O |-
2D, (1-v)

12

T Y ; (46)

|:(9Ji)+l)(k+1) _ 2(9;' )(k+1) n (9;'71 )(k+1):|

d(El )(k+1) a(Bl )(k+1) 1
dy B ot - o"uﬂz

[(B”l )(k+1) _2(31')(k+1) +(Bi—1)(k+l)]+

(k) LNkt ()
+L ou™) (B;)(k)_a(u ) (B;)(k)Jra(u ) (B;)(kﬂ) _
24 ot ot ot

i1y (k i+ (k =1k
B g A g 2N 0],
t ! !

137



1 [oai*d ou* 2wy
L (u') (B® — (u') (BHY® + (u') (B |
24 ot ot ot

NG ING: ING:
1o ) (BYE 4 au"H™ (BY® O )® (BY® |-
21 ot ot ot

B . AN

B+ B i+l i1

_ B, +B, o w w : (47)
2 ot 24

d(Bi)(kH) o1 (BN + o o(v ) SV piyken a(Vi)(kﬂ)( 1)) _ o(vH™ V) piyw |-
dy o1 o1

: v o
Ol (n+ | p- a(Wl)(kH) B, - B,
-—I|(B, +B + . 48

2 ( 7 ) ot h “8)
The Lorentz forces in the equations can be linearized by the same method. Thus, we ob-

tain a set of linear ordinary differential equations. All unknown variables can be found by
the discrete-orthogonalization method in numerical computations.

5. Analysis of Numerical Results.
Figure 1 shows a thin rectangular plate made of aluminium in a magnetic field

B-= {0, By, 0}. It bears the mechanical load F = {O, 0, FZ} , alternating electric current that

the density is Jo ={J,
v=0,3, p=2670 kg/m>, 0=3,63x10"(Q-m)", 1=1,256x10"° H/m ,
Joy =J, sinot A/m2 , w=7rx10%sec”’, F, =80 N/m2 , the length of the plate is a =1m,
the width of the plate is 5=0,5m, A =2x10" m.

The boundary conditions are

s 05 O} is exteriorly imported the plate. Let E = 7,1><1010 N/ m> R

x=0:u=v=w=0,6,=0; (49 a-d)
x=lm:u=v=w=0,0,=0; (50 a-d)

y=0: B, =0IsinotT, u=v=w=0, M, =0; (51 a-e)
y=05m: B,=0,N,=0,0,=0,5=0, M,=0. (52 a-e)

The initial conditions are
NCx, p,8)|,_y =05 4i(x, y, 1),y = V(% », 0],y = WX, 3, )|,y = 60,(x, v, 1)|,_, =0. (53 a-e)

Programming Egs. (39) — (48) and conducting computations for the known data
and initial and boundary conditions yield the ten basic functions u, v, w, Hy , Ny,

A

O,, §, M,, E, and B_. Then the relations and variation laws between the me-

chanical and electromagnetic variables can be determined by changing the relevant
parameters.
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5.1. The Effect on the Deformation of Thin Plate by the Electromagnetic Parameters.
Figure 2 shows the deflection w distribution in the plate along the width direction

(y direction) under the action of F, = SON/m2 ; Je = 0,5MA /m?, B,=0,2T; and a

coupled field (r =14 ms).

Detlection w/ mm
10

—»— coupled field
—e— clectromagnetic field
—=&— mechanical field

i T T~ V- N R V-Y

Deflection w / mm

10 — —+— =14 ms
—%— 1 =12ms
—e— t =11 ms
—tr— =9 ms

O_

0,1 0.2 0,3 Width of the plate » /m

Fig. 2. Contrast diagrams of the deflection.

0.2 0,3 Width of the plate 3 /m

Fig. 3. Curves of the deflection distribution for
J,=0,5SMA/m*, B, =0,2T,

and different moment.

Fig. 3 shows the deflection w distribution in the plate along the width direction ( y di-

rection) for J, =0,5MA/ m?, B, = 0,2 T, and different moment. According to Fig. 3, the

effect on the deformations of structures by electromagnetic loads is very obvious under the
interaction of the mechanical loads and electromagnetic loads, it can’t be ignored.

Deflection w / mm
14

=)

0 0,1 0.2

0,3 Width of the plate ¥/ m

Fig.4. Curves of the deflection distribution for J, = 0,5 MA/m? , t =14 ms , and different values of By .

Deflectionw / mm
14

12 |-

10 -

—t+— J, =0,8 MA/m?
—— J, =0,6 MA/m?
—e— J, =0,4 MA/m?
—a—J, =02 MA/m?

