
UDC 004.75

À.I. Shvayka, post-graduate
Pukhov Institute for Problems of Modeling in Energy Engineering
(15, General Naumov St., Kiev, 03164 Ukraine,
(044) 4249165, e-mail: andrew.shvayka@gmail.com)

Load Balancing in IoT
Applications Using Consistent Hashing

The paper gives a systematic analysis of the load balancing methods within the scope of the most
common cases of the Internet of Things use and network protocols. It also presents the architec-
ture of a load balancing system that supports HTTP, MQTT and CoAP protocols and utilizes a
consistent hashing algorithm.

Ïðåäñòàâëåí àíàëèç ìåòîäîâ áàëàíñèðîâêè íàãðóçêè â íàèáîëåå ïîïóëÿðíûõ ñöåíàðèÿõ
èñïîëüçîâàíèÿ è ïðîòîêîëàõ èíòåðíåòà âåùåé. Ïðåäñòàâëåí äèçàéí ñèñòåìû áàëàíñèðîâ-
êè íàãðóçêè, îñíîâàííîé íà èñïîëüçîâàíèè êîíñèñòåíòíîãî õåøèðîâàíèÿ, êîòîðàÿ ïîä-
äåðæèâàåò ïðîòîêîëû HTTP, MQTT è CoAP.

K e y w o r d s: load balancing, consistent hashing, IoT, telemetry, HTTP, CoAP, MQTT.

Introduction. The relevance of the load balancing problem in distributed sys-

tems is proportional to the amount of physical objects that use these systems to

exchange data. The most common objects of the Internet of Things (IoT) are de-

vices, vehicles, and buildings with various sensors embedded into them. The

amount of connected devices has grown by 30 % (up to 4 billion, which is the

lowest estimate) in 2015, and it is planned to reach 20-40 billion in 2020 accord-

ing to various forecasts [1].

The main goals of the load balancing process are as follows [2]: to optimize

consumption of the server-side resources; to minimize the request processing

time; to enable horizontal scalability of the distributed system; to enable resilience

of the distributed system.

The capability to load-balance requests between multiple components of a

distributed system significantly improves the system’s reliability and availabili-

ty compared to when a single server side component is used. If one or more com-

ponents of a distributed system break down, the load is distributed between the

remaining healthy components.

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2016. Ò. 38. ¹ 5 75

�������������	
�
�
��
���
	���
�����
�����

� À.I. Shvayka, 2016

The load balancing can be performed on various layers of the model of Open

Systems Interconnection (OSI). The most popular load balancing solutions ope-

rate at the transport and application layers. At the transport layer, the load ba-

lancing algorithms can make limited routing decisions based on the information

in protocol headers without regard to the actual content of the messages. At the

application layer, the load balancing algorithms operate with the actual content

of each message [3]. Content-specific load balancing methods are most promising

due to their capability to inspect information exchanged in the network and thus

make highly intelligent load balancing decisions.

The most common load balancing methods that work well for web servers

may also produce good results for IoT applications. However, much better re-

sults can be achieved for the IoT applications load balancing, if typical IoT use

cases as well as specific network protocols used for the IoT are taken into ac-

count when selecting or developing the load balancing algorithms.

IoT use cases. Various use cases of IoT applications represent different load

scenarios and have different footprint on server-side resources: Central Proces-

sing Unit (CPU), Random Accessory Memory (RAM), disk and network. Un-

derstanding the load profile of a particular use case may provide hints and impact

applicability of certain load balancing strategies.

Telemetry. Connected devices with built-in temperature, gas and other ener-

gy-consumption meters, enable huge amount of use cases in home or enterprise

monitoring and control. Main scenario of this use case is to deliver telemetry

data to the cloud for further processing and analytics. Delivery and storage of te-

lemetry data mostly impact network and disk. In case of secure communication

channel, this operation also affects CPU and RAM (cache to lookup security

credentials for a particular device).

Messaging. Connected devices may exchange messages between each

other. Messaging capabilities of IoT applications can be implemented using

peer-to-peer communication or through the cloud. Peer-to-peer communication

usually has no particular impact on the server side of distributed system. On the

other hand, communication through the cloud usually impact CPU and RAM.

CPU resources are usually spent for encryption and decryption of the messages

due to common requirement of secure communication channel. RAM resources

are spent to cache security credentials, undelivered messages, session state, etc.

