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The distribution function of particles in plasma which is created in crossed axial magnetic and radial electric
fields by ionization of gas is obtained. It is assumed that the neutral gas before its ionization rotates with a constant
angular velocity and the gas particle velocity distribution function in rotating frame is Maxwellian. Produced plasma
particles move in crossed fields without collisions. The obtained distribution function is written in the coordinates of
the guiding center. The expressions for the distribution function in the various special cases are also obtained.
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INTRODUCTION

Particle distribution function of cylindrically sym-
metric plasma in crossed axial magnetic and radial elec-
tric fields depends on the conditions of its creation. In
[1,2] the distribution function of plasma created as a
result of ionization of a cold gas was considered:

F(SL,IU¢,VZ)OC Y (e, _ﬂ)g(ﬂ - a’e#¢)5(vz): 1)
where Y is the Heaviside step function, & is the Dirac
delta function, @, is the potential on the external elec-

trode (anode), @, =—cE,/Br. Variables &,,, u,,

and v, are the energy of the transverse motion, the gen-

eralized angular momentum and velocity along the
magnetic field respectively. The radial profile of the
electric field potential was assumed parabolic

D(r) =<1>0(r/a)2, which ensured the independence of

the rate of angular rotation of the particle on the radius.
A distinctive feature of that plasma was a strong radial
electric field produced by uncompensated charge of
electrons, so that the ions move radially in very elongat-
ed orbits and azimuthal precession with frequency
-y /2 where @ is the ion cyclotron frequency. That

model was applied in a Penning discharge with a low-
density plasma (n,~10%cm ) in the analysis of plasma

stability in particular in the study of low frequency os-
cillations.

In [3] the expression for the plasma particle distribu-
tion functions in crossed axial magnetic and radial elec-
tric fields, where the thermal motion of atoms before
their ionization taken into account, was obtained:
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where p, and R, are variables of the guiding center of
particle « species respectively Larmor radius and radi-
al coordinate of the center of the Larmor circle, n, and
Vro are the density and the thermal velocity of the par-
ticles before to their appearance in crossed fields.
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Io(x) is the Bessel function of imaginary argument,

Q, is the angular velocity of the drift motion of parti-
cles in crossed fields:

Qa:& -1+ 1+% . (3)
2 m, s, a

This distribution function can be used to analyze the
stability of plasma created in crossed fields of vapors of
substance that have high boiling point. The application
of that plasma, created by the reflective discharge in
order to separate elements and isotopes was discussed in
[4-6]. The usual analysis of the stability of plasma with
a known function of the distribution can also be sup-
plemented by searching the optimum particle distribu-
tion function of vapor of working substance, whereby
the efficiency of the separation of elements would be
enhanced. In this paper, the function of the plasma par-
ticle distribution was obtained under conditions when a
neutral gas (or vapor of working substance) before ioni-
zation rotates with a certain angular velocity, taking into
account the thermal spread of velocities of the gas mol-
ecules in the rotating frame of reference. Choosing an
appropriate gas angular rotation velocity depending on
the ion cyclotron frequency of a particular element, or
the velocity of the drift motion of plasma particles in
crossed fields makes it possible to control the particle
distribution function of plasma, thereby regulate the
plasma wave processes, as well as affect on the process
of separation elements.

1. GENERAL EXPRESSION FOR THE
DISTRIBUTION FUNCTION

Now we obtain the particle distribution function of
plasma in the crossed fields assuming that the gas ro-
tates at a constant angular velocity before its ionization.
Here we use the same considerations as in [3] where gas
initially was in rest.

Suppose that cylindrically symmetric collisionless
plasma is placed in crossed longitudinal magnetic and
radial electric fields. In the radial direction plasma is
limited by metal electrode (anode) with the radius a
and which has a positive potential relative to the axis, so
that the electric field is directed into the plasma. We
assume that the potential in plasma has a quadratic
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dependence on the radius ®(r) :(1)0(r/a)2 so that the
rotational velocity of the particles is not depends on the
radius. This potential distribution occurs in negatively
charged plasma with uniform radial distribution of the
electron density. Along the magnetic field the plasma is
considered to be unlimited. The equilibrium distribution
function of plasma particles of a species « (ion or elec-
tron) should depends on variables &, 4, , v, , where

m v?