0 0.1

0,3 Width of the plate y /m

Fig. 5. Curves of the deflection distribution for By =0,2T, t =14 ms , and different values of J .
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Fig. 4 shows the deflection w distribution in the plate along the width direction ( y di-

rection) for J, =0,5 MA/ m?, t=14ms, and different magnetic induction intensity. Ac-
cording to Fig. 4, the deflection in the plate increases with increase in the magnetic induc-
tion intensity.

Fig. 5 shows the deflection w distribution in the plate along the width direction ( y direc-

tion) for B,=0,2T, t=14ms, and different electric current density. According to Fig. 5, the
deflection in the plate increases with increase in the electric current density.

Fig. 6 shows the variation of the deflection in middle point of the free edge with time
for J, =0,5MA/ m? and different magnetic induction intensity, the other parameters being

the same as above. Initially, the deflection varies a little with increase in the magnetic induc-
tion intensity. As time goes on, the deflection rapidly increases with the magnetic induction
intensity, and peaking earlier. The deflection peaks somewhere between ¢=13ms and

t =15 ms . It can be shown that the kinetic behavior of the plate can be changed by changing
the magnetic induction intensity.

Deflectionw / mm

14— ——RB,=04T
—— B, =0.3T
—e— 5 ,=02T
—a— B ,=0,1T

y
y
y
be

1 3 5 7 9 11 13 Timet/ms

Fig. 6. The deflection in middle point of the free edge versus ¢ for J, =0,5 MA/m?

and different values of By .

Deflectionw / mm

W 7 =08MAm?
—e— J, =0,6 MA/m?
—e— J, =04 MA/m?
—a— J . =0,2 MA/m?

12

10

8

1 3 3 7 9 11 13 Time 2/ ms

Fig. 7. The deflection in middle point of the free edge versus ¢ for B, =0,2T

and different values of J, .

Fig. 7 shows the variation of the deflection in middle point of the free edge with time
for B, =0,2T, the same other parameters, and different electric current density. Initially,

the deflection varies a little with the electric current density. As time goes on, the deflection
rapidly increases with increase in the electric current density, and peaking earlier. The de-
flection peaks somewhere between =13 ms and #=16 ms. It can be shown that the ki-

netic behavior of the plate can be changed by changing the electric current density.
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Fig. 8 shows the variation of the deflection in middle point of the free edge with the
magnetic induction intensity for J, = 0,2MA/ m? and =14 ms, the other parameters be-

ing the same as above. According to Fig. 8, the deflection nonlinearly increases with the
magnetic induction intensity.

Deflectionw / mm

P I T R B R
0 0,2 0,4 Magnetic induction intensity By /T

Fig. 8. The deflection in middle point of the free edge versus B, for J, =0,2 MA/m?
and t =14 ms.

Fig. 9 shows the variation of the deflection in middle point of the free edge with
the electric current density for B,=0,2T and ¢ =14 ms, the other parameters being

the same as above. According to Fig. 9, the deflection nonlinearly increases with the
electric current density.

Deflectionw / mm

1 L P -
61 02 03 04 05 Electric current density J, / MA /m?

Fig. 9. The deflection in middle point of the free edge versus J, for B, =0,2T and ¢ =14 ms.

5.2. The Effect on the Stress of Thin Plate by the Electromagnetic Parameters.
Fig. 10 shows the variation of the stresses in middle point of the plate with time for

J,=0,5MA/ m? and B,=0,4T, the other parameters being the same as above. Curves a

and b are the variation of normal stresses o along the x direction on the upper, lower sur-

faces of the plate with time, respectively; curves ¢ and d are the variation of normal stresses

+ . . . . .
o, alongthe y direction on the upper, lower surfaces of the plate with time, respectively.

Stress & ; / MPa
~ —e—a

—— b
—a—c
——d

1 3 5 7 9 1 13 Time ¢/ ms

Fig. 10. The stress in middle point of the plate versus ¢ for J, =0,5 MA/m? and B,=0,4T.
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Fig. 11 shows the stress distribution along the width direction (» direction) for J, = lMA/ m?,
B, =0,4T ,and t =17 ms , the other parameters being the same as above. Curves a and b are the
normal stresses af along the x direction on the upper, lower surfaces of the plate, respectively;
curves ¢ and d are the normal stresses O'yi along the y direction on the upper, lower surfaces of the
plate, respectively.