Push notifications. Connected devices may receive notifications that are

pushed from the cloud with configuration, alert and other information. In order

to deliver notification to device, distributed system should either lookup particu-

lar node that manages communication session with device or broadcast of this

message to all nodes. Message broadcast may introduce performance bottleneck

in case of huge message load. Thus, the ability to localize processing of particu-

À.I. Shvayka

76 ISSN 0204–3572. Electronic Modeling. 2016. V. 38. ¹ 5

lar device requests on a particular node of distributed system may be a key re-

quirement for load balancing system. In case of successful device localization,

RAM resources are spent to cache undelivered messages and session state.

IoT protocols. Despite the overwhelming variety of powerful Internet-con-

nected devices, some of the devices are very constrained in terms of energy con-

sumption, RAM and flash storage size. This constraints the impact possible

choice of network protocols that are used to communicate with application ser-

vers [4]. This paper also covers a review of such protocols [5] and their possible

impact on load balancing strategies.

Constrained Application Protocol (CoAP) works over User Datagram Pro-

tocol (UDP) and is used for resource constrained, low-power sensors and de-

vices connected via Lossy networks. This low-power devices often have 8-bit

microcontrollers and are related to Class 1 (C1) of constrained devices [4].

CoAP with Observe extension enables publish/subscribe functionality that al-

lows supporting messaging and notifications use cases [6]. Since the protocol is

UDP based, message delivery confirmation is optional and is controlled on the

application layer. CoAP supports secure extension based on Datagram Trans-

port Layer Security (DTLS) [7]. In the scope of load balancing, CoAP is similar

to Hypertext Transfer Protocol (HTTP), however, each request is identified us-

ing UDP source and destination host/port pair and protocol specific request to-

ken. It is quite effective to embed and parse device identifier from Uniform Re-

source Request (URI) request.

Message Queuing Telemetry Transport (MQTT) is a client-server pub-

lish/subscribe messaging protocol. MQTT client is able to subscribe, publish

and un-subscribe from multiple topics. MQTT is lightweight and simple which

make it useful in many situations, including constrained devices where a small

code footprint is required and/or network bandwidth is at a premium. The proto-

col runs over Transmission Control Protocol/Internet Protocol (TCP/IP), or over

other network protocols (e.g. WebSockets) that provide ordered, lossless, bi-di-

rectional connections. Since the protocol is based on TCP, it is not supported by

majority of C1 constrained devices. MQTT supports secure communication

based on Transport Layer Security (TLS). In the scope of load balancing, MQTT

session is identified using TCP source and destination host/port pair. It is quite

effective to embed and parse device identifier from MQTT topic or identify de-

vice based on corresponding client security certificate.

Hypertext Transfer Protocol. Restful HTTP is a client-server request-re-

sponse protocol that received wide adoption in IoT applications that are hosted

on quite powerful devices. HTTP security protocol (HTTPS) supports secure

communication based on HTTP and TLS. The majority of load-balancers and

cloud providers support HTTP protocol load balancing with various options

Load Balancing in IoT Applications Using Consistent Hashing

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2016. Ò. 38. ¹ 5 77

(e.g. sticky sessions) [8]. Despite all advantages, the request-response model

makes this protocol unsuitable for real-time messaging and frequent push notifi-

cations.

WebSockets. WebSockets protocol allows raising bi-directional communi-

cation over HTTP connection. This protocol has also received wide adoption in

Web applications due to low latency bi-directional messaging capabilities. How-

ever, it requires more resources than MQTT and thus much less popular on con-

strained devices. Although the WebSockets protocol is not actively used for de-

vice-server communication, it is actively used to deliver information from the

server to Web and mobile client applications. WebSockets protocol supports se-

curity based on TLS.

Load balancing methods are available as the separate specialized software

or directly integrated into distributed systems. The existing methods can be di-

vided into static, semi-dynamic and dynamic categories based on the principle of

taking into account the dynamics of load profile [9, 10]. When using static me-

thods of load balancing plan is fixed and known before the system startup. Semi-

dynamic methods define load balancing plan during system initialization. Dy-

namic methods adapt load distribution plan, based on specific events, periodi-

cally or on a specific schedule. The dynamic methods are the most complex ones

in terms of implementation and consume more computing resources. In most

cases, their use is justified and can lead to a significant increase of overall system

performance. However, in the case of distributed systems with static load profile

the use of these methods can cause system performance downgrade.