2
Elg :—"‘2l +e®(r), sty = My

—a ta ch"‘ +MyV,r, 4)

vi =V +V2. Suppose that the particle of & species

appeared in the crossed fields with the initial values of
the radial coordinate r, and velocity components
Vigs V

»00 Vz0- The probability that, moving in crossed
fields,

the particle will be in the phase volume
de,,du,,dv, isequal to:

2 2
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This form of dependence of the probability density is a
consequence of the laws of conservation of energy and
angular momentum of a particle. If, before the appear-
ance of the particles in crossed fields, they have a cer-
tain distribution of the coordinates and velocities
fo (10, Vro,Vy0:V20) » then the probability that the parti-
cle will be found in the phase
de |, du,,dv, fhdrg dvig dv,, dv,g is equal to:
dP = f (19, V10, V;0)dp Iodig Ve AV, dv,g.  (6)
In order to obtain the particle distribution function, the
expression (6) should be integrated over the variables
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volume
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Integration over variables viq,V,,0,V,o gives
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W =(2Q, + @, ) is the modified cyclotron frequen-

cy in the crossed fields. Now we replace in integral (8)
the variable r, by ¢ as
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Suppose that the distribution function
fo (10, Vros Vo1 Vo) IS given by:
2
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that corresponds initially rotating gas with angular ve-
locity Q. Then, taken into account (9), we obtain
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In the frame of reference rotating with the angular ve-
locity €, particle of species « to perform a circular

motion like Larmor rotation in the magnetic field. The
role of the cyclotron frequency in this case has a modi-

fied cyclotron frequency . =(2Q, +a,,) and the

Larmor radius p,, as well as the radial coordinate of the

center of the Larmor circle R, (variables of the guiding

center of the particle) related to the variables ¢, , and
.. by the following relations [7]
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Note that p, and R, are also integrals of motion. Dis-

tribution function in the variables of the guiding center
will have the form
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Integrating (15) over ¢, we obtain
Ny
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Expression (16) is the desired distribution function of
particles in crossed fields for initially rotated gas with
an arbitrary relationship between the energy of motion
of particles in an electric field and their energy of ther-
mal motion. Note, that in the limiting case €, =0ex-

pression (16) reduces to (2).

2. SPECIAL CASES FOR THE
DISTRIBUTION FUNCTION
Now we consider the limiting cases of the distribu-
tion function for the different limit ratios of the thermal
velocity vyo and the R,p, (Q, +@4, +)(Q, —)
value.
Assume first that v;,~0, while the anode potential @,

is high enough so that most of the volume of plasma
(except the paraxial region) the inequality

Rapa (Qa + @p +QOXQ(1 _QO)>> V%O (17)
holds. Then, for the Bessel functions, we can use the
asymptotic form for large values of the argument
lo(x)~e*/v27x . In this case the distribution function
(10) has the form

Mo
fou (PavRa'Vz)Zm
1
\/(Qa + @ +Q0)(Qy —Q0) Ry Py

xexp[— Qe =R, _(Qg + 05 + Qo). _ sz J
V1o 2v5,

X

XY (R, +p,—1)- (18)

It follows from Eq. (18), that the main contribution to

the equilibrium distribution function gives the particles,
which satisfy to condition:

(Q, —Q)R, = (Q, + @, +Q)p, > Vro-  (19)

Inequality (19) determines the approximation of a

strong radial electric field when the thermal velocity of

the particles before their appearance in crossed fields is
much less than the velocity of the particle drift in

crossed fields Vi, << (Q, — )R, . In the limiting case
Vo =0 the distribution function (18) reduces into
o-function:
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fOot(pot'Roz)oC 5((90: _QO)Ra _(Qa + @&, +QO) a)' (20)
Similar ion distribution function in the form of
o&function (1) was considered in [1,2], where the prob-
lem of the excitation of the ion cyclotron instability of
the plasma in crossed B and E, fields was solved.
Assume now that the inequality opposite to (17)
Rapa(Qa + @y +QOXQa _QO) << V'IgO (21)
holds. This inequality corresponds to the case of a weak

electric field. In this case, the distribution function (16)
takes the form:

n
f R v )=— O
Oa(pa a z) (272.)]/2\/—?0
xEXF{— @, _%O)Z RS - @, +wca2+Qo)Zp§ _ szz J
2VTO 2V‘|’0 2V-|—0
<Y (R, + Py —a). (22)

Note that despite the uniform ionization along the radi-
us, the distribution function (22) is Gaussian on radial
coordinate of the guiding center.