Stress o7/ MPa

L L L | L |
0,0 0,1 0,2 0,3 Width of the plate ¥/ m

Fig. 11. Curves of the stress distribution for J, =1 MA/m?, B,=0,4T, and t =17 ms .

Fig. 12 shows the variation of the normal stress & along y direction on the upper surface in
middle point of the plate with time for J, = lMA/ m~ and different magnetic induction intensity,
the other parameters being the same as above. Initially, the stress varies a little with increase in the
magnetic induction intensity. As time goes on, the stress rapidly increases with the magnetic induc-
tion intensity, peaking generally at r =9 ms .

0 2 4 6 8 10 Time ¢ / ms

Fig. 12. The normal stress 0'; on the upper surface in middle point of the plate versus ¢ for
J, =1 MA/m* and different values of B,.

Fig. 13 shows the variation of the normal stress 0'; along y direction on the upper sur-
face in middle point of the plate with time for B, =0,1T, the same other parameters, and
different electric current density. Initially, the stress varies a little with the electric current
density. After 3 ms, the stress rapidly increases with increase in the electric current density,
peaks at # =9 ms, and then begins to decrease.

Stress O';r/MPa

[ —— J,=MAm?
P —se— J,.=3 MA/m?
12 —— s =2MA/M?
P —a— J,=1 MA/m?

1 1 1 1 .
0 2 4 6 8 10 Time ¢/ ms

Fig. 13. The normal stress 0'; on the upper surface in middle point of the plate versus ¢ for

B, =0,1T and different values of J, .
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6. Conclusions.

Very important and complex problems in correlative mechanics domain are studied in
this paper. Using the difference and quasilinearization methods, we have reduced nonlinear
partial differential equations with ten basic unknown functions to a sequence of quasilinear
differential equations, which can be solved by the discrete-orthogonalization method. Nu-
merical solutions for two-dimensional magnetoelastic stresses and deformations in a thin
current-carrying plate have been obtained. The relations between the stresses and deforma-
tions in a thin current-carrying plate under the interaction of an unsteady electromagnetic
field and a mechanical load and the electromagnetic parameters have been discussed. This
provides a method of theoretical analysis and numerical calculation for changing the service
conditions and intensity researches of thin plates of engineering structures in an electromag-
netic field. For example, we now know that:

(1) the effect of an electromagnetic field of low intensity on the displacements and
stresses of structures and components is weak, this effect becoming stronger with increase in
the electromagnetic field intensity; it is shown that the magnetoelastic analysis of structures
and components in an electromagnetic field is necessary and very important;

(2) the stresses and deformations in a thin current-carrying plate nonlinearly increase
with the magnetic induction intensity or the electric current density;

(3) the kinetic behavior of the plate can be changed by the magnetic induction intensity
or the electric current density;

(4) the strain and stress states in a thin current-carrying plate can be controlled by
changing the electromagnetic parameters;

(5) based on the work of this paper, some further studies for multidimensional magneto-
elastic problems of elastic structures in complex electromagnetic fields can be carried out.
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PE3IOME. BuBueHo qBOBUMIpHI 3aadui AJisl TOHKOI CTPYMOIPOBIHOT IUIACTHHKH, 110 nepeOyBae
IiJ €10 HeCTalliOHAPHUX €JIEeKTPOMArHiTHOrO Ta MeXaHi4HOro mnosiB. OTpUMaHO HeNiHiiHI AudepeHLi-
anbHi piBHAHHA THIY Ko, o BKIIOYAIOTh JeCATh OCHOBHUX HEBIZOMUX (yHKIHiH. 3a ZOMOMOroI0 pi3HU-
LIEBOr0 METOAY 1 METOIy KBa3iliHeapH3allil HeMiHiiHI PIBHSHHS MarHiTOMPY>KHOCTI 3BECHO /0 MOCHTi0B-
HOCTI KBa3UTiHIHHMX An(epeHIliaIbHUX PiBHSAHb, SIKI MOXKYTb OyTH PO3B’si3aHI METOJOM KBa3iliHeapH3allil.
Jl1s cHeriaJIbHOro BHITQJKY OTPUMAaHO YHMCENBHUH PO3B SI30K 100 HANpyXeHb 1 nedopmauiil. Bussnero,
[0 BOHHU 3MIHIOIOTBCS 31 3MIHOIO €IeKTpOMarHiTHuX mapamerpis. Ilokaszano, mo HampyxeHo-nedopMoBa-
HUIi CTaH y TOHKIH IJIACTHHII MOXe OyTH peryjbOBaHMI 3MiHOO €NIEKTPOMArHITHUX MMapaMeTpiB.
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