Round Robin (RR) is one of the simplest methods for distributing client re-

quests across a group of servers. This method forwards a client request to each

server in turn. There are several modifications of this method. In case of

weighted RR, a weight is assigned to each server based on server hardware con-

figuration (Fig. 1). In case of dynamic RR, the weight is assigned to each server

dynamically on the basis of real-time data about the server’s current load and

À.I. Shvayka

78 ISSN 0204–3572. Electronic Modeling. 2016. V. 38. ¹ 5

5
Load balancer

5

Server 1
Weight: 3

Server 2
Weight: 1

Server 3
Weight: 1

4

4

3

3

2 21

1

Fig. 1. Load balancing using Weighted Round Robin method

idle capacity. The higher the weight, the larger the proportion of client requests

received by the server [11].

In the scope of IoT applications, RR method has a significant disadvantage.

Multiple requests from the same device, especially devices that use the re-

quest-response network protocols (CoAP, HTTP), will most likely target differ-

ent servers. This will cause the increase of the cache size that holds device

metadata (security credentials, state info, etc.) and eventually will cause low

cache hit rate.

Client aware policy (CAP) is a static method that operates on application

layer of OSI model and makes routing decision based on the content of request.

This method classifies a request based on its impact on server resources: CPU,

memory, disk and network. This method uses only the request information and

does not attempt to predict time spent to process each specific request (Fig. 2).

The method is the most productive in the case of servers with heterogeneous and

unpredictable load [12].

In the scope of IoT applications, CAP method requires fine tuning and extra

knowledge about behaviour of particular application. This method also does not

guarantee locality of requests from a particular device. Thus it may cause similar

performance issues to the ones described earlier in RR algorithm description.

Locality aware request distribution (LARD) is a dynamic method that ope-

rates on application layer of OSI model and makes routing decision based on the

content of request and corresponding server states. The LARD strategy yields

scalable performance by achieving both load balancing and cache locality at the

back-end servers. This method uses several configuration parameters: Tlow (de-

fines a value below which a back-end node is potentially underutilized) and

Thigh (defines a value above which a back-end node is potentially overloaded)

(Fig. 3). If one of the servers, which is responsible for handling requests of a spe-

cific type is overloaded, load balancer selects one of the underutilized servers or

the least downloaded one [13].

Load Balancing in IoT Applications Using Consistent Hashing

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2016. Ò. 38. ¹ 5 79

A

Load balancer
A

Server 1

Server 2

Server 3

B

B
B

C

Costs C

C

D BA

A A= 40 = 60 = 100

Fig. 2. Load balancing using CAP method

In the scope of IoT applications, LARD method partially solves a problem

with localization of requests based on some request identifier. Assuming that the

request type will be determined as a hash function of an application or device

identifier, this load balancing strategy can provide good cache hit rate and over-

all performance. However, requests for a particular device can still hit different

servers within one group.

Consistent Hashing. In traditional hash tables, a change in the number of

array slots causes nearly all keys to be remapped. Thus, if existing server fails or

new server is added, new device sessions most likely will hit different servers.

Ñonsistent hashing is a special kind of hashing such that when a hash table is

resized, only K/n keys need to be remapped on the average, where K is the num-

ber of keys, and n is the number of slots [14].

À.I. Shvayka

80 ISSN 0204–3572. Electronic Modeling. 2016. V. 38. ¹ 5

A

Load balancer
B

Server 1
(Type A)

Server 2
(Type B)

Server 3
(Type C)

B B

A

C

C

BA

A

Fig. 3. Load balancing using LARD method

External
System

Coordination
service

WebSocket
Interface

MQTT
Interface

CoAP
Interface

HTTP
Interface

Load
balancer

core

Load
Balancer

B

Server 1

Device A

Device B

Device C

Server 2

Server 3

B

A

C

C

C

B

A

A

Fig. 4. Proposed system architecture

Consistent hashing technique is actively used in industry standard NoSQL

databases and is one of the key strategies to partition load. The concept of virtual

nodes allows us to evenly disparse load in case of particular node failure and

achieve incremental scalability by adding new nodes [15].

Load balancing system architecture. Consistent hashing algorithm pro-

vides ability to address all requests from particular device to specific server

based on well-defined device identifier and up-to-date information about list of

servers in the cluster. This allows achieving the best possible cache hit rate and

localize other memory related resources. The ability to address particular entity

and related session information also reduces delays in notification or other mes-

sage delivery. The proposed architecture assumes that all device requests and re-

lated application programming interfaces calls will contain information about

device identifier. For example, the device identifier may be a device token or de-

Load Balancing in IoT Applications Using Consistent Hashing

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2016. Ò. 38. ¹ 5 81

Features

Load balancing methods

Weighted RR CAP LARD
Consistent
Hashing

General Features

Cache Hit Rate Low (requests from
one device may hit
multiple servers)