Now we will obtain the distribution function for the
particular values of angular velocity €,. Suppose in

(16) @, =€, i.e. angular velocity rotation of the gas

coincides with the angular velocity of the drift motion
of particles in crossed fields. Then the distribution func-
tion has the form

2 2 2
n We P v
f ,R WV, )= 0 exp| — —te*Fa _ 20
Oa(pa ‘ Z) (2”)]/2V$0 F{ %, 2VTZOJ
xY (Ra + 0, —a). (23)

It is obvious that distribution function (23) not depends
on R, and plasma is homogeneous. This is true for
arbitrary ratios of the thermal velocity and the velocity
of the drift motion of the guiding center.

Assume now, that Q, =—a,, . Then the distribution

function (16) equals

n R
an (pa’Ra'VZ): \/ﬁvs IO( \72100{ Qa (Qa +wca)j
T0 T0

v -1 p202 - L RO, + 0, P- 2
219 2v1g 2v1g
Y(R, +p,—1o)- (24)
As can be seen the expression (24) is obtained from (16)
by interchange of variables R, <> p, . The distribution

function (24) corresponds to the azimuthal flow compo-
nent «, rotating with angular velocity Q, =-a,,,

however written in the laboratory frame. As shown in
[8], the transition to a frame of reference rotating with
angular velocity QQ=-a, leads to interchange of vari-

ables R, <> p, in distribution function and thus in a

new frame of reference, we again obtain the expression
(16).
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Now we consider the case Q;=—(Q,+a,).
Then the distribution function takes the form

No _wcza*Rg B Vao
7z 5 oXP 2 2
(27)" " vro PAV-RAV
XY (R, +p, —2a). (25)

This expression coincides with (23) up to the replace-
ment R, <> p,, and corresponds to particles encircling

plasma axis.

an (pa’ Ra'vz):

CONCLUSIONS

The expression for the distribution function of plas-
ma particles in crossed longitudinal magnetic and radial
electric field using the probabilistic approach is ob-
tained. It is assumed that gas up to the ionization rotates
with angular velocity €,. This expression takes into

account non-zero initial velocity of the atoms in rotating
frame. The distribution function includes the product of
the modified Bessel function and exponential (16)
whose arguments are the coordinates of the guiding cen-
ter.

From the general expression for the distribution
function the limiting expressions in the cases of strong
(18) and weak (22) radial electric field was obtained.
These expressions are consistent with the previously
obtained expressions.

The expressions for the distribution function for par-
ticular values of the angular velocity €, where ob-
tained, in particular:

1) When the equality Q, =€, satisfied the distribution
function (23) not depends on R, and plasma is homo-
geneous;

2) When the equality Q, =-a,, satisfied the distribu-
tion function (24) corresponds to (16) with interchange
of variables R, <> p,.

3) When the equality Qy =—(Q, +a,,) satisfied the

distribution function (25) corresponds to (23) with in-
terchange of variables R, <> p,, .

REFERENCES

1. V.G. Dem’yanov, Yu.N. Eliseev, Yu.A. Kirochkin, et
al. Equilibrium and non-local ion cyclotron instability of
plasma in crossed longitudinal magnetic and strong ra-
dial electric fields // Fiz. Plazmy. 1988, v. 14, Ne 10,
p. 840-850 (in Russian).
2. Yu.N. Yeliseyev. Nonlocal theory of the spectra of
modified ion cyclotron oscillations in a charged plasma
produced by gas ionization // Plasma Phys. Rep. 2006,
v. 32, Ne 11, p. 927-936.
3. D.V. Chibisov. The distribution function of plasma
particles in longitudinal magnetic and radial electric
fields // Problems of Atomic Science and Technology.
Series «Plasma Physicsy. 2014, Ne 6 (94), p. 55-57.
4.Yu.V. Kovtun, A.l. Skibenko, E.I. Skibenko, et al.
Experiment on the production and separation of the
pulsed reflective discharge gas-metal plasma // Tech-
nical Physics. 2011, v. 56, Ne 5, p. 623-627.
5. E.I. Skibenko, Yu.V. Kovtun, A.l. Skibenko,
V.B. Yuferov. Estimations of parameters of separation
plasma produced in the discharge with oscillating elec-
trons (penning) // Problems of Atomic Science and
Technology. Series «Vacuum, Pure Materials, Super-
conductorsy. 2014, Ne 1 (89), p. 101-105.
6. Yu.V. Kovtun, A.l. Skibenko, E.I. Skibenko,
V.B. Yuferov. Measurement of the plasma density in
two modes of pulsed discharge burning in the penning
cell // Problems of Atomic Science and Technology.
Series «Plasma Physics». 2015, Ne 1 (95), p. 197-200.
7. D.V. Chibisov, V.S. Mikhailenko, K.N. Stepanov.
lon cyclotron turbulence theory of rotating plasmas //
Plasma Phys. Control. Fusion. 1992, v. 34, Ne 1, p. 95-
117.
8. E.Yu. Vakim, V.S. Mikhailenko, K.N. Stepanov,
D.V. Chibisov. Electrostatic instabilities of a multicom-
ponent plasma with ions gyrating around the axis of the
plasma column // Plasma Physics Reports. 1997, v. 23,
Ne 1, p. 44-52.

Article received 22.09.2016

OYHKIUA PACIHHPEJAEJEHUSA YACTHUI ITVIASMBI B OCEBOM MAT'HUTHOM U PAINAJIBHOM
JIEKTPUUYECKOM MOJISX ITPU MONEPEYHOM MHKXEKIIAA HEUTPAJIBHOI'O I'A3A

.B. Yuoucos

[Nomydena ¢yHKIUs pactpeneneHus YacTHIl B IU1a3Me, KOTopast CO31aéTcsl B CKPEIIEHHBIX 0CEBOM MAarHUTHOM U
paauanbHOM 3JeKTpudeckoM roisx. [Ipeanosnaraercs, 4To HEHTpaNbHBINA ra3 repea HOHU3ALMEH Bpamaercs ¢ mo-
CTOSITHHOW YTJIOBOM CKOPOCTBIO, @ (DYHKIMS pacrpeiesieHNs] YacTHIl ra3a Mo CKOPOCTSIM BO BpallaloIeHCs cCUCTEMe
oTcuéTa SBISETCS MaKCBEJUIOBCKOH. OOpas3oBaBIIMECS YacTHIBI IUIAa3Mbl JBHXKYTCS B CKPEIIEHHBIX TOJIIX Oe3
crosikHOBeHHH. [lomydeHHass QyHKOus pacrpenesieHds] 3alHcaHa B KOOpJAMHATax Benymiero ueHrpa. IlomydeHsr
TaKXXe BBIPAKEHUS U QYHKINH pacipeeNieHs B Pa3INIHBIX YAaCTHBIX CIydasX.

OYHKIIA PO3NOALTY YACTUHOK IIJIASMU B OCbOBOMY MATHITHOMY I PAAIAJIBHOMY
EJEKTPUYHOMY MOJISIX TPH NONEPEYHIN THXKEKIIT HEUTPAJIBHOI'O TA3Y
/I.B. Qidicos

OTtpuMaHo (QYHKIIIIO PO3IMOAUTY YaCTHHOK Y IIa3Mi, SIKa YTBOPIOETHCS B CXPEIICHUX OChOBOMY MAarHiTHOMY i
pamiambHOMY eJIeKTpuIHOMY MoJisix. [lepenbadaeTnes, Mo HEHTpaIpHUI ra3 mepes ioHi3alie o0epTaeThes 31 CTa-
JIOKO KYyTOBOIO IMIBUJKICTIO, a (DYHKITiS PO3MOITY YaCTHHOK Ta3y 3a MIBHAKOCTSAMH B 00EpTOBiil cucTeMi BiIUTKY €
MaKCBEJITIBCHKOI0. Y TBOPHHI YaCTHHKHY IIA3MH PYXaIOTECS B CXpEIIEHUX MoJsAX 0e3 3iTkHeHb. OTpuMaHa (yHKIi
PO3IOALTY 3amucaHa B KOOPAWHATAX BEAY4Oro neHTpy. OTpHMaHO TaKOoX BHpa3u Uil GPYHKIIT PO3MOILTY B Pi3HUX
OKpEeMUX BUMIAJIKAX.
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