Low (requests from
one device may hit
multiple servers)

Medium (requests
from one device
hit certain group
of servers)

High (requests from
one device hit the
same server)

Sticky Sessions No No No Yes

Cluster Resizing Semi-automatic
(requires manual
configuration)

Semi-automatic
(requires manual
configuration)

Semi-automatic
(requires manual
configuration)

Automatic (auto-
matic out-of-the-
box)

Inhomogeneity of Ser-
vers Inside Cluster
(hardware configura-
tion)

High (based on
weight parameter)

Medium (easy to
improve)

High (based on ser-
ver type parame-
ter)

Medium (easy to
improve)

IoT Use Cases Support

Telemetry (no secu-

rity)

High High High High

Telemetry (security

enabled)
Low (low cache hit
rate on security cre-
dentails and session
information look-
up)

Low (low cache hit
rate on security cre-
dentails and session
information look-
up)

Medium (medium
cache hit rate on
security credentails
and session infor-
mation lookup)

High (best cache
hit rate on security
credentails and ses-
sion information
lookup)

Messaging Low (addressing
particular device
session requires
continious persis-
tance of session in-
formation)

Low (addressing
particular device
session requires
continious persis-
tance of session in-
formation)

Medium (address-
ing particular de-
vice session requi-
res broadcast to
certain group of
servers)

High (addressing
particular device
session is based on
hash of device id)

Push Notifications Low (the same as
for messaging)

Low (the same as
for messaging)

Medium (the same
as for messaging)

High (the same as
for messaging)

vice security credentials. Analysis of various existing IoT platforms allows as-

suming that this is a common practice [16, 17] (Fig. 4).
System components. Load balancing system consist of several interface

components that enable the support of particular network protocols and core
component that should be either aware of coordination service or implement ca-
pabilities of this service. Coordination service should provide information about
“worker” servers and ability to subscribe for updates about the state of these
servers. The preferred implementation of coordination service should be a dedi-
cated distributed system to provide failover and high availability support [18].

Supported protocols. Load balancing system may support pluggable imple-
mentations of network protocols, however in this article we have reviewed
MQTT, CoAP, HTTP and WebSocket implementations. The basic implementa-
tion can parse the device identifier from the URI in case of CoAP, HTTP and
WebSocket implementations. The topic name can be used to extract the device
identifier in MQTT protocol. The other option is to use credentials based on one
of the authentication methods: access tokens, hash of the client certificate, etc.

In order to compare load balancing methods listed above we will use the
comparison table. The comparison will be based on general load balancing fea-
tures and level of IoT use cases support.

Conclusion. The proposed architecture assumes that all worker servers
have identical or very similar hardware configuration. However, the system can
be improved to support various hardware configurations by introducing the
weight for a particular server node. The capability to coordinate several load ba-
lancer instances and support balancing between servers with different hardware
configurations is the field of the future research.

Íàâåäåíî àíàë³ç ìåòîä³â áàëàíñóâàííÿ íàâàíòàæåííÿ â íàéá³ëüø ïîïóëÿðíèõ ñöåíàð³ÿõ
âèêîðèñòàííÿ ³ ïðîòîêîëàõ ³íòåðíåòó ðå÷åé. Íàäàíî äèçàéí ñèñòåìè áàëàíñóâàííÿ íà-
âàíòàæåííÿ, áàçîâàíî¿ íà âèêîðèñòàíí³ êîíñèñòåíòíîãî õåøèðóâàíèÿ, ÿêà ï³äòðèìóº ïðî-
òîêîëè HTTP, MQTT ³ CoAP.

REFERENCES

1. Lueth, K.L. (2014), IoT market – forecasts at a glance, IoT Analytics, available at: https://
iot-analytics.com/iot-market-forecasts-overview/ (accessed March, 2016).

2. Zhang Lin, Li Xiao-ping and Su Yuan (2010), A content-based dynamic load-balancing al-
gorithm for heterogeneous Web server cluster, ComSIS, Vol. 7, no. 1, Special issue, pp. 153-
162, available at:http://www.doiserbia.nbrs/img/doi/1820-0214/2010/1820-02141001153Z.pdf.
(àccessed March, 2016).

3. What is layer 7 load balancing?, Nginx Documentation, available at: https://www.nginx.com/ re-
sources/glossary/layer-7-load-balancing/ (accessed: March, 2016).

4. Bormann, C., Ersue, M. and Keranen, A. (2014), Terminology for constrained-node net-
works, Internet Engineering Task Force (IETF) Documents, available at: https://tools.ietf.org/
html/rfc7228#section-3 (accessed March, 2016).

À.I. Shvayka

82 ISSN 0204–3572. Electronic Modeling. 2016. V. 38. ¹ 5

5. Duffy, P. (2013), Beyond MQTT: A Cisco view on IoT protocols, Cisco Blogs, Digital
Transformation, available at: http://blogs.cisco.com/digital/beyond-mqtt-a-cisco-view-on-
iot-protocols (accessed March, 2016).

6. Hartke, K. (2015), Observing resources in the Constrained Application Protocol (CoAP),
Internet Engineering Task Force (IETF) Documents, available at: https://tools.ietf.org/
html/rfc7641 (accessed March, 2016).

7. Shelby, Z., Hartke, K. and Bormann, C. (2014), The Constrained Application Protocol
(CoAP), Internet Engineering Task Force (IETF) Documents, available at: https://tools.
ietf.org/html/rfc7252 (accessed March, 2016).

8. Elastic load balancing product details, Amazon Web Services Documentation, available at:
https://aws.amazon.com/ru/elasticloadbalancing/details (accessed March, 2016).

9. Anicas, M. (2014), An Introduction to HAProxy and load balancing concepts, DigitalOcean,
HAProxy, available at: https://www.digitalocean.com/community/tutorials/an-introduction-
to-haproxy-and-load-balancing-concepts (accessed March, 2016).

10. Best practices in evaluating elastic load balancing. (2014), Amazon Web Services Documen-
tation, available at: https://aws.amazon.com/articles/1636185810492479 (accessed March,
2016).

11. What is Round-Robin load balancing?, Nginx Documentation, available at: https://www.
nginx.com/resources/glossary/round-robin-load-balancing/ (accessed March, 2016).

12. Casalicchio, E. and Colajanni, M. (2001), A client-aware dispatching algorithm for Web
clusters providing multiple services, Proceedings of the 10th International Conference on
World Wide Web, Hong Kong, May 1-5, 2001, pp. 535-544, available at: http://www.sur-
vey.ethz.ch/CDstore/www10/papers/pdf/p434.pdf (accessed March, 2016).

13. Druschel, P. (1999), The LARD strategy, USENIX Board of Directors Election Results. –
April, available at: https://www.usenix.org/legacy/publications/library/proceedings/usenix99/
full_papers/aron/aron_html/node13.html (accessed March, 2016).

14. Karger, D. et al. (1997), Consistent hashing and random trees: distributed caching protocols
for relieving hot spots on the World Wide Web, STOC ‘97 Proceedings of the 29th Annual
ACM Symposium on Theory of Computing, pp. 654-663, available at: https://www.usenix.
org/legacy/publications/library/proceedings/usenix99/full_papers/aron/aron_html/node13.
html. TODO: NEW LINK (accessed August, 2016).

15. DeCandia, G. et al. (2007), Dynamo: Amazon’s highly available key-value store, SOSP'07
Proceedings of the 21st ACM SIGOPS Symposium on Operating Systems Principles, Vol. 41,
Iss. 6, pp. 205-220, available at: ://www.allthingsdistributed.com/files/amazon-dynamo-
sosp2007.pdf (accessed March, 2016).

16. Basics of MQTT, Thethings.iO Internet of Things Platform, available at: https://develop-
ers.thethings.io/makers-mqtt.html (accessed March, 2016).

17. Security and identity for AWS IoT, Amazon Web Services Documentation, available at:
http://docs.aws.amazon.com/iot/latest/developerguide/iot-security-identity.html (accessed
March, 2016).

18. Hunt, P., Konar, M., Paiva, F., Junqueira, P.F. and Reed, B.C. (2010), “ZooKeeper: Wait-free
coordination for Internet-scale systems”, USENIXATC’10 Proceedings of the 2010 USENIX
Conference on USENIX Annual Technical Conference, pp. 1-14, available at: https://www.
usenix.org/legacy/event/usenix10/tech/full_papers/Hunt.pdf (accessed March, 2016).

Received 06.06.16;
after revision 18.08.16

SHVAYKA Andrei Igorevich, post-graduate of the Pukhov Institute for Problems of Modeling in Energy

Engineering. In 2001 A. Shvaika graduated from the National Technical University of Ukraine Kyiv

Polytechnic Institute. A field of research: load balancing, distributed systems, high-load systems.

Load Balancing in IoT Applications Using Consistent Hashing

ISSN 0204–3572. Ýëåêòðîí. ìîäåëèðîâàíèå. 2016. Ò. 38. ¹ 5 